xref: /openbmc/qemu/docs/system/arm/aspeed.rst (revision 230d5219)
1Aspeed family boards (``*-bmc``, ``ast2500-evb``, ``ast2600-evb``)
2==================================================================
3
4The QEMU Aspeed machines model BMCs of various OpenPOWER systems and
5Aspeed evaluation boards. They are based on different releases of the
6Aspeed SoC : the AST2400 integrating an ARM926EJ-S CPU (400MHz), the
7AST2500 with an ARM1176JZS CPU (800MHz) and more recently the AST2600
8with dual cores ARM Cortex-A7 CPUs (1.2GHz).
9
10The SoC comes with RAM, Gigabit ethernet, USB, SD/MMC, USB, SPI, I2C,
11etc.
12
13AST2400 SoC based machines :
14
15- ``palmetto-bmc``         OpenPOWER Palmetto POWER8 BMC
16- ``quanta-q71l-bmc``      OpenBMC Quanta BMC
17- ``supermicrox11-bmc``    Supermicro X11 BMC
18
19AST2500 SoC based machines :
20
21- ``ast2500-evb``          Aspeed AST2500 Evaluation board
22- ``romulus-bmc``          OpenPOWER Romulus POWER9 BMC
23- ``witherspoon-bmc``      OpenPOWER Witherspoon POWER9 BMC
24- ``sonorapass-bmc``       OCP SonoraPass BMC
25- ``fp5280g2-bmc``         Inspur FP5280G2 BMC
26- ``g220a-bmc``            Bytedance G220A BMC
27- ``yosemitev2-bmc``       Facebook YosemiteV2 BMC
28- ``tiogapass-bmc``        Facebook Tiogapass BMC
29
30AST2600 SoC based machines :
31
32- ``ast2600-evb``          Aspeed AST2600 Evaluation board (Cortex-A7)
33- ``tacoma-bmc``           OpenPOWER Witherspoon POWER9 AST2600 BMC
34- ``rainier-bmc``          IBM Rainier POWER10 BMC
35- ``fuji-bmc``             Facebook Fuji BMC
36- ``montblanc-bmc``        Facebook Montblanc BMC
37- ``bletchley-bmc``        Facebook Bletchley BMC
38- ``fby35-bmc``            Facebook fby35 BMC
39- ``qcom-dc-scm-v1-bmc``   Qualcomm DC-SCM V1 BMC
40- ``qcom-firework-bmc``    Qualcomm Firework BMC
41
42Supported devices
43-----------------
44
45 * SMP (for the AST2600 Cortex-A7)
46 * Interrupt Controller (VIC)
47 * Timer Controller
48 * RTC Controller
49 * I2C Controller, including the new register interface of the AST2600
50 * System Control Unit (SCU)
51 * SRAM mapping
52 * X-DMA Controller (basic interface)
53 * Static Memory Controller (SMC or FMC) - Only SPI Flash support
54 * SPI Memory Controller
55 * USB 2.0 Controller
56 * SD/MMC storage controllers
57 * SDRAM controller (dummy interface for basic settings and training)
58 * Watchdog Controller
59 * GPIO Controller (Master only)
60 * UART
61 * Ethernet controllers
62 * Front LEDs (PCA9552 on I2C bus)
63 * LPC Peripheral Controller (a subset of subdevices are supported)
64 * Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA
65 * ADC
66 * Secure Boot Controller (AST2600)
67 * eMMC Boot Controller (dummy)
68 * PECI Controller (minimal)
69 * I3C Controller
70
71
72Missing devices
73---------------
74
75 * Coprocessor support
76 * PWM and Fan Controller
77 * Slave GPIO Controller
78 * Super I/O Controller
79 * PCI-Express 1 Controller
80 * Graphic Display Controller
81 * MCTP Controller
82 * Mailbox Controller
83 * Virtual UART
84 * eSPI Controller
85
86Boot options
87------------
88
89The Aspeed machines can be started using the ``-kernel`` and ``-dtb`` options
90to load a Linux kernel or from a firmware. Images can be downloaded from the
91OpenBMC jenkins :
92
93   https://jenkins.openbmc.org/job/ci-openbmc/lastSuccessfulBuild/
94
95or directly from the OpenBMC GitHub release repository :
96
97   https://github.com/openbmc/openbmc/releases
98
99To boot a kernel directly from a Linux build tree:
100
101.. code-block:: bash
102
103  $ qemu-system-arm -M ast2600-evb -nographic \
104        -kernel arch/arm/boot/zImage \
105        -dtb arch/arm/boot/dts/aspeed-ast2600-evb.dtb \
106        -initrd rootfs.cpio
107
108To boot the machine from the flash image, use an MTD drive :
109
110.. code-block:: bash
111
112  $ qemu-system-arm -M romulus-bmc -nic user \
113	-drive file=obmc-phosphor-image-romulus.static.mtd,format=raw,if=mtd -nographic
114
115Options specific to Aspeed machines are :
116
117 * ``execute-in-place`` which emulates the boot from the CE0 flash
118   device by using the FMC controller to load the instructions, and
119   not simply from RAM. This takes a little longer.
120
121 * ``fmc-model`` to change the default FMC Flash model. FW needs
122   support for the chip model to boot.
123
124 * ``spi-model`` to change the default SPI Flash model.
125
126 * ``bmc-console`` to change the default console device. Most of the
127   machines use the ``UART5`` device for a boot console, which is
128   mapped on ``/dev/ttyS4`` under Linux, but it is not always the
129   case.
