xref: /openbmc/qemu/hw/arm/mps3r.c (revision 2b74dd918007d91f5fee94ad0034b5e7a30ed777)
1 /*
2  * Arm MPS3 board emulation for Cortex-R-based FPGA images.
3  * (For M-profile images see mps2.c and mps2tz.c.)
4  *
5  * Copyright (c) 2017 Linaro Limited
6  * Written by Peter Maydell
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 or
10  *  (at your option) any later version.
11  */
12 
13 /*
14  * The MPS3 is an FPGA based dev board. This file handles FPGA images
15  * which use the Cortex-R CPUs. We model these separately from the
16  * M-profile images, because on M-profile the FPGA image is based on
17  * a "Subsystem for Embedded" which is similar to an SoC, whereas
18  * the R-profile FPGA images don't have that abstraction layer.
19  *
20  * We model the following FPGA images here:
21  *  "mps3-an536" -- dual Cortex-R52 as documented in Arm Application Note AN536
22  *
23  * Application Note AN536:
24  * https://developer.arm.com/documentation/dai0536/latest/
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/units.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qlist.h"
31 #include "exec/address-spaces.h"
32 #include "cpu.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/or-irq.h"
36 #include "hw/qdev-clock.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/bsa.h"
40 #include "hw/char/cmsdk-apb-uart.h"
41 #include "hw/i2c/arm_sbcon_i2c.h"
42 #include "hw/intc/arm_gicv3.h"
43 #include "hw/misc/mps2-scc.h"
44 #include "hw/misc/mps2-fpgaio.h"
45 #include "hw/misc/unimp.h"
46 #include "hw/net/lan9118.h"
47 #include "hw/rtc/pl031.h"
48 #include "hw/ssi/pl022.h"
49 #include "hw/timer/cmsdk-apb-dualtimer.h"
50 #include "hw/watchdog/cmsdk-apb-watchdog.h"
51 
52 /* Define the layout of RAM and ROM in a board */
53 typedef struct RAMInfo {
54     const char *name;
55     hwaddr base;
56     hwaddr size;
57     int mrindex; /* index into rams[]; -1 for the system RAM block */
58     int flags;
59 } RAMInfo;
60 
61 /*
62  * The MPS3 DDR is 3GiB, but on a 32-bit host QEMU doesn't permit
63  * emulation of that much guest RAM, so artificially make it smaller.
64  */
65 #if HOST_LONG_BITS == 32
66 #define MPS3_DDR_SIZE (1 * GiB)
67 #else
68 #define MPS3_DDR_SIZE (3 * GiB)
69 #endif
70 
71 /*
72  * Flag values:
73  * IS_MAIN: this is the main machine RAM
74  * IS_ROM: this area is read-only
75  */
76 #define IS_MAIN 1
77 #define IS_ROM 2
78 
79 #define MPS3R_RAM_MAX 9
80 #define MPS3R_CPU_MAX 2
81 #define MPS3R_UART_MAX 4 /* shared UART count */
82 
83 #define PERIPHBASE 0xf0000000
84 #define NUM_SPIS 96
85 
86 typedef enum MPS3RFPGAType {
87     FPGA_AN536,
88 } MPS3RFPGAType;
89 
90 struct MPS3RMachineClass {
91     MachineClass parent;
92     MPS3RFPGAType fpga_type;
93     const RAMInfo *raminfo;
94     hwaddr loader_start;
95 };
96 
97 struct MPS3RMachineState {
98     MachineState parent;
99     struct arm_boot_info bootinfo;
100     MemoryRegion ram[MPS3R_RAM_MAX];
101     Object *cpu[MPS3R_CPU_MAX];
102     MemoryRegion cpu_sysmem[MPS3R_CPU_MAX];
103     MemoryRegion sysmem_alias[MPS3R_CPU_MAX];
104     MemoryRegion cpu_ram[MPS3R_CPU_MAX];
105     GICv3State gic;
106     /* per-CPU UARTs followed by the shared UARTs */
107     CMSDKAPBUART uart[MPS3R_CPU_MAX + MPS3R_UART_MAX];
108     OrIRQState cpu_uart_oflow[MPS3R_CPU_MAX];
109     OrIRQState uart_oflow;
110     CMSDKAPBWatchdog watchdog;
111     CMSDKAPBDualTimer dualtimer;
112     ArmSbconI2CState i2c[5];
113     PL022State spi[3];
114     MPS2SCC scc;
115     MPS2FPGAIO fpgaio;
116     UnimplementedDeviceState i2s_audio;
117     PL031State rtc;
118     Clock *clk;
119 };
120 
121 #define TYPE_MPS3R_MACHINE "mps3r"
122 #define TYPE_MPS3R_AN536_MACHINE MACHINE_TYPE_NAME("mps3-an536")
123 
124 OBJECT_DECLARE_TYPE(MPS3RMachineState, MPS3RMachineClass, MPS3R_MACHINE)
125 
126 /*
127  * Main clock frequency CLK in Hz (50MHz). In the image there are also
128  * ACLK, MCLK, GPUCLK and PERIPHCLK at the same frequency; for our
129  * model we just roll them all into one.
