xref: /openbmc/qemu/block/qed.c (revision f14eced5)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int coroutine_fn GRAPH_RDLOCK
199 qed_read_string(BdrvChild *file, uint64_t offset,
200                 size_t n, char *buf, size_t buflen)
201 {
202     int ret;
203     if (n >= buflen) {
204         return -EINVAL;
205     }
206     ret = bdrv_co_pread(file, offset, n, buf, 0);
207     if (ret < 0) {
208         return ret;
209     }
210     buf[n] = '\0';
211     return 0;
212 }
213 
214 /**
215  * Allocate new clusters
216  *
217  * @s:          QED state
218  * @n:          Number of contiguous clusters to allocate
219  * @ret:        Offset of first allocated cluster
220  *
221  * This function only produces the offset where the new clusters should be
222  * written.  It updates BDRVQEDState but does not make any changes to the image
223  * file.
224  *
225  * Called with table_lock held.
226  */
227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229     uint64_t offset = s->file_size;
230     s->file_size += n * s->header.cluster_size;
231     return offset;
232 }
233 
234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236     /* Honor O_DIRECT memory alignment requirements */
237     return qemu_blockalign(s->bs,
238                            s->header.cluster_size * s->header.table_size);
239 }
240 
241 /**
242  * Allocate a new zeroed L2 table
243  *
244  * Called with table_lock held.
245  */
246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 {
248     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 
250     l2_table->table = qed_alloc_table(s);
251     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 
253     memset(l2_table->table->offsets, 0,
254            s->header.cluster_size * s->header.table_size);
255     return l2_table;
256 }
257 
258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 {
260     qemu_co_mutex_lock(&s->table_lock);
261 
262     /* No reentrancy is allowed.  */
263     assert(!s->allocating_write_reqs_plugged);
264     if (s->allocating_acb != NULL) {
265         /* Another allocating write came concurrently.  This cannot happen
266          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267          */
268         qemu_co_mutex_unlock(&s->table_lock);
269         return false;
270     }
271 
272     s->allocating_write_reqs_plugged = true;
273     qemu_co_mutex_unlock(&s->table_lock);
274     return true;
275 }
276 
277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 {
279     qemu_co_mutex_lock(&s->table_lock);
280     assert(s->allocating_write_reqs_plugged);
281     s->allocating_write_reqs_plugged = false;
282     qemu_co_queue_next(&s->allocating_write_reqs);
283     qemu_co_mutex_unlock(&s->table_lock);
284 }
285 
286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
287 {
288     int ret;
289 
290     trace_qed_need_check_timer_cb(s);
291     assert_bdrv_graph_readable();
292 
293     if (!qed_plug_allocating_write_reqs(s)) {
294         return;
295     }
296 
297     /* Ensure writes are on disk before clearing flag */
298     ret = bdrv_co_flush(s->bs->file->bs);
299     if (ret < 0) {
300         qed_unplug_allocating_write_reqs(s);
301         return;
302     }
303 
304     s->header.features &= ~QED_F_NEED_CHECK;
305     ret = qed_write_header(s);
306     (void) ret;
307 
308     qed_unplug_allocating_write_reqs(s);
309 
310     ret = bdrv_co_flush(s->bs);
311     (void) ret;
312 }
313 
314 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
315 {
316     BDRVQEDState *s = opaque;
317     GRAPH_RDLOCK_GUARD();
318 
319     qed_need_check_timer(opaque);
320     bdrv_dec_in_flight(s->bs);
321 }
322 
323 static void qed_need_check_timer_cb(void *opaque)
324 {
325     BDRVQEDState *s = opaque;
326     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
327 
328     bdrv_inc_in_flight(s->bs);
329     qemu_coroutine_enter(co);
330 }
331 
332 static void qed_start_need_check_timer(BDRVQEDState *s)
333 {
334     trace_qed_start_need_check_timer(s);
335 
336     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
337      * migration.
338      */
339     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
340                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
341 }
342 
343 /* It's okay to call this multiple times or when no timer is started */
344 static void qed_cancel_need_check_timer(BDRVQEDState *s)
345 {
346     trace_qed_cancel_need_check_timer(s);
347     timer_del(s->need_check_timer);
348 }
349 
350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
351 {
352     BDRVQEDState *s = bs->opaque;
353 
354     qed_cancel_need_check_timer(s);
355     timer_free(s->need_check_timer);
356 }
357 
358 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
359                                         AioContext *new_context)
360 {
361     BDRVQEDState *s = bs->opaque;
362 
363     s->need_check_timer = aio_timer_new(new_context,
364                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
365                                         qed_need_check_timer_cb, s);
366     if (s->header.features & QED_F_NEED_CHECK) {
367         qed_start_need_check_timer(s);
368     }
369 }
370 
371 static void bdrv_qed_drain_begin(BlockDriverState *bs)
372 {
373     BDRVQEDState *s = bs->opaque;
374 
375     /* Fire the timer immediately in order to start doing I/O as soon as the
376      * header is flushed.
