xref: /openbmc/qemu/block/qed.c (revision e9206163)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int coroutine_fn GRAPH_RDLOCK
199 qed_read_string(BdrvChild *file, uint64_t offset,
200                 size_t n, char *buf, size_t buflen)
201 {
202     int ret;
203     if (n >= buflen) {
204         return -EINVAL;
205     }
206     ret = bdrv_co_pread(file, offset, n, buf, 0);
207     if (ret < 0) {
208         return ret;
209     }
210     buf[n] = '\0';
211     return 0;
212 }
213 
214 /**
215  * Allocate new clusters
216  *
217  * @s:          QED state
218  * @n:          Number of contiguous clusters to allocate
219  * @ret:        Offset of first allocated cluster
220  *
221  * This function only produces the offset where the new clusters should be
222  * written.  It updates BDRVQEDState but does not make any changes to the image
223  * file.
224  *
225  * Called with table_lock held.
226  */
227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229     uint64_t offset = s->file_size;
230     s->file_size += n * s->header.cluster_size;
231     return offset;
232 }
233 
234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236     /* Honor O_DIRECT memory alignment requirements */
237     return qemu_blockalign(s->bs,
238                            s->header.cluster_size * s->header.table_size);
239 }
240 
241 /**
242  * Allocate a new zeroed L2 table
243  *
244  * Called with table_lock held.
245  */
246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 {
248     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 
250     l2_table->table = qed_alloc_table(s);
251     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 
253     memset(l2_table->table->offsets, 0,
254            s->header.cluster_size * s->header.table_size);
255     return l2_table;
256 }
257 
258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 {
260     qemu_co_mutex_lock(&s->table_lock);
261 
262     /* No reentrancy is allowed.  */
263     assert(!s->allocating_write_reqs_plugged);
264     if (s->allocating_acb != NULL) {
265         /* Another allocating write came concurrently.  This cannot happen
266          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267          */
268         qemu_co_mutex_unlock(&s->table_lock);
269         return false;
270     }
271 
272     s->allocating_write_reqs_plugged = true;
273     qemu_co_mutex_unlock(&s->table_lock);
274     return true;
275 }
276 
277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 {
279     qemu_co_mutex_lock(&s->table_lock);
280     assert(s->allocating_write_reqs_plugged);
281     s->allocating_write_reqs_plugged = false;
282     qemu_co_queue_next(&s->allocating_write_reqs);
283     qemu_co_mutex_unlock(&s->table_lock);
284 }
285 
286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
287 {
288     int ret;
289 
290     trace_qed_need_check_timer_cb(s);
291     assert_bdrv_graph_readable();
292 
293     if (!qed_plug_allocating_write_reqs(s)) {
294         return;
295     }
296 
297     /* Ensure writes are on disk before clearing flag */
298     ret = bdrv_co_flush(s->bs->file->bs);
299     if (ret < 0) {
300         qed_unplug_allocating_write_reqs(s);
301         return;
302     }
303 
304     s->header.features &= ~QED_F_NEED_CHECK;
305     ret = qed_write_header(s);
306     (void) ret;
307 
308     qed_unplug_allocating_write_reqs(s);
309 
310     ret = bdrv_co_flush(s->bs);
311     (void) ret;
312 }
313 
314 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
315 {
316     BDRVQEDState *s = opaque;
317     GRAPH_RDLOCK_GUARD();
318 
319     qed_need_check_timer(opaque);
320     bdrv_dec_in_flight(s->bs);
321 }
322 
323 static void qed_need_check_timer_cb(void *opaque)
324 {
325     BDRVQEDState *s = opaque;
326     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
327 
328     bdrv_inc_in_flight(s->bs);
329     qemu_coroutine_enter(co);
330 }
331 
332 static void qed_start_need_check_timer(BDRVQEDState *s)
333 {
334     trace_qed_start_need_check_timer(s);
335 
336     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
337      * migration.
