1Aspeed family boards (``*-bmc``, ``ast2500-evb``, ``ast2600-evb``) 2================================================================== 3 4The QEMU Aspeed machines model BMCs of various OpenPOWER systems and 5Aspeed evaluation boards. They are based on different releases of the 6Aspeed SoC : the AST2400 integrating an ARM926EJ-S CPU (400MHz), the 7AST2500 with an ARM1176JZS CPU (800MHz) and more recently the AST2600 8with dual cores ARM Cortex-A7 CPUs (1.2GHz). 9 10The SoC comes with RAM, Gigabit ethernet, USB, SD/MMC, USB, SPI, I2C, 11etc. 12 13AST2400 SoC based machines : 14 15- ``palmetto-bmc`` OpenPOWER Palmetto POWER8 BMC 16- ``quanta-q71l-bmc`` OpenBMC Quanta BMC 17- ``supermicrox11-bmc`` Supermicro X11 BMC 18 19AST2500 SoC based machines : 20 21- ``ast2500-evb`` Aspeed AST2500 Evaluation board 22- ``romulus-bmc`` OpenPOWER Romulus POWER9 BMC 23- ``witherspoon-bmc`` OpenPOWER Witherspoon POWER9 BMC 24- ``sonorapass-bmc`` OCP SonoraPass BMC 25- ``fp5280g2-bmc`` Inspur FP5280G2 BMC 26- ``g220a-bmc`` Bytedance G220A BMC 27- ``yosemitev2-bmc`` Facebook YosemiteV2 BMC 28- ``tiogapass-bmc`` Facebook Tiogapass BMC 29 30AST2600 SoC based machines : 31 32- ``ast2600-evb`` Aspeed AST2600 Evaluation board (Cortex-A7) 33- ``tacoma-bmc`` OpenPOWER Witherspoon POWER9 AST2600 BMC 34- ``rainier-bmc`` IBM Rainier POWER10 BMC 35- ``fuji-bmc`` Facebook Fuji BMC 36- ``bletchley-bmc`` Facebook Bletchley BMC 37- ``fby35-bmc`` Facebook fby35 BMC 38- ``qcom-dc-scm-v1-bmc`` Qualcomm DC-SCM V1 BMC 39- ``qcom-firework-bmc`` Qualcomm Firework BMC 40 41Supported devices 42----------------- 43 44 * SMP (for the AST2600 Cortex-A7) 45 * Interrupt Controller (VIC) 46 * Timer Controller 47 * RTC Controller 48 * I2C Controller, including the new register interface of the AST2600 49 * System Control Unit (SCU) 50 * SRAM mapping 51 * X-DMA Controller (basic interface) 52 * Static Memory Controller (SMC or FMC) - Only SPI Flash support 53 * SPI Memory Controller 54 * USB 2.0 Controller 55 * SD/MMC storage controllers 56 * SDRAM controller (dummy interface for basic settings and training) 57 * Watchdog Controller 58 * GPIO Controller (Master only) 59 * UART 60 * Ethernet controllers 61 * Front LEDs (PCA9552 on I2C bus) 62 * LPC Peripheral Controller (a subset of subdevices are supported) 63 * Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA 64 * ADC 65 * Secure Boot Controller (AST2600) 66 * eMMC Boot Controller (dummy) 67 * PECI Controller (minimal) 68 * I3C Controller 69 70 71Missing devices 72--------------- 73 74 * Coprocessor support 75 * PWM and Fan Controller 76 * Slave GPIO Controller 77 * Super I/O Controller 78 * PCI-Express 1 Controller 79 * Graphic Display Controller 80 * MCTP Controller 81 * Mailbox Controller 82 * Virtual UART 83 * eSPI Controller 84 85Boot options 86------------ 87 88The Aspeed machines can be started using the ``-kernel`` and ``-dtb`` options 89to load a Linux kernel or from a firmware. Images can be downloaded from the 90OpenBMC jenkins : 91 92 https://jenkins.openbmc.org/job/ci-openbmc/lastSuccessfulBuild/ 93 94or directly from the OpenBMC GitHub release repository : 95 96 https://github.com/openbmc/openbmc/releases 97 98To boot a kernel directly from a Linux build tree: 99 100.. code-block:: bash 101 102 $ qemu-system-arm -M ast2600-evb -nographic \ 103 -kernel arch/arm/boot/zImage \ 104 -dtb arch/arm/boot/dts/aspeed-ast2600-evb.dtb \ 105 -initrd rootfs.cpio 106 107To boot the machine from the flash image, use an MTD drive : 108 109.. code-block:: bash 110 111 $ qemu-system-arm -M romulus-bmc -nic user \ 112 -drive file=obmc-phosphor-image-romulus.static.mtd,format=raw,if=mtd -nographic 113 114Options specific to Aspeed machines are : 115 116 * ``execute-in-place`` which emulates the boot from the CE0 flash 117 device by using the FMC controller to load the instructions, and 118 not simply from RAM. This takes a little longer. 119 120 * ``fmc-model`` to change the default FMC Flash model. FW needs 121 support for the chip model to boot. 122 123 * ``spi-model`` to change the default SPI Flash model. 124 125 * ``bmc-console`` to change the default console device. Most of the 126 machines use the ``UART5`` device for a boot console, which is 127 mapped on ``/dev/ttyS4`` under Linux, but it is not always the 128 case. 129 130To use other flash models, for instance a different FMC chip and a 131bigger (64M) SPI for the ``ast2500-evb`` machine, run : 132 133.. code-block:: bash 134 135 -M ast2500-evb,fmc-model=mx25l25635e,spi-model=mx66u51235f 136 137When more flexibility is needed to define the flash devices, to use 138different flash models or define all flash devices (up to 8), the 139``-nodefaults`` QEMU option can be used to avoid creating the default 140flash devices. 