377      */
378     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
379         Coroutine *co;
380 
381         qed_cancel_need_check_timer(s);
382         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
383         bdrv_inc_in_flight(bs);
384         aio_co_enter(bdrv_get_aio_context(bs), co);
385     }
386 }
387 
388 static void bdrv_qed_init_state(BlockDriverState *bs)
389 {
390     BDRVQEDState *s = bs->opaque;
391 
392     memset(s, 0, sizeof(BDRVQEDState));
393     s->bs = bs;
394     qemu_co_mutex_init(&s->table_lock);
395     qemu_co_queue_init(&s->allocating_write_reqs);
396 }
397 
398 /* Called with table_lock held.  */
399 static int coroutine_fn GRAPH_RDLOCK
400 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
401 {
402     BDRVQEDState *s = bs->opaque;
403     QEDHeader le_header;
404     int64_t file_size;
405     int ret;
406 
407     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
408     if (ret < 0) {
409         error_setg(errp, "Failed to read QED header");
410         return ret;
411     }
412     qed_header_le_to_cpu(&le_header, &s->header);
413 
414     if (s->header.magic != QED_MAGIC) {
415         error_setg(errp, "Image not in QED format");
416         return -EINVAL;
417     }
418     if (s->header.features & ~QED_FEATURE_MASK) {
419         /* image uses unsupported feature bits */
420         error_setg(errp, "Unsupported QED features: %" PRIx64,
421                    s->header.features & ~QED_FEATURE_MASK);
422         return -ENOTSUP;
423     }
424     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
425         error_setg(errp, "QED cluster size is invalid");
426         return -EINVAL;
427     }
428 
429     /* Round down file size to the last cluster */
430     file_size = bdrv_co_getlength(bs->file->bs);
431     if (file_size < 0) {
432         error_setg(errp, "Failed to get file length");
433         return file_size;
434     }
435     s->file_size = qed_start_of_cluster(s, file_size);
436 
437     if (!qed_is_table_size_valid(s->header.table_size)) {
438         error_setg(errp, "QED table size is invalid");
439         return -EINVAL;
440     }
441     if (!qed_is_image_size_valid(s->header.image_size,
442                                  s->header.cluster_size,
443                                  s->header.table_size)) {
444         error_setg(errp, "QED image size is invalid");
445         return -EINVAL;
446     }
447     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
448         error_setg(errp, "QED table offset is invalid");
449         return -EINVAL;
450     }
451 
452     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
453                       sizeof(uint64_t);
454     s->l2_shift = ctz32(s->header.cluster_size);
455     s->l2_mask = s->table_nelems - 1;
456     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
457 
458     /* Header size calculation must not overflow uint32_t */
459     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
460         error_setg(errp, "QED header size is too large");
461         return -EINVAL;
462     }
463 
464     if ((s->header.features & QED_F_BACKING_FILE)) {
465         g_autofree char *backing_file_str = NULL;
466 
467         if ((uint64_t)s->header.backing_filename_offset +
468             s->header.backing_filename_size >
469             s->header.cluster_size * s->header.header_size) {
470             error_setg(errp, "QED backing filename offset is invalid");
471             return -EINVAL;
472         }
473 
474         backing_file_str = g_malloc(sizeof(bs->backing_file));
475         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
476                               s->header.backing_filename_size,
477                               backing_file_str, sizeof(bs->backing_file));
478         if (ret < 0) {
479             error_setg(errp, "Failed to read backing filename");
480             return ret;
481         }
482 
483         if (!g_str_equal(backing_file_str, bs->backing_file)) {
484             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
485                     backing_file_str);
486             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
487                     backing_file_str);
488         }
489 
490         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
491             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
492         }
493     }
494 
495     /* Reset unknown autoclear feature bits.  This is a backwards
496      * compatibility mechanism that allows images to be opened by older
497      * programs, which "knock out" unknown feature bits.  When an image is
498      * opened by a newer program again it can detect that the autoclear
499      * feature is no longer valid.
500      */
501     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
502         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
503         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
504 
505         ret = qed_write_header_sync(s);
506         if (ret) {
507             error_setg(errp, "Failed to update header");
508             return ret;
509         }
510 
511         /* From here on only known autoclear feature bits are valid */
512         bdrv_co_flush(bs->file->bs);
513     }
514 
515     s->l1_table = qed_alloc_table(s);
516     qed_init_l2_cache(&s->l2_cache);
517 
518     ret = qed_read_l1_table_sync(s);
519     if (ret) {
520         error_setg(errp, "Failed to read L1 table");
521         goto out;
522     }
523 
524     /* If image was not closed cleanly, check consistency */
525     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
526         /* Read-only images cannot be fixed.  There is no risk of corruption
527          * since write operations are not possible.  Therefore, allow
528          * potentially inconsistent images to be opened read-only.  This can
529          * aid data recovery from an otherwise inconsistent image.