130  */
131 #define CLK_FRQ 50000000
132 
133 static const RAMInfo an536_raminfo[] = {
134     {
135         .name = "ATCM",
136         .base = 0x00000000,
137         .size = 0x00008000,
138         .mrindex = 0,
139     }, {
140         /* We model the QSPI flash as simple ROM for now */
141         .name = "QSPI",
142         .base = 0x08000000,
143         .size = 0x00800000,
144         .flags = IS_ROM,
145         .mrindex = 1,
146     }, {
147         .name = "BRAM",
148         .base = 0x10000000,
149         .size = 0x00080000,
150         .mrindex = 2,
151     }, {
152         .name = "DDR",
153         .base = 0x20000000,
154         .size = MPS3_DDR_SIZE,
155         .mrindex = -1,
156     }, {
157         .name = "ATCM0",
158         .base = 0xee000000,
159         .size = 0x00008000,
160         .mrindex = 3,
161     }, {
162         .name = "BTCM0",
163         .base = 0xee100000,
164         .size = 0x00008000,
165         .mrindex = 4,
166     }, {
167         .name = "CTCM0",
168         .base = 0xee200000,
169         .size = 0x00008000,
170         .mrindex = 5,
171     }, {
172         .name = "ATCM1",
173         .base = 0xee400000,
174         .size = 0x00008000,
175         .mrindex = 6,
176     }, {
177         .name = "BTCM1",
178         .base = 0xee500000,
179         .size = 0x00008000,
180         .mrindex = 7,
181     }, {
182         .name = "CTCM1",
183         .base = 0xee600000,
184         .size = 0x00008000,
185         .mrindex = 8,
186     }, {
187         .name = NULL,
188     }
189 };
190 
191 static const int an536_oscclk[] = {
192     24000000, /* 24MHz reference for RTC and timers */
193     50000000, /* 50MHz ACLK */
194     50000000, /* 50MHz MCLK */
195     50000000, /* 50MHz GPUCLK */
196     24576000, /* 24.576MHz AUDCLK */
197     23750000, /* 23.75MHz HDLCDCLK */
198     100000000, /* 100MHz DDR4_REF_CLK */
199 };
200 
201 static MemoryRegion *mr_for_raminfo(MPS3RMachineState *mms,
202                                     const RAMInfo *raminfo)
203 {
204     /* Return an initialized MemoryRegion for the RAMInfo. */
205     MemoryRegion *ram;
206 
207     if (raminfo->mrindex < 0) {
208         /* Means this RAMInfo is for QEMU's "system memory" */
209         MachineState *machine = MACHINE(mms);
210         assert(!(raminfo->flags & IS_ROM));
211         return machine->ram;
212     }
213 
214     assert(raminfo->mrindex < MPS3R_RAM_MAX);
215     ram = &mms->ram[raminfo->mrindex];
216 
217     memory_region_init_ram(ram, NULL, raminfo->name,
218                            raminfo->size, &error_fatal);
219     if (raminfo->flags & IS_ROM) {
220         memory_region_set_readonly(ram, true);
221     }
222     return ram;
223 }
224 
225 /*
226  * There is no defined secondary boot protocol for Linux for the AN536,
227  * because real hardware has a restriction that atomic operations between
228  * the two CPUs do not function correctly, and so true SMP is not
229  * possible. Therefore for cases where the user is directly booting
230  * a kernel, we treat the system as essentially uniprocessor, and
231  * put the secondary CPU into power-off state (as if the user on the
232  * real hardware had configured the secondary to be halted via the
233  * SCC config registers).