338      */
339     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
340                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
341 }
342 
343 /* It's okay to call this multiple times or when no timer is started */
344 static void qed_cancel_need_check_timer(BDRVQEDState *s)
345 {
346     trace_qed_cancel_need_check_timer(s);
347     timer_del(s->need_check_timer);
348 }
349 
350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
351 {
352     BDRVQEDState *s = bs->opaque;
353 
354     qed_cancel_need_check_timer(s);
355     timer_free(s->need_check_timer);
356 }
357 
358 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
359                                         AioContext *new_context)
360 {
361     BDRVQEDState *s = bs->opaque;
362 
363     s->need_check_timer = aio_timer_new(new_context,
364                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
365                                         qed_need_check_timer_cb, s);
366     if (s->header.features & QED_F_NEED_CHECK) {
367         qed_start_need_check_timer(s);
368     }
369 }
370 
371 static void bdrv_qed_drain_begin(BlockDriverState *bs)
372 {
373     BDRVQEDState *s = bs->opaque;
374 
375     /* Fire the timer immediately in order to start doing I/O as soon as the
376      * header is flushed.
377      */
378     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
379         Coroutine *co;
380 
381         qed_cancel_need_check_timer(s);
382         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
383         bdrv_inc_in_flight(bs);
384         aio_co_enter(bdrv_get_aio_context(bs), co);
385     }
386 }
387 
388 static void bdrv_qed_init_state(BlockDriverState *bs)
389 {
390     BDRVQEDState *s = bs->opaque;
391 
392     memset(s, 0, sizeof(BDRVQEDState));
393     s->bs = bs;
394     qemu_co_mutex_init(&s->table_lock);
395     qemu_co_queue_init(&s->allocating_write_reqs);
396 }
397 
398 /* Called with table_lock held.  */
399 static int coroutine_fn GRAPH_RDLOCK
400 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
401 {
402     BDRVQEDState *s = bs->opaque;
403     QEDHeader le_header;
404     int64_t file_size;
405     int ret;
406 
407     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
408     if (ret < 0) {
409         error_setg(errp, "Failed to read QED header");
410         return ret;
411     }
412     qed_header_le_to_cpu(&le_header, &s->header);
413 
414     if (s->header.magic != QED_MAGIC) {
415         error_setg(errp, "Image not in QED format");
416         return -EINVAL;
417     }
418     if (s->header.features & ~QED_FEATURE_MASK) {
419         /* image uses unsupported feature bits */
420         error_setg(errp, "Unsupported QED features: %" PRIx64,
421                    s->header.features & ~QED_FEATURE_MASK);
422         return -ENOTSUP;
423     }
424     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
425         error_setg(errp, "QED cluster size is invalid");
426         return -EINVAL;
427     }
428 
429     /* Round down file size to the last cluster */
430     file_size = bdrv_co_getlength(bs->file->bs);
431     if (file_size < 0) {
432         error_setg(errp, "Failed to get file length");
433         return file_size;
434     }
435     s->file_size = qed_start_of_cluster(s, file_size);
436 
437     if (!qed_is_table_size_valid(s->header.table_size)) {
438         error_setg(errp, "QED table size is invalid");
439         return -EINVAL;
440     }
441     if (!qed_is_image_size_valid(s->header.image_size,
442                                  s->header.cluster_size,
443                                  s->header.table_size)) {
444         error_setg(errp, "QED image size is invalid");
445         return -EINVAL;
446     }
447     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
448         error_setg(errp, "QED table offset is invalid");
449         return -EINVAL;
450     }
451 
452     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
453                       sizeof(uint64_t);
454     s->l2_shift = ctz32(s->header.cluster_size);
455     s->l2_mask = s->table_nelems - 1;
456     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
457 
458     /* Header size calculation must not overflow uint32_t */
459     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
460         error_setg(errp, "QED header size is too large");
461         return -EINVAL;
462     }
463 
464     if ((s->header.features & QED_F_BACKING_FILE)) {
465         g_autofree char *backing_file_str = NULL;
466 
467         if ((uint64_t)s->header.backing_filename_offset +
468             s->header.backing_filename_size >
469             s->header.cluster_size * s->header.header_size) {
470             error_setg(errp, "QED backing filename offset is invalid");
471             return -EINVAL;
472         }
473 
474         backing_file_str = g_malloc(sizeof(bs->backing_file));
475         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
476                               s->header.backing_filename_size,
477                               backing_file_str, sizeof(bs->backing_file));
478         if (ret < 0) {
479             error_setg(errp, "Failed to read backing filename");
480             return ret;
481         }
482 
483         if (!g_str_equal(backing_file_str, bs->backing_file)) {
484             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
485                     backing_file_str);
486             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
487                     backing_file_str);
488         }
489 
490         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
491             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
492         }
493     }
494 
495     /* Reset unknown autoclear feature bits.  This is a backwards
496      * compatibility mechanism that allows images to be opened by older
497      * programs, which "knock out" unknown feature bits.  When an image is
498      * opened by a newer program again it can detect that the autoclear
499      * feature is no longer valid.