530          */
531         if (!bdrv_is_read_only(bs->file->bs) &&
532             !(flags & BDRV_O_INACTIVE)) {
533             BdrvCheckResult result = {0};
534 
535             ret = qed_check(s, &result, true);
536             if (ret) {
537                 error_setg(errp, "Image corrupted");
538                 goto out;
539             }
540         }
541     }
542 
543     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
544 
545 out:
546     if (ret) {
547         qed_free_l2_cache(&s->l2_cache);
548         qemu_vfree(s->l1_table);
549     }
550     return ret;
551 }
552 
553 typedef struct QEDOpenCo {
554     BlockDriverState *bs;
555     QDict *options;
556     int flags;
557     Error **errp;
558     int ret;
559 } QEDOpenCo;
560 
561 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
562 {
563     QEDOpenCo *qoc = opaque;
564     BDRVQEDState *s = qoc->bs->opaque;
565 
566     GRAPH_RDLOCK_GUARD();
567 
568     qemu_co_mutex_lock(&s->table_lock);
569     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
570     qemu_co_mutex_unlock(&s->table_lock);
571 }
572 
573 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options,
574                                             int flags, Error **errp)
575 {
576     QEDOpenCo qoc = {
577         .bs = bs,
578         .options = options,
579         .flags = flags,
580         .errp = errp,
581         .ret = -EINPROGRESS
582     };
583     int ret;
584 
585     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
586     if (ret < 0) {
587         return ret;
588     }
589 
590     bdrv_qed_init_state(bs);
591     assert(!qemu_in_coroutine());
592     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
593     qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
594     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
595 
596     return qoc.ret;
597 }
598 
599 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
600 {
601     BDRVQEDState *s = bs->opaque;
602 
603     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
604     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
605 }
606 
607 /* We have nothing to do for QED reopen, stubs just return
608  * success */
609 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
610                                    BlockReopenQueue *queue, Error **errp)
611 {
612     return 0;
613 }
614 
615 static void bdrv_qed_close(BlockDriverState *bs)
616 {
617     BDRVQEDState *s = bs->opaque;
618 
619     bdrv_qed_detach_aio_context(bs);
620 
621     /* Ensure writes reach stable storage */
622     bdrv_flush(bs->file->bs);
623 
624     /* Clean shutdown, no check required on next open */
625     if (s->header.features & QED_F_NEED_CHECK) {
626         s->header.features &= ~QED_F_NEED_CHECK;
627         qed_write_header_sync(s);
628     }
629 
630     qed_free_l2_cache(&s->l2_cache);
631     qemu_vfree(s->l1_table);
632 }
633 
634 static int coroutine_fn GRAPH_UNLOCKED
635 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
636 {
637     BlockdevCreateOptionsQed *qed_opts;
638     BlockBackend *blk = NULL;
639     BlockDriverState *bs = NULL;
640 
641     QEDHeader header;
642     QEDHeader le_header;
643     uint8_t *l1_table = NULL;
644     size_t l1_size;
645     int ret = 0;
646 
647     assert(opts->driver == BLOCKDEV_DRIVER_QED);
648     qed_opts = &opts->u.qed;
649 
650     /* Validate options and set default values */
651     if (!qed_opts->has_cluster_size) {
652         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
653     }
654     if (!qed_opts->has_table_size) {
655         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
656     }
657 
658     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
659         error_setg(errp, "QED cluster size must be within range [%u, %u] "
660                          "and power of 2",
661                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
662         return -EINVAL;
663     }
664     if (!qed_is_table_size_valid(qed_opts->table_size)) {
665         error_setg(errp, "QED table size must be within range [%u, %u] "
666                          "and power of 2",
667                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
668         return -EINVAL;
669     }
670     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
671                                  qed_opts->table_size))
672     {
673         error_setg(errp, "QED image size must be a non-zero multiple of "
674                          "cluster size and less than %" PRIu64 " bytes",
675                    qed_max_image_size(qed_opts->cluster_size,
676                                       qed_opts->table_size));
677         return -EINVAL;
678     }
679 
680     /* Create BlockBackend to write to the image */
681     bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
682     if (bs == NULL) {
683         return -EIO;
684     }
685 
686     blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
687                              errp);
688     if (!blk) {
689         ret = -EPERM;
690         goto out;
691     }
692     blk_set_allow_write_beyond_eof(blk, true);
693 
694     /* Prepare image format */
695     header = (QEDHeader) {
696         .magic = QED_MAGIC,
697         .cluster_size = qed_opts->cluster_size,
698         .table_size = qed_opts->table_size,
699         .header_size = 1,
700         .features = 0,
701         .compat_features = 0,
702         .l1_table_offset = qed_opts->cluster_size,
703         .image_size = qed_opts->size,
704     };
705 
706     l1_size = header.cluster_size * header.table_size;
707 
708     /*
709      * The QED format associates file length with allocation status,
710      * so a new file (which is empty) must have a length of 0.