234  *
235  * Note that the default secondary boot code would not work here anyway
236  * as it assumes a GICv2, and we have a GICv3.
237  */
238 static void mps3r_write_secondary_boot(ARMCPU *cpu,
239                                        const struct arm_boot_info *info)
240 {
241     /*
242      * Power the secondary CPU off. This means we don't need to write any
243      * boot code into guest memory. Note that the 'cpu' argument to this
244      * function is the primary CPU we passed to arm_load_kernel(), not
245      * the secondary. Loop around all the other CPUs, as the boot.c
246      * code does for the "disable secondaries if PSCI is enabled" case.
247      */
248     for (CPUState *cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
249         if (cs != first_cpu) {
250             object_property_set_bool(OBJECT(cs), "start-powered-off", true,
251                                      &error_abort);
252         }
253     }
254 }
255 
256 static void mps3r_secondary_cpu_reset(ARMCPU *cpu,
257                                       const struct arm_boot_info *info)
258 {
259     /* We don't need to do anything here because the CPU will be off */
260 }
261 
262 static void create_gic(MPS3RMachineState *mms, MemoryRegion *sysmem)
263 {
264     MachineState *machine = MACHINE(mms);
265     DeviceState *gicdev;
266     QList *redist_region_count;
267 
268     object_initialize_child(OBJECT(mms), "gic", &mms->gic, TYPE_ARM_GICV3);
269     gicdev = DEVICE(&mms->gic);
270     qdev_prop_set_uint32(gicdev, "num-cpu", machine->smp.cpus);
271     qdev_prop_set_uint32(gicdev, "num-irq", NUM_SPIS + GIC_INTERNAL);
272     redist_region_count = qlist_new();
273     qlist_append_int(redist_region_count, machine->smp.cpus);
274     qdev_prop_set_array(gicdev, "redist-region-count", redist_region_count);
275     object_property_set_link(OBJECT(&mms->gic), "sysmem",
276                              OBJECT(sysmem), &error_fatal);
277     sysbus_realize(SYS_BUS_DEVICE(&mms->gic), &error_fatal);
278     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 0, PERIPHBASE);
279     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 1, PERIPHBASE + 0x100000);
280     /*
281      * Wire the outputs from each CPU's generic timer and the GICv3
282      * maintenance interrupt signal to the appropriate GIC PPI inputs,
283      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
284      */
285     for (int i = 0; i < machine->smp.cpus; i++) {
286         DeviceState *cpudev = DEVICE(mms->cpu[i]);
287         SysBusDevice *gicsbd = SYS_BUS_DEVICE(&mms->gic);
288         int intidbase = NUM_SPIS + i * GIC_INTERNAL;
289         int irq;
290         /*
291          * Mapping from the output timer irq lines from the CPU to the
292          * GIC PPI inputs used for this board. This isn't a BSA board,
293          * but it uses the standard convention for the PPI numbers.
294          */
295         const int timer_irq[] = {
296             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
297             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
298             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
299         };
300 
301         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
302             qdev_connect_gpio_out(cpudev, irq,
303                                   qdev_get_gpio_in(gicdev,
304                                                    intidbase + timer_irq[irq]));
305         }
306 
307         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
308                                     qdev_get_gpio_in(gicdev,
309                                                      intidbase + ARCH_GIC_MAINT_IRQ));
310 
311         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
312                                     qdev_get_gpio_in(gicdev,
313                                                      intidbase + VIRTUAL_PMU_IRQ));
314 
315         sysbus_connect_irq(gicsbd, i,
316                            qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
317         sysbus_connect_irq(gicsbd, i + machine->smp.cpus,
318                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
319         sysbus_connect_irq(gicsbd, i + 2 * machine->smp.cpus,
320                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
321         sysbus_connect_irq(gicsbd, i + 3 * machine->smp.cpus,
322                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
323     }
324 }
325 
326 /*
327  * Create UART uartno, and map it into the MemoryRegion mem at address baseaddr.