500      */
501     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
502         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
503         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
504 
505         ret = qed_write_header_sync(s);
506         if (ret) {
507             error_setg(errp, "Failed to update header");
508             return ret;
509         }
510 
511         /* From here on only known autoclear feature bits are valid */
512         bdrv_co_flush(bs->file->bs);
513     }
514 
515     s->l1_table = qed_alloc_table(s);
516     qed_init_l2_cache(&s->l2_cache);
517 
518     ret = qed_read_l1_table_sync(s);
519     if (ret) {
520         error_setg(errp, "Failed to read L1 table");
521         goto out;
522     }
523 
524     /* If image was not closed cleanly, check consistency */
525     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
526         /* Read-only images cannot be fixed.  There is no risk of corruption
527          * since write operations are not possible.  Therefore, allow
528          * potentially inconsistent images to be opened read-only.  This can
529          * aid data recovery from an otherwise inconsistent image.
530          */
531         if (!bdrv_is_read_only(bs->file->bs) &&
532             !(flags & BDRV_O_INACTIVE)) {
533             BdrvCheckResult result = {0};
534 
535             ret = qed_check(s, &result, true);
536             if (ret) {
537                 error_setg(errp, "Image corrupted");
538                 goto out;
539             }
540         }
541     }
542 
543     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
544 
545 out:
546     if (ret) {
547         qed_free_l2_cache(&s->l2_cache);
548         qemu_vfree(s->l1_table);
549     }
550     return ret;
551 }
552 
553 typedef struct QEDOpenCo {
554     BlockDriverState *bs;
555     QDict *options;
556     int flags;
557     Error **errp;
558     int ret;
559 } QEDOpenCo;
560 
561 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
562 {
563     QEDOpenCo *qoc = opaque;
564     BDRVQEDState *s = qoc->bs->opaque;
565 
566     GRAPH_RDLOCK_GUARD();
567 
568     qemu_co_mutex_lock(&s->table_lock);
569     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
570     qemu_co_mutex_unlock(&s->table_lock);
571 }
572 
573 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options,
574                                             int flags, Error **errp)
575 {
576     QEDOpenCo qoc = {
577         .bs = bs,
578         .options = options,
579         .flags = flags,
580         .errp = errp,
581         .ret = -EINPROGRESS
582     };
583     int ret;
584 
585     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
586     if (ret < 0) {
587         return ret;
588     }
589 
590     bdrv_qed_init_state(bs);
591     assert(!qemu_in_coroutine());
592     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
593     qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
594     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
595 
596     return qoc.ret;
597 }
598 
599 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
600 {
601     BDRVQEDState *s = bs->opaque;
602 
603     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
604     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
605 }
606 
607 /* We have nothing to do for QED reopen, stubs just return
608  * success */
609 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
610                                    BlockReopenQueue *queue, Error **errp)
611 {
612     return 0;
613 }
614 
615 static void GRAPH_RDLOCK bdrv_qed_do_close(BlockDriverState *bs)
616 {
617     BDRVQEDState *s = bs->opaque;
618 
619     bdrv_qed_detach_aio_context(bs);
620 
621     /* Ensure writes reach stable storage */
622     bdrv_flush(bs->file->bs);
623 
624     /* Clean shutdown, no check required on next open */
625     if (s->header.features & QED_F_NEED_CHECK) {
626         s->header.features &= ~QED_F_NEED_CHECK;
627         qed_write_header_sync(s);
628     }
629 
630     qed_free_l2_cache(&s->l2_cache);
631     qemu_vfree(s->l1_table);
632 }
633 
634 static void GRAPH_UNLOCKED bdrv_qed_close(BlockDriverState *bs)
635 {
636     GLOBAL_STATE_CODE();
637     GRAPH_RDLOCK_GUARD_MAINLOOP();
638 
639     bdrv_qed_do_close(bs);
640 }
641 
642 static int coroutine_fn GRAPH_UNLOCKED