711      */
712     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
713     if (ret < 0) {
714         goto out;
715     }
716 
717     if (qed_opts->backing_file) {
718         header.features |= QED_F_BACKING_FILE;
719         header.backing_filename_offset = sizeof(le_header);
720         header.backing_filename_size = strlen(qed_opts->backing_file);
721 
722         if (qed_opts->has_backing_fmt) {
723             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
724             if (qed_fmt_is_raw(backing_fmt)) {
725                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
726             }
727         }
728     }
729 
730     qed_header_cpu_to_le(&header, &le_header);
731     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
732     if (ret < 0) {
733         goto out;
734     }
735     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
736                      qed_opts->backing_file, 0);
737     if (ret < 0) {
738         goto out;
739     }
740 
741     l1_table = g_malloc0(l1_size);
742     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
743     if (ret < 0) {
744         goto out;
745     }
746 
747     ret = 0; /* success */
748 out:
749     g_free(l1_table);
750     blk_co_unref(blk);
751     bdrv_co_unref(bs);
752     return ret;
753 }
754 
755 static int coroutine_fn GRAPH_UNLOCKED
756 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
757                         QemuOpts *opts, Error **errp)
758 {
759     BlockdevCreateOptions *create_options = NULL;
760     QDict *qdict;
761     Visitor *v;
762     BlockDriverState *bs = NULL;
763     int ret;
764 
765     static const QDictRenames opt_renames[] = {
766         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
767         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
768         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
769         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
770         { NULL, NULL },
771     };
772 
773     /* Parse options and convert legacy syntax */
774     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
775 
776     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
777         ret = -EINVAL;
778         goto fail;
779     }
780 
781     /* Create and open the file (protocol layer) */
782     ret = bdrv_co_create_file(filename, opts, errp);
783     if (ret < 0) {
784         goto fail;
785     }
786 
787     bs = bdrv_co_open(filename, NULL, NULL,
788                       BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
789     if (bs == NULL) {
790         ret = -EIO;
791         goto fail;
792     }
793 
794     /* Now get the QAPI type BlockdevCreateOptions */
795     qdict_put_str(qdict, "driver", "qed");
796     qdict_put_str(qdict, "file", bs->node_name);
797 
798     v = qobject_input_visitor_new_flat_confused(qdict, errp);
799     if (!v) {
800         ret = -EINVAL;
801         goto fail;
802     }
803 
804     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
805     visit_free(v);
806     if (!create_options) {
807         ret = -EINVAL;
808         goto fail;
809     }
810 
811     /* Silently round up size */
812     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
813     create_options->u.qed.size =
814         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
815 
816     /* Create the qed image (format layer) */
817     ret = bdrv_qed_co_create(create_options, errp);
818 
819 fail:
820     qobject_unref(qdict);
821     bdrv_co_unref(bs);
822     qapi_free_BlockdevCreateOptions(create_options);
823     return ret;
824 }
825 
826 static int coroutine_fn GRAPH_RDLOCK
827 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
828                          int64_t bytes, int64_t *pnum, int64_t *map,
829                          BlockDriverState **file)
830 {
831     BDRVQEDState *s = bs->opaque;
832     size_t len = MIN(bytes, SIZE_MAX);
833     int status;
834     QEDRequest request = { .l2_table = NULL };
835     uint64_t offset;
836     int ret;
837 
838     qemu_co_mutex_lock(&s->table_lock);
839     ret = qed_find_cluster(s, &request, pos, &len, &offset);
840 
841     *pnum = len;
842     switch (ret) {
843     case QED_CLUSTER_FOUND:
844         *map = offset | qed_offset_into_cluster(s, pos);
845         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
846         *file = bs->file->bs;
847         break;
848     case QED_CLUSTER_ZERO:
849         status = BDRV_BLOCK_ZERO;
850         break;
851     case QED_CLUSTER_L2:
852     case QED_CLUSTER_L1:
853         status = 0;
854         break;
855     default:
856         assert(ret < 0);
857         status = ret;
858         break;
859     }
860 
861     qed_unref_l2_cache_entry(request.l2_table);
862     qemu_co_mutex_unlock(&s->table_lock);
863 
864     return status;
865 }
866 
867 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
868 {
869     return acb->bs->opaque;
870 }
871 
872 /**
873  * Read from the backing file or zero-fill if no backing file
874  *
875  * @s:              QED state
876  * @pos:            Byte position in device
877  * @qiov:           Destination I/O vector
878  *
879  * This function reads qiov->size bytes starting at pos from the backing file.
880  * If there is no backing file then zeroes are read.
881  */
882 static int coroutine_fn GRAPH_RDLOCK
883 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
884 {
885     if (s->bs->backing) {
886         BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
887         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
888     }
889     qemu_iovec_memset(qiov, 0, 0, qiov->size);
890     return 0;
891 }
892 
893 /**
894  * Copy data from backing file into the image
895  *
896  * @s:          QED state
897  * @pos:        Byte position in device
898  * @len:        Number of bytes
899  * @offset:     Byte offset in image file
900  */
901 static int coroutine_fn GRAPH_RDLOCK
902 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
903                            uint64_t offset)
904 {
905     QEMUIOVector qiov;
906     int ret;
907 
908     /* Skip copy entirely if there is no work to do */
909     if (len == 0) {
910         return 0;
911     }
912 
913     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
914 
915     ret = qed_read_backing_file(s, pos, &qiov);
916 
917     if (ret) {
918         goto out;
919     }
920 
921     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
922     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
923     if (ret < 0) {
924         goto out;
925     }
926     ret = 0;
927 out:
928     qemu_vfree(qemu_iovec_buf(&qiov));
929     return ret;
930 }
931 
932 /**
933  * Link one or more contiguous clusters into a table
934  *
935  * @s:              QED state
936  * @table:          L2 table
937  * @index:          First cluster index
938  * @n:              Number of contiguous clusters
939  * @cluster:        First cluster offset
940  *
941  * The cluster offset may be an allocated byte offset in the image file, the
942  * zero cluster marker, or the unallocated cluster marker.
943  *
944  * Called with table_lock held.