328  * The qemu_irq arguments are where we connect the various IRQs from the UART.
329  */
330 static void create_uart(MPS3RMachineState *mms, int uartno, MemoryRegion *mem,
331                         hwaddr baseaddr, qemu_irq txirq, qemu_irq rxirq,
332                         qemu_irq txoverirq, qemu_irq rxoverirq,
333                         qemu_irq combirq)
334 {
335     g_autofree char *s = g_strdup_printf("uart%d", uartno);
336     SysBusDevice *sbd;
337 
338     assert(uartno < ARRAY_SIZE(mms->uart));
339     object_initialize_child(OBJECT(mms), s, &mms->uart[uartno],
340                             TYPE_CMSDK_APB_UART);
341     qdev_prop_set_uint32(DEVICE(&mms->uart[uartno]), "pclk-frq", CLK_FRQ);
342     qdev_prop_set_chr(DEVICE(&mms->uart[uartno]), "chardev", serial_hd(uartno));
343     sbd = SYS_BUS_DEVICE(&mms->uart[uartno]);
344     sysbus_realize(sbd, &error_fatal);
345     memory_region_add_subregion(mem, baseaddr,
346                                 sysbus_mmio_get_region(sbd, 0));
347     sysbus_connect_irq(sbd, 0, txirq);
348     sysbus_connect_irq(sbd, 1, rxirq);
349     sysbus_connect_irq(sbd, 2, txoverirq);
350     sysbus_connect_irq(sbd, 3, rxoverirq);
351     sysbus_connect_irq(sbd, 4, combirq);
352 }
353 
354 static void mps3r_common_init(MachineState *machine)
355 {
356     MPS3RMachineState *mms = MPS3R_MACHINE(machine);
357     MPS3RMachineClass *mmc = MPS3R_MACHINE_GET_CLASS(mms);
358     MemoryRegion *sysmem = get_system_memory();
359     DeviceState *gicdev;
360     QList *oscclk;
361 
362     mms->clk = clock_new(OBJECT(machine), "CLK");
363     clock_set_hz(mms->clk, CLK_FRQ);
364 
365     for (const RAMInfo *ri = mmc->raminfo; ri->name; ri++) {
366         MemoryRegion *mr = mr_for_raminfo(mms, ri);
367         memory_region_add_subregion(sysmem, ri->base, mr);
368     }
369 
370     assert(machine->smp.cpus <= MPS3R_CPU_MAX);
371     for (int i = 0; i < machine->smp.cpus; i++) {
372         g_autofree char *sysmem_name = g_strdup_printf("cpu-%d-memory", i);
373         g_autofree char *ramname = g_strdup_printf("cpu-%d-memory", i);
374         g_autofree char *alias_name = g_strdup_printf("sysmem-alias-%d", i);
375 
376         /*
377          * Each CPU has some private RAM/peripherals, so create the container
378          * which will house those, with the whole-machine system memory being
379          * used where there's no CPU-specific device. Note that we need the
380          * sysmem_alias aliases because we can't put one MR (the original
381          * 'sysmem') into more than one other MR.