141 142Flash devices should then be created from the command line and attached 143to a block device : 144 145.. code-block:: bash 146 147 $ qemu-system-arm -M ast2600-evb \ 148 -blockdev node-name=fmc0,driver=file,filename=/path/to/fmc0.img \ 149 -device mx66u51235f,bus=ssi.0,cs=0x0,drive=fmc0 \ 150 -blockdev node-name=fmc1,driver=file,filename=/path/to/fmc1.img \ 151 -device mx66u51235f,bus=ssi.0,cs=0x1,drive=fmc1 \ 152 -blockdev node-name=spi1,driver=file,filename=/path/to/spi1.img \ 153 -device mx66u51235f,cs=0x0,bus=ssi.1,drive=spi1 \ 154 -nographic -nodefaults 155 156In that case, the machine boots fetching instructions from the FMC0 157device. It is slower to start but closer to what HW does. Using the 158machine option ``execute-in-place`` has a similar effect. 159 160To change the boot console and use device ``UART3`` (``/dev/ttyS2`` 161under Linux), use : 162 163.. code-block:: bash 164 165 -M ast2500-evb,bmc-console=uart3 166 167Aspeed minibmc family boards (``ast1030-evb``) 168================================================================== 169 170The QEMU Aspeed machines model mini BMCs of various Aspeed evaluation 171boards. They are based on different releases of the 172Aspeed SoC : the AST1030 integrating an ARM Cortex M4F CPU (200MHz). 173 174The SoC comes with SRAM, SPI, I2C, etc. 175 176AST1030 SoC based machines : 177 178- ``ast1030-evb`` Aspeed AST1030 Evaluation board (Cortex-M4F) 179 180Supported devices 181----------------- 182 183 * SMP (for the AST1030 Cortex-M4F) 184 * Interrupt Controller (VIC) 185 * Timer Controller 186 * I2C Controller 187 * System Control Unit (SCU) 188 * SRAM mapping 189 * Static Memory Controller (SMC or FMC) - Only SPI Flash support 190 * SPI Memory Controller 191 * USB 2.0 Controller 192 * Watchdog Controller 193 * GPIO Controller (Master only) 194 * UART 195 * LPC Peripheral Controller (a subset of subdevices are supported) 196 * Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA 197 * ADC 198 * Secure Boot Controller 199 * PECI Controller (minimal) 200 201 202Missing devices 203--------------- 204 205 * PWM and Fan Controller 206 * Slave GPIO Controller 207 * Mailbox Controller 208 * Virtual UART 209 * eSPI Controller 210 * I3C Controller 211 212Boot options 213------------ 214 215The Aspeed machines can be started using the ``-kernel`` to load a 216Zephyr OS or from a firmware. Images can be downloaded from the 217ASPEED GitHub release repository : 218 219 https://github.com/AspeedTech-BMC/zephyr/releases 220 221To boot a kernel directly from a Zephyr build tree: 222 223.. code-block:: bash 224 225 $ qemu-system-arm -M ast1030-evb -nographic \ 226 -kernel zephyr.elf 227 228Facebook Yosemite v3.5 Platform and CraterLake Server (``fby35``) 229================================================================== 230 231Facebook has a series of multi-node compute server designs named 232Yosemite. The most recent version released was 233`Yosemite v3 <https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-specification-1v16-pdf>`__. 234 235Yosemite v3.5 is an iteration on this design, and is very similar: there's a 236baseboard with a BMC, and 4 server slots. The new server board design termed 237"CraterLake" includes a Bridge IC (BIC), with room for expansion boards to 238include various compute accelerators (video, inferencing, etc). At the moment, 239only the first server slot's BIC is included. 240 241Yosemite v3.5 is itself a sled which fits into a 40U chassis, and 3 sleds 242can be fit into a chassis. See `here <https://www.opencompute.org/products/423/wiwynn-yosemite-v3-server>`__ 243for an example. 244 245In this generation, the BMC is an AST2600 and each BIC is an AST1030. The BMC 246runs `OpenBMC <https://github.com/facebook/openbmc>`__, and the BIC runs 247`OpenBIC <https://github.com/facebook/openbic>`__. 248 249Firmware images can be retrieved from the Github releases or built from the 250source code, see the README's for instructions on that. This image uses the 251"fby35" machine recipe from OpenBMC, and the "yv35-cl" target from OpenBIC. 252Some reference images can also be found here: 253 254.. code-block:: bash 255 256 $ wget https://github.com/facebook/openbmc/releases/download/openbmc-e2294ff5d31d/fby35.mtd 257 $ wget https://github.com/peterdelevoryas/OpenBIC/releases/download/oby35-cl-2022.13.01/Y35BCL.elf 258 259Since this machine has multiple SoC's, each with their own serial console, the 260recommended way to run it is to allocate a pseudoterminal for each serial 261console and let the monitor use stdio. Also, starting in a paused state is 262useful because it allows you to attach to the pseudoterminals before the boot 263process starts. 264 265.. code-block:: bash 266 267 $ qemu-system-arm -machine fby35 \ 268 -drive file=fby35.mtd,format=raw,if=mtd \ 269 -device loader,file=Y35BCL.elf,addr=0,cpu-num=2 \ 270 -serial pty -serial pty -serial mon:stdio \ 271 -display none -S 272 $ screen /dev/tty0 # In a separate TMUX pane, terminal window, etc. 273 $ screen /dev/tty1 274 $ (qemu) c # Start the boot process once screen is setup. 275