945  */
946 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
947                                              int index, unsigned int n,
948                                              uint64_t cluster)
949 {
950     int i;
951     for (i = index; i < index + n; i++) {
952         table->offsets[i] = cluster;
953         if (!qed_offset_is_unalloc_cluster(cluster) &&
954             !qed_offset_is_zero_cluster(cluster)) {
955             cluster += s->header.cluster_size;
956         }
957     }
958 }
959 
960 /* Called with table_lock held.  */
961 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
962 {
963     BDRVQEDState *s = acb_to_s(acb);
964 
965     /* Free resources */
966     qemu_iovec_destroy(&acb->cur_qiov);
967     qed_unref_l2_cache_entry(acb->request.l2_table);
968 
969     /* Free the buffer we may have allocated for zero writes */
970     if (acb->flags & QED_AIOCB_ZERO) {
971         qemu_vfree(acb->qiov->iov[0].iov_base);
972         acb->qiov->iov[0].iov_base = NULL;
973     }
974 
975     /* Start next allocating write request waiting behind this one.  Note that
976      * requests enqueue themselves when they first hit an unallocated cluster
977      * but they wait until the entire request is finished before waking up the
978      * next request in the queue.  This ensures that we don't cycle through
979      * requests multiple times but rather finish one at a time completely.
980      */
981     if (acb == s->allocating_acb) {
982         s->allocating_acb = NULL;
983         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
984             qemu_co_queue_next(&s->allocating_write_reqs);
985         } else if (s->header.features & QED_F_NEED_CHECK) {
986             qed_start_need_check_timer(s);
987         }
988     }
989 }
990 
991 /**
992  * Update L1 table with new L2 table offset and write it out
993  *
994  * Called with table_lock held.
995  */
996 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
997 {
998     BDRVQEDState *s = acb_to_s(acb);
999     CachedL2Table *l2_table = acb->request.l2_table;
1000     uint64_t l2_offset = l2_table->offset;
1001     int index, ret;
1002 
1003     index = qed_l1_index(s, acb->cur_pos);
1004     s->l1_table->offsets[index] = l2_table->offset;
1005 
1006     ret = qed_write_l1_table(s, index, 1);
1007 
1008     /* Commit the current L2 table to the cache */
1009     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1010 
1011     /* This is guaranteed to succeed because we just committed the entry to the
1012      * cache.
1013      */
1014     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1015     assert(acb->request.l2_table != NULL);
1016 
1017     return ret;
1018 }
1019 
1020 
1021 /**
1022  * Update L2 table with new cluster offsets and write them out
1023  *
1024  * Called with table_lock held.
1025  */
1026 static int coroutine_fn GRAPH_RDLOCK
1027 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1028 {
1029     BDRVQEDState *s = acb_to_s(acb);
1030     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1031     int index, ret;
1032 
1033     if (need_alloc) {
1034         qed_unref_l2_cache_entry(acb->request.l2_table);
1035         acb->request.l2_table = qed_new_l2_table(s);
1036     }
1037 
1038     index = qed_l2_index(s, acb->cur_pos);
1039     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1040                          offset);
1041 
1042     if (need_alloc) {
1043         /* Write out the whole new L2 table */
1044         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1045         if (ret) {
1046             return ret;
1047         }
1048         return qed_aio_write_l1_update(acb);
1049     } else {
1050         /* Write out only the updated part of the L2 table */
1051         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1052                                  false);
1053         if (ret) {
1054             return ret;
1055         }
1056     }
1057     return 0;
1058 }
1059 
1060 /**
1061  * Write data to the image file
1062  *
1063  * Called with table_lock *not* held.
1064  */
1065 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1066 {
1067     BDRVQEDState *s = acb_to_s(acb);
1068     uint64_t offset = acb->cur_cluster +
1069                       qed_offset_into_cluster(s, acb->cur_pos);
1070 
1071     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1072 
1073     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1074     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1075                            &acb->cur_qiov, 0);
1076 }
1077 
1078 /**
1079  * Populate untouched regions of new data cluster
1080  *
1081  * Called with table_lock held.
1082  */
1083 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1084 {
1085     BDRVQEDState *s = acb_to_s(acb);
1086     uint64_t start, len, offset;
1087     int ret;
1088 
1089     qemu_co_mutex_unlock(&s->table_lock);
1090 
1091     /* Populate front untouched region of new data cluster */
1092     start = qed_start_of_cluster(s, acb->cur_pos);
1093     len = qed_offset_into_cluster(s, acb->cur_pos);
1094 
1095     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1096     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1097     if (ret < 0) {
1098         goto out;
1099     }
1100 
1101     /* Populate back untouched region of new data cluster */
1102     start = acb->cur_pos + acb->cur_qiov.size;
1103     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1104     offset = acb->cur_cluster +
1105              qed_offset_into_cluster(s, acb->cur_pos) +
1106              acb->cur_qiov.size;
1107 
1108     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1109     ret = qed_copy_from_backing_file(s, start, len, offset);
1110     if (ret < 0) {
1111         goto out;
1112     }
1113 
1114     ret = qed_aio_write_main(acb);
1115     if (ret < 0) {
1116         goto out;
1117     }
1118 
1119     if (s->bs->backing) {
1120         /*
1121          * Flush new data clusters before updating the L2 table
1122          *
1123          * This flush is necessary when a backing file is in use.  A crash
1124          * during an allocating write could result in empty clusters in the
1125          * image.  If the write only touched a subregion of the cluster,
1126          * then backing image sectors have been lost in the untouched
1127          * region.  The solution is to flush after writing a new data
1128          * cluster and before updating the L2 table.