382          */
383         memory_region_init(&mms->cpu_sysmem[i], OBJECT(machine),
384                            sysmem_name, UINT64_MAX);
385         memory_region_init_alias(&mms->sysmem_alias[i], OBJECT(machine),
386                                  alias_name, sysmem, 0, UINT64_MAX);
387         memory_region_add_subregion_overlap(&mms->cpu_sysmem[i], 0,
388                                             &mms->sysmem_alias[i], -1);
389 
390         mms->cpu[i] = object_new(machine->cpu_type);
391         object_property_set_link(mms->cpu[i], "memory",
392                                  OBJECT(&mms->cpu_sysmem[i]), &error_abort);
393         object_property_set_int(mms->cpu[i], "reset-cbar",
394                                 PERIPHBASE, &error_abort);
395         qdev_realize(DEVICE(mms->cpu[i]), NULL, &error_fatal);
396         object_unref(mms->cpu[i]);
397 
398         /* Per-CPU RAM */
399         memory_region_init_ram(&mms->cpu_ram[i], NULL, ramname,
400                                0x1000, &error_fatal);
401         memory_region_add_subregion(&mms->cpu_sysmem[i], 0xe7c01000,
402                                     &mms->cpu_ram[i]);
403     }
404 
405     create_gic(mms, sysmem);
406     gicdev = DEVICE(&mms->gic);
407 
408     /*
409      * UARTs 0 and 1 are per-CPU; their interrupts are wired to
410      * the relevant CPU's PPI 0..3, aka INTID 16..19
411      */
412     for (int i = 0; i < machine->smp.cpus; i++) {
413         int intidbase = NUM_SPIS + i * GIC_INTERNAL;
414         g_autofree char *s = g_strdup_printf("cpu-uart-oflow-orgate%d", i);
415         DeviceState *orgate;
416 
417         /* The two overflow IRQs from the UART are ORed together into PPI 3 */
418         object_initialize_child(OBJECT(mms), s, &mms->cpu_uart_oflow[i],
419                                 TYPE_OR_IRQ);
420         orgate = DEVICE(&mms->cpu_uart_oflow[i]);
421         qdev_prop_set_uint32(orgate, "num-lines", 2);
422         qdev_realize(orgate, NULL, &error_fatal);
423         qdev_connect_gpio_out(orgate, 0,
424                               qdev_get_gpio_in(gicdev, intidbase + 19));
425 
426         create_uart(mms, i, &mms->cpu_sysmem[i], 0xe7c00000,
427                     qdev_get_gpio_in(gicdev, intidbase + 17), /* tx */
428                     qdev_get_gpio_in(gicdev, intidbase + 16), /* rx */
429                     qdev_get_gpio_in(orgate, 0), /* txover */
430                     qdev_get_gpio_in(orgate, 1), /* rxover */
431                     qdev_get_gpio_in(gicdev, intidbase + 18) /* combined */);
432     }
433     /*
434      * UARTs 2 to 5 are whole-system; all overflow IRQs are ORed
435      * together into IRQ 17
436      */
437     object_initialize_child(OBJECT(mms), "uart-oflow-orgate",
438                             &mms->uart_oflow, TYPE_OR_IRQ);
439     qdev_prop_set_uint32(DEVICE(&mms->uart_oflow), "num-lines",
440                          MPS3R_UART_MAX * 2);
441     qdev_realize(DEVICE(&mms->uart_oflow), NULL, &error_fatal);
442     qdev_connect_gpio_out(DEVICE(&mms->uart_oflow), 0,
443                           qdev_get_gpio_in(gicdev, 17));
444 
445     for (int i = 0; i < MPS3R_UART_MAX; i++) {
446         hwaddr baseaddr = 0xe0205000 + i * 0x1000;
447         int rxirq = 5 + i * 2, txirq = 6 + i * 2, combirq = 13 + i;
448 
449         create_uart(mms, i + MPS3R_CPU_MAX, sysmem, baseaddr,
450                     qdev_get_gpio_in(gicdev, txirq),
451                     qdev_get_gpio_in(gicdev, rxirq),
452                     qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2),
453                     qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2 + 1),
454                     qdev_get_gpio_in(gicdev, combirq));
455     }
456 
457     for (int i = 0; i < 4; i++) {
458         /* CMSDK GPIO controllers */
459         g_autofree char *s = g_strdup_printf("gpio%d", i);
460         create_unimplemented_device(s, 0xe0000000 + i * 0x1000, 0x1000);
461     }
462 
463     object_initialize_child(OBJECT(mms), "watchdog", &mms->watchdog,
464                             TYPE_CMSDK_APB_WATCHDOG);
465     qdev_connect_clock_in(DEVICE(&mms->watchdog), "WDOGCLK", mms->clk);
466     sysbus_realize(SYS_BUS_DEVICE(&mms->watchdog), &error_fatal);
467     sysbus_connect_irq(SYS_BUS_DEVICE(&mms->watchdog), 0,
468                        qdev_get_gpio_in(gicdev, 0));