130
131To use other flash models, for instance a different FMC chip and a
132bigger (64M) SPI for the ``ast2500-evb`` machine, run :
133
134.. code-block:: bash
135
136  -M ast2500-evb,fmc-model=mx25l25635e,spi-model=mx66u51235f
137
138When more flexibility is needed to define the flash devices, to use
139different flash models or define all flash devices (up to 8), the
140``-nodefaults`` QEMU option can be used to avoid creating the default
141flash devices.
142
143Flash devices should then be created from the command line and attached
144to a block device :
145
146.. code-block:: bash
147
148  $ qemu-system-arm -M ast2600-evb \
149        -blockdev node-name=fmc0,driver=file,filename=/path/to/fmc0.img \
150	-device mx66u51235f,bus=ssi.0,cs=0x0,drive=fmc0 \
151	-blockdev node-name=fmc1,driver=file,filename=/path/to/fmc1.img \
152	-device mx66u51235f,bus=ssi.0,cs=0x1,drive=fmc1 \
153	-blockdev node-name=spi1,driver=file,filename=/path/to/spi1.img \
154	-device mx66u51235f,cs=0x0,bus=ssi.1,drive=spi1 \
155	-nographic -nodefaults
156
157In that case, the machine boots fetching instructions from the FMC0
158device. It is slower to start but closer to what HW does. Using the
159machine option ``execute-in-place`` has a similar effect.
160
161To change the boot console and use device ``UART3`` (``/dev/ttyS2``
162under Linux), use :
163
164.. code-block:: bash
165
166  -M ast2500-evb,bmc-console=uart3
167
168Aspeed minibmc family boards (``ast1030-evb``)
169==================================================================
170
171The QEMU Aspeed machines model mini BMCs of various Aspeed evaluation
172boards. They are based on different releases of the
173Aspeed SoC : the AST1030 integrating an ARM Cortex M4F CPU (200MHz).
174
175The SoC comes with SRAM, SPI, I2C, etc.
176
177AST1030 SoC based machines :
178
179- ``ast1030-evb``          Aspeed AST1030 Evaluation board (Cortex-M4F)
180
181Supported devices
182-----------------
183
184 * SMP (for the AST1030 Cortex-M4F)
185 * Interrupt Controller (VIC)
186 * Timer Controller
187 * I2C Controller
188 * System Control Unit (SCU)
189 * SRAM mapping
190 * Static Memory Controller (SMC or FMC) - Only SPI Flash support
191 * SPI Memory Controller
192 * USB 2.0 Controller
193 * Watchdog Controller
194 * GPIO Controller (Master only)
195 * UART
196 * LPC Peripheral Controller (a subset of subdevices are supported)
197 * Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA
198 * ADC
199 * Secure Boot Controller
200 * PECI Controller (minimal)
201
202
203Missing devices
204---------------
205
206 * PWM and Fan Controller
207 * Slave GPIO Controller
208 * Mailbox Controller
209 * Virtual UART
210 * eSPI Controller
211 * I3C Controller
212
213Boot options
214------------
215
216The Aspeed machines can be started using the ``-kernel`` to load a
217Zephyr OS or from a firmware. Images can be downloaded from the
218ASPEED GitHub release repository :
219
220   https://github.com/AspeedTech-BMC/zephyr/releases
221
222To boot a kernel directly from a Zephyr build tree:
223
224.. code-block:: bash
225
226  $ qemu-system-arm -M ast1030-evb -nographic \
227        -kernel zephyr.elf
228
229Facebook Yosemite v3.5 Platform and CraterLake Server (``fby35``)
230==================================================================
231
232Facebook has a series of multi-node compute server designs named
233Yosemite. The most recent version released was
234`Yosemite v3 <https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-specification-1v16-pdf>`__.
235
236Yosemite v3.5 is an iteration on this design, and is very similar: there's a
237baseboard with a BMC, and 4 server slots. The new server board design termed
238"CraterLake" includes a Bridge IC (BIC), with room for expansion boards to
239include various compute accelerators (video, inferencing, etc). At the moment,
240only the first server slot's BIC is included.
241
242Yosemite v3.5 is itself a sled which fits into a 40U chassis, and 3 sleds
243can be fit into a chassis. See `here <https://www.opencompute.org/products/423/wiwynn-yosemite-v3-server>`__
244for an example.
245
246In this generation, the BMC is an AST2600 and each BIC is an AST1030. The BMC
247runs `OpenBMC <https://github.com/facebook/openbmc>`__, and the BIC runs
248`OpenBIC <https://github.com/facebook/openbic>`__.
249
250Firmware images can be retrieved from the Github releases or built from the
251source code, see the README's for instructions on that. This image uses the
252"fby35" machine recipe from OpenBMC, and the "yv35-cl" target from OpenBIC.
253Some reference images can also be found here:
254
255.. code-block:: bash
256
257    $ wget https://github.com/facebook/openbmc/releases/download/openbmc-e2294ff5d31d/fby35.mtd
258    $ wget https://github.com/peterdelevoryas/OpenBIC/releases/download/oby35-cl-2022.13.01/Y35BCL.elf
259
260Since this machine has multiple SoC's, each with their own serial console, the
261recommended way to run it is to allocate a pseudoterminal for each serial
262console and let the monitor use stdio. Also, starting in a paused state is
263useful because it allows you to attach to the pseudoterminals before the boot
264process starts.
265
266.. code-block:: bash
267
268    $ qemu-system-arm -machine fby35 \
269        -drive file=fby35.mtd,format=raw,if=mtd \
270        -device loader,file=Y35BCL.elf,addr=0,cpu-num=2 \
271        -serial pty -serial pty -serial mon:stdio \
272        -display none -S
273    $ screen /dev/tty0 # In a separate TMUX pane, terminal window, etc.
274    $ screen /dev/tty1
275    $ (qemu) c		   # Start the boot process once screen is setup.
276