1129          */
1130         ret = bdrv_co_flush(s->bs->file->bs);
1131     }
1132 
1133 out:
1134     qemu_co_mutex_lock(&s->table_lock);
1135     return ret;
1136 }
1137 
1138 /**
1139  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1140  */
1141 static bool qed_should_set_need_check(BDRVQEDState *s)
1142 {
1143     /* The flush before L2 update path ensures consistency */
1144     if (s->bs->backing) {
1145         return false;
1146     }
1147 
1148     return !(s->header.features & QED_F_NEED_CHECK);
1149 }
1150 
1151 /**
1152  * Write new data cluster
1153  *
1154  * @acb:        Write request
1155  * @len:        Length in bytes
1156  *
1157  * This path is taken when writing to previously unallocated clusters.
1158  *
1159  * Called with table_lock held.
1160  */
1161 static int coroutine_fn GRAPH_RDLOCK
1162 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1163 {
1164     BDRVQEDState *s = acb_to_s(acb);
1165     int ret;
1166 
1167     /* Cancel timer when the first allocating request comes in */
1168     if (s->allocating_acb == NULL) {
1169         qed_cancel_need_check_timer(s);
1170     }
1171 
1172     /* Freeze this request if another allocating write is in progress */
1173     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1174         if (s->allocating_acb != NULL) {
1175             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1176             assert(s->allocating_acb == NULL);
1177         }
1178         s->allocating_acb = acb;
1179         return -EAGAIN; /* start over with looking up table entries */
1180     }
1181 
1182     acb->cur_nclusters = qed_bytes_to_clusters(s,
1183             qed_offset_into_cluster(s, acb->cur_pos) + len);
1184     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1185 
1186     if (acb->flags & QED_AIOCB_ZERO) {
1187         /* Skip ahead if the clusters are already zero */
1188         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1189             return 0;
1190         }
1191         acb->cur_cluster = 1;
1192     } else {
1193         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1194     }
1195 
1196     if (qed_should_set_need_check(s)) {
1197         s->header.features |= QED_F_NEED_CHECK;
1198         ret = qed_write_header(s);
1199         if (ret < 0) {
1200             return ret;
1201         }
1202     }
1203 
1204     if (!(acb->flags & QED_AIOCB_ZERO)) {
1205         ret = qed_aio_write_cow(acb);
1206         if (ret < 0) {
1207             return ret;
1208         }
1209     }
1210 
1211     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1212 }
1213 
1214 /**
1215  * Write data cluster in place
1216  *
1217  * @acb:        Write request
1218  * @offset:     Cluster offset in bytes
1219  * @len:        Length in bytes
1220  *
1221  * This path is taken when writing to already allocated clusters.
1222  *
1223  * Called with table_lock held.
1224  */
1225 static int coroutine_fn GRAPH_RDLOCK
1226 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1227 {
1228     BDRVQEDState *s = acb_to_s(acb);
1229     int r;
1230 
1231     qemu_co_mutex_unlock(&s->table_lock);
1232 
1233     /* Allocate buffer for zero writes */
1234     if (acb->flags & QED_AIOCB_ZERO) {
1235         struct iovec *iov = acb->qiov->iov;
1236 
1237         if (!iov->iov_base) {
1238             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1239             if (iov->iov_base == NULL) {
1240                 r = -ENOMEM;
1241                 goto out;
1242             }
1243             memset(iov->iov_base, 0, iov->iov_len);
1244         }
1245     }
1246 
1247     /* Calculate the I/O vector */
1248     acb->cur_cluster = offset;
1249     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1250 
1251     /* Do the actual write.  */
1252     r = qed_aio_write_main(acb);
1253 out:
1254     qemu_co_mutex_lock(&s->table_lock);
1255     return r;
1256 }
1257 
1258 /**
1259  * Write data cluster
1260  *
1261  * @opaque:     Write request
1262  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1263  * @offset:     Cluster offset in bytes
1264  * @len:        Length in bytes
1265  *
1266  * Called with table_lock held.
1267  */
1268 static int coroutine_fn GRAPH_RDLOCK
1269 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1270 {
1271     QEDAIOCB *acb = opaque;
1272 
1273     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1274 
1275     acb->find_cluster_ret = ret;
1276 
1277     switch (ret) {
1278     case QED_CLUSTER_FOUND:
1279         return qed_aio_write_inplace(acb, offset, len);
1280 
1281     case QED_CLUSTER_L2:
1282     case QED_CLUSTER_L1:
1283     case QED_CLUSTER_ZERO:
1284         return qed_aio_write_alloc(acb, len);
1285 
1286     default:
1287         g_assert_not_reached();
1288     }
1289 }
1290 
1291 /**
1292  * Read data cluster
1293  *
1294  * @opaque:     Read request
1295  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1296  * @offset:     Cluster offset in bytes
1297  * @len:        Length in bytes
1298  *
1299  * Called with table_lock held.
1300  */
1301 static int coroutine_fn GRAPH_RDLOCK
1302 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1303 {
1304     QEDAIOCB *acb = opaque;
1305     BDRVQEDState *s = acb_to_s(acb);
1306     BlockDriverState *bs = acb->bs;
1307     int r;
1308 
1309     qemu_co_mutex_unlock(&s->table_lock);
1310 
1311     /* Adjust offset into cluster */
1312     offset += qed_offset_into_cluster(s, acb->cur_pos);
1313 
1314     trace_qed_aio_read_data(s, acb, ret, offset, len);
1315 
1316     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1317 
1318     /* Handle zero cluster and backing file reads, otherwise read
1319      * data cluster directly.