469     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->watchdog), 0, 0xe0100000);
470 
471     object_initialize_child(OBJECT(mms), "dualtimer", &mms->dualtimer,
472                             TYPE_CMSDK_APB_DUALTIMER);
473     qdev_connect_clock_in(DEVICE(&mms->dualtimer), "TIMCLK", mms->clk);
474     sysbus_realize(SYS_BUS_DEVICE(&mms->dualtimer), &error_fatal);
475     sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0,
476                        qdev_get_gpio_in(gicdev, 3));
477     sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 1,
478                        qdev_get_gpio_in(gicdev, 1));
479     sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 2,
480                        qdev_get_gpio_in(gicdev, 2));
481     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0xe0101000);
482 
483     for (int i = 0; i < ARRAY_SIZE(mms->i2c); i++) {
484         static const hwaddr i2cbase[] = {0xe0102000,    /* Touch */
485                                          0xe0103000,    /* Audio */
486                                          0xe0107000,    /* Shield0 */
487                                          0xe0108000,    /* Shield1 */
488                                          0xe0109000};   /* DDR4 EEPROM */
489         g_autofree char *s = g_strdup_printf("i2c%d", i);
490 
491         object_initialize_child(OBJECT(mms), s, &mms->i2c[i],
492                                 TYPE_ARM_SBCON_I2C);
493         sysbus_realize(SYS_BUS_DEVICE(&mms->i2c[i]), &error_fatal);
494         sysbus_mmio_map(SYS_BUS_DEVICE(&mms->i2c[i]), 0, i2cbase[i]);
495         if (i != 2 && i != 3) {
496             /*
497              * internal-only bus: mark it full to avoid user-created
498              * i2c devices being plugged into it.
499              */
500             qbus_mark_full(qdev_get_child_bus(DEVICE(&mms->i2c[i]), "i2c"));
501         }
502     }
503 
504     for (int i = 0; i < ARRAY_SIZE(mms->spi); i++) {
505         g_autofree char *s = g_strdup_printf("spi%d", i);
506         hwaddr baseaddr = 0xe0104000 + i * 0x1000;
507 
508         object_initialize_child(OBJECT(mms), s, &mms->spi[i], TYPE_PL022);
509         sysbus_realize(SYS_BUS_DEVICE(&mms->spi[i]), &error_fatal);
510         sysbus_mmio_map(SYS_BUS_DEVICE(&mms->spi[i]), 0, baseaddr);
511         sysbus_connect_irq(SYS_BUS_DEVICE(&mms->spi[i]), 0,
512                            qdev_get_gpio_in(gicdev, 22 + i));
513     }
514 
515     object_initialize_child(OBJECT(mms), "scc", &mms->scc, TYPE_MPS2_SCC);
516     qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg0", 0);
517     qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg4", 0x2);
518     qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-aid", 0x00200008);
519     qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-id", 0x41055360);
520     oscclk = qlist_new();
521     for (int i = 0; i < ARRAY_SIZE(an536_oscclk); i++) {
522         qlist_append_int(oscclk, an536_oscclk[i]);
523     }
524     qdev_prop_set_array(DEVICE(&mms->scc), "oscclk", oscclk);
525     sysbus_realize(SYS_BUS_DEVICE(&mms->scc), &error_fatal);
526     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->scc), 0, 0xe0200000);
527 
528     create_unimplemented_device("i2s-audio", 0xe0201000, 0x1000);
529 
530     object_initialize_child(OBJECT(mms), "fpgaio", &mms->fpgaio,
531                             TYPE_MPS2_FPGAIO);
532     qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "prescale-clk", an536_oscclk[1]);
533     qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "num-leds", 10);
534     qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-switches", true);
535     qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-dbgctrl", false);
536     sysbus_realize(SYS_BUS_DEVICE(&mms->fpgaio), &error_fatal);
537     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->fpgaio), 0, 0xe0202000);
538 
539     create_unimplemented_device("clcd", 0xe0209000, 0x1000);
540 
541     object_initialize_child(OBJECT(mms), "rtc", &mms->rtc, TYPE_PL031);
542     sysbus_realize(SYS_BUS_DEVICE(&mms->rtc), &error_fatal);
543     sysbus_mmio_map(SYS_BUS_DEVICE(&mms->rtc), 0, 0xe020a000);
544     sysbus_connect_irq(SYS_BUS_DEVICE(&mms->rtc), 0,
545                        qdev_get_gpio_in(gicdev, 4));
546 
547     /*
548      * In hardware this is a LAN9220; the LAN9118 is software compatible
549      * except that it doesn't support the checksum-offload feature.