1320      */
1321     if (ret == QED_CLUSTER_ZERO) {
1322         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1323         r = 0;
1324     } else if (ret != QED_CLUSTER_FOUND) {
1325         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1326     } else {
1327         BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1328         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1329                            &acb->cur_qiov, 0);
1330     }
1331 
1332     qemu_co_mutex_lock(&s->table_lock);
1333     return r;
1334 }
1335 
1336 /**
1337  * Begin next I/O or complete the request
1338  */
1339 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1340 {
1341     BDRVQEDState *s = acb_to_s(acb);
1342     uint64_t offset;
1343     size_t len;
1344     int ret;
1345 
1346     qemu_co_mutex_lock(&s->table_lock);
1347     while (1) {
1348         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1349 
1350         acb->qiov_offset += acb->cur_qiov.size;
1351         acb->cur_pos += acb->cur_qiov.size;
1352         qemu_iovec_reset(&acb->cur_qiov);
1353 
1354         /* Complete request */
1355         if (acb->cur_pos >= acb->end_pos) {
1356             ret = 0;
1357             break;
1358         }
1359 
1360         /* Find next cluster and start I/O */
1361         len = acb->end_pos - acb->cur_pos;
1362         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1363         if (ret < 0) {
1364             break;
1365         }
1366 
1367         if (acb->flags & QED_AIOCB_WRITE) {
1368             ret = qed_aio_write_data(acb, ret, offset, len);
1369         } else {
1370             ret = qed_aio_read_data(acb, ret, offset, len);
1371         }
1372 
1373         if (ret < 0 && ret != -EAGAIN) {
1374             break;
1375         }
1376     }
1377 
1378     trace_qed_aio_complete(s, acb, ret);
1379     qed_aio_complete(acb);
1380     qemu_co_mutex_unlock(&s->table_lock);
1381     return ret;
1382 }
1383 
1384 static int coroutine_fn GRAPH_RDLOCK
1385 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1386                int nb_sectors, int flags)
1387 {
1388     QEDAIOCB acb = {
1389         .bs         = bs,
1390         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1391         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1392         .qiov       = qiov,
1393         .flags      = flags,
1394     };
1395     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1396 
1397     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1398 
1399     /* Start request */
1400     return qed_aio_next_io(&acb);
1401 }
1402 
1403 static int coroutine_fn GRAPH_RDLOCK
1404 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1405                   QEMUIOVector *qiov)
1406 {
1407     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1408 }
1409 
1410 static int coroutine_fn GRAPH_RDLOCK
1411 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1412                    QEMUIOVector *qiov, int flags)
1413 {
1414     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1415 }
1416 
1417 static int coroutine_fn GRAPH_RDLOCK
1418 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1419                           BdrvRequestFlags flags)
1420 {
1421     BDRVQEDState *s = bs->opaque;
1422 
1423     /*
1424      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1425      * then it will be allocated during request processing.
1426      */
1427     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1428 
1429     /*
1430      * QED is not prepared for 63bit write-zero requests, so rely on
1431      * max_pwrite_zeroes.
1432      */
1433     assert(bytes <= INT_MAX);
1434 
1435     /* Fall back if the request is not aligned */
1436     if (qed_offset_into_cluster(s, offset) ||
1437         qed_offset_into_cluster(s, bytes)) {
1438         return -ENOTSUP;
1439     }
1440 
1441     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1442                           bytes >> BDRV_SECTOR_BITS,
1443                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1444 }
1445 
1446 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1447                                              int64_t offset,
1448                                              bool exact,
1449                                              PreallocMode prealloc,
1450                                              BdrvRequestFlags flags,
1451                                              Error **errp)
1452 {
1453     BDRVQEDState *s = bs->opaque;
1454     uint64_t old_image_size;
1455     int ret;
1456 
1457     if (prealloc != PREALLOC_MODE_OFF) {
1458         error_setg(errp, "Unsupported preallocation mode '%s'",
1459                    PreallocMode_str(prealloc));
1460         return -ENOTSUP;
1461     }
1462 
1463     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1464                                  s->header.table_size)) {
1465         error_setg(errp, "Invalid image size specified");
1466         return -EINVAL;
1467     }
1468 
1469     if ((uint64_t)offset < s->header.image_size) {
1470         error_setg(errp, "Shrinking images is currently not supported");
1471         return -ENOTSUP;
1472     }
1473 
1474     old_image_size = s->header.image_size;
1475     s->header.image_size = offset;
1476     ret = qed_write_header_sync(s);
1477     if (ret < 0) {
1478         s->header.image_size = old_image_size;
1479         error_setg_errno(errp, -ret, "Failed to update the image size");
1480     }
1481     return ret;
1482 }
1483 
1484 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1485 {
1486     BDRVQEDState *s = bs->opaque;
1487     return s->header.image_size;
1488 }
1489 
1490 static int coroutine_fn
1491 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1492 {
1493     BDRVQEDState *s = bs->opaque;
1494 
1495     memset(bdi, 0, sizeof(*bdi));
1496     bdi->cluster_size = s->header.cluster_size;
1497     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1498     return 0;
1499 }
1500 
1501 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1502                                         const char *backing_file,
1503                                         const char *backing_fmt)
1504 {
1505     BDRVQEDState *s = bs->opaque;
1506     QEDHeader new_header, le_header;
1507     void *buffer;
1508     size_t buffer_len, backing_file_len;
1509     int ret;
1510 
1511     /* Refuse to set backing filename if unknown compat feature bits are
1512      * active.  If the image uses an unknown compat feature then we may not
1513      * know the layout of data following the header structure and cannot safely
1514      * add a new string.
1515      */
1516     if (backing_file && (s->header.compat_features &
1517                          ~QED_COMPAT_FEATURE_MASK)) {
1518         return -ENOTSUP;
1519     }
1520 
1521     memcpy(&new_header, &s->header, sizeof(new_header));
1522 
1523     new_header.features &= ~(QED_F_BACKING_FILE |
1524                              QED_F_BACKING_FORMAT_NO_PROBE);
1525 
1526     /* Adjust feature flags */
1527     if (backing_file) {
1528         new_header.features |= QED_F_BACKING_FILE;
1529 
1530         if (qed_fmt_is_raw(backing_fmt)) {
1531             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1532         }
1533     }
1534 
1535     /* Calculate new header size */
1536     backing_file_len = 0;
1537 
1538     if (backing_file) {
1539         backing_file_len = strlen(backing_file);
1540     }
1541 
1542     buffer_len = sizeof(new_header);
1543     new_header.backing_filename_offset = buffer_len;
1544     new_header.backing_filename_size = backing_file_len;
1545     buffer_len += backing_file_len;
1546 
1547     /* Make sure we can rewrite header without failing */
1548     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1549         return -ENOSPC;
1550     }
1551 
1552     /* Prepare new header */
1553     buffer = g_malloc(buffer_len);
1554 
1555     qed_header_cpu_to_le(&new_header, &le_header);
1556     memcpy(buffer, &le_header, sizeof(le_header));
1557     buffer_len = sizeof(le_header);
1558 
1559     if (backing_file) {
1560         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1561         buffer_len += backing_file_len;
1562     }
1563 
1564     /* Write new header */
1565     ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1566     g_free(buffer);
1567     if (ret == 0) {
1568         memcpy(&s->header, &new_header, sizeof(new_header));
1569     }
1570     return ret;
1571 }
1572 
1573 static void coroutine_fn GRAPH_RDLOCK
1574 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1575 {
1576     BDRVQEDState *s = bs->opaque;
1577     int ret;
1578 
1579     bdrv_qed_close(bs);
1580 
1581     bdrv_qed_init_state(bs);
1582     qemu_co_mutex_lock(&s->table_lock);
1583     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1584     qemu_co_mutex_unlock(&s->table_lock);
1585     if (ret < 0) {
1586         error_prepend(errp, "Could not reopen qed layer: ");
1587     }
1588 }
1589 
1590 static int coroutine_fn GRAPH_RDLOCK
1591 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1592                   BdrvCheckMode fix)
1593 {
1594     BDRVQEDState *s = bs->opaque;
1595     int ret;
1596 
1597     qemu_co_mutex_lock(&s->table_lock);
1598     ret = qed_check(s, result, !!fix);
1599     qemu_co_mutex_unlock(&s->table_lock);
1600 
1601     return ret;
1602 }
1603 
1604 static QemuOptsList qed_create_opts = {
1605     .name = "qed-create-opts",
1606     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1607     .desc = {
1608         {
1609             .name = BLOCK_OPT_SIZE,
1610             .type = QEMU_OPT_SIZE,
1611             .help = "Virtual disk size"
1612         },
1613         {
1614             .name = BLOCK_OPT_BACKING_FILE,
1615             .type = QEMU_OPT_STRING,
1616             .help = "File name of a base image"
1617         },
1618         {
1619             .name = BLOCK_OPT_BACKING_FMT,
1620             .type = QEMU_OPT_STRING,
1621             .help = "Image format of the base image"
1622         },
1623         {
1624             .name = BLOCK_OPT_CLUSTER_SIZE,
1625             .type = QEMU_OPT_SIZE,
1626             .help = "Cluster size (in bytes)",
1627             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1628         },
1629         {
1630             .name = BLOCK_OPT_TABLE_SIZE,
1631             .type = QEMU_OPT_SIZE,
1632             .help = "L1/L2 table size (in clusters)"
1633         },
1634         { /* end of list */ }
1635     }
1636 };
1637 
1638 static BlockDriver bdrv_qed = {
1639     .format_name              = "qed",
1640     .instance_size            = sizeof(BDRVQEDState),
1641     .create_opts              = &qed_create_opts,
1642     .is_format                = true,
1643     .supports_backing         = true,
1644 
1645     .bdrv_probe               = bdrv_qed_probe,
1646     .bdrv_open                = bdrv_qed_open,
1647     .bdrv_close               = bdrv_qed_close,
1648     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1649     .bdrv_child_perm          = bdrv_default_perms,
1650     .bdrv_co_create           = bdrv_qed_co_create,
1651     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1652     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1653     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1654     .bdrv_co_readv            = bdrv_qed_co_readv,
1655     .bdrv_co_writev           = bdrv_qed_co_writev,
1656     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1657     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1658     .bdrv_co_getlength        = bdrv_qed_co_getlength,
1659     .bdrv_co_get_info         = bdrv_qed_co_get_info,
1660     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1661     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1662     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1663     .bdrv_co_check            = bdrv_qed_co_check,
1664     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1665     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1666     .bdrv_drain_begin         = bdrv_qed_drain_begin,
1667 };
1668 
1669 static void bdrv_qed_init(void)
1670 {
1671     bdrv_register(&bdrv_qed);
1672 }
1673 
1674 block_init(bdrv_qed_init);
1675