550      */
551     lan9118_init(0xe0300000,
552                  qdev_get_gpio_in(gicdev, 18));
553 
554     create_unimplemented_device("usb", 0xe0301000, 0x1000);
555     create_unimplemented_device("qspi-write-config", 0xe0600000, 0x1000);
556 
557     mms->bootinfo.ram_size = machine->ram_size;
558     mms->bootinfo.board_id = -1;
559     mms->bootinfo.loader_start = mmc->loader_start;
560     mms->bootinfo.write_secondary_boot = mps3r_write_secondary_boot;
561     mms->bootinfo.secondary_cpu_reset_hook = mps3r_secondary_cpu_reset;
562     arm_load_kernel(ARM_CPU(mms->cpu[0]), machine, &mms->bootinfo);
563 }
564 
565 static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc)
566 {
567     /*
568      * Set mc->default_ram_size and default_ram_id from the
569      * information in mmc->raminfo.
570      */
571     MachineClass *mc = MACHINE_CLASS(mmc);
572     const RAMInfo *p;
573 
574     for (p = mmc->raminfo; p->name; p++) {
575         if (p->mrindex < 0) {
576             /* Found the entry for "system memory" */
577             mc->default_ram_size = p->size;
578             mc->default_ram_id = p->name;
579             mmc->loader_start = p->base;
580             return;
581         }
582     }
583     g_assert_not_reached();
584 }
585 
586 static void mps3r_class_init(ObjectClass *oc, void *data)
587 {
588     MachineClass *mc = MACHINE_CLASS(oc);
589 
590     mc->init = mps3r_common_init;
591 }
592 
593 static void mps3r_an536_class_init(ObjectClass *oc, void *data)
594 {
595     MachineClass *mc = MACHINE_CLASS(oc);
596     MPS3RMachineClass *mmc = MPS3R_MACHINE_CLASS(oc);
597     static const char * const valid_cpu_types[] = {
598         ARM_CPU_TYPE_NAME("cortex-r52"),
599         NULL
600     };
601 
602     mc->desc = "ARM MPS3 with AN536 FPGA image for Cortex-R52";
603     /*
604      * In the real FPGA image there are always two cores, but the standard
605      * initial setting for the SCC SYSCON 0x000 register is 0x21, meaning
606      * that the second core is held in reset and halted. Many images built for
607      * the board do not expect the second core to run at startup (especially
608      * since on the real FPGA image it is not possible to use LDREX/STREX
609      * in RAM between the two cores, so a true SMP setup isn't supported).
610      *
611      * As QEMU's equivalent of this, we support both -smp 1 and -smp 2,
612      * with the default being -smp 1. This seems a more intuitive UI for
613      * QEMU users than, for instance, having a machine property to allow
614      * the user to set the initial value of the SYSCON 0x000 register.
615      */
616     mc->default_cpus = 1;
617     mc->min_cpus = 1;
618     mc->max_cpus = 2;
619     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-r52");
620     mc->valid_cpu_types = valid_cpu_types;
621     mmc->raminfo = an536_raminfo;
622     mps3r_set_default_ram_info(mmc);
623 }
624 
625 static const TypeInfo mps3r_machine_types[] = {
626     {
627         .name = TYPE_MPS3R_MACHINE,
628         .parent = TYPE_MACHINE,
629         .abstract = true,
630         .instance_size = sizeof(MPS3RMachineState),
631         .class_size = sizeof(MPS3RMachineClass),
632         .class_init = mps3r_class_init,
633     }, {
634         .name = TYPE_MPS3R_AN536_MACHINE,
635         .parent = TYPE_MPS3R_MACHINE,
636         .class_init = mps3r_an536_class_init,
637     },
638 };
639 
640 DEFINE_TYPES(mps3r_machine_types);
641