643 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
644 {
645     BlockdevCreateOptionsQed *qed_opts;
646     BlockBackend *blk = NULL;
647     BlockDriverState *bs = NULL;
648 
649     QEDHeader header;
650     QEDHeader le_header;
651     uint8_t *l1_table = NULL;
652     size_t l1_size;
653     int ret = 0;
654 
655     assert(opts->driver == BLOCKDEV_DRIVER_QED);
656     qed_opts = &opts->u.qed;
657 
658     /* Validate options and set default values */
659     if (!qed_opts->has_cluster_size) {
660         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
661     }
662     if (!qed_opts->has_table_size) {
663         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
664     }
665 
666     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
667         error_setg(errp, "QED cluster size must be within range [%u, %u] "
668                          "and power of 2",
669                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
670         return -EINVAL;
671     }
672     if (!qed_is_table_size_valid(qed_opts->table_size)) {
673         error_setg(errp, "QED table size must be within range [%u, %u] "
674                          "and power of 2",
675                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
676         return -EINVAL;
677     }
678     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
679                                  qed_opts->table_size))
680     {
681         error_setg(errp, "QED image size must be a non-zero multiple of "
682                          "cluster size and less than %" PRIu64 " bytes",
683                    qed_max_image_size(qed_opts->cluster_size,
684                                       qed_opts->table_size));
685         return -EINVAL;
686     }
687 
688     /* Create BlockBackend to write to the image */
689     bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
690     if (bs == NULL) {
691         return -EIO;
692     }
693 
694     blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
695                              errp);
696     if (!blk) {
697         ret = -EPERM;
698         goto out;
699     }
700     blk_set_allow_write_beyond_eof(blk, true);
701 
702     /* Prepare image format */
703     header = (QEDHeader) {
704         .magic = QED_MAGIC,
705         .cluster_size = qed_opts->cluster_size,
706         .table_size = qed_opts->table_size,
707         .header_size = 1,
708         .features = 0,
709         .compat_features = 0,
710         .l1_table_offset = qed_opts->cluster_size,
711         .image_size = qed_opts->size,
712     };
713 
714     l1_size = header.cluster_size * header.table_size;
715 
716     /*
717      * The QED format associates file length with allocation status,
718      * so a new file (which is empty) must have a length of 0.
719      */
720     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
721     if (ret < 0) {
722         goto out;
723     }
724 
725     if (qed_opts->backing_file) {
726         header.features |= QED_F_BACKING_FILE;
727         header.backing_filename_offset = sizeof(le_header);
728         header.backing_filename_size = strlen(qed_opts->backing_file);
729 
730         if (qed_opts->has_backing_fmt) {
731             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
732             if (qed_fmt_is_raw(backing_fmt)) {
733                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
734             }
735         }
736     }
737 
738     qed_header_cpu_to_le(&header, &le_header);
739     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
740     if (ret < 0) {
741         goto out;
742     }
743     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
744                      qed_opts->backing_file, 0);
745     if (ret < 0) {
746         goto out;
747     }
748 
749     l1_table = g_malloc0(l1_size);
750     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
751     if (ret < 0) {
752         goto out;
753     }
754 
755     ret = 0; /* success */
756 out:
757     g_free(l1_table);
758     blk_co_unref(blk);
759     bdrv_co_unref(bs);
760     return ret;
761 }
762 
763 static int coroutine_fn GRAPH_UNLOCKED
764 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
765                         QemuOpts *opts, Error **errp)
766 {
767     BlockdevCreateOptions *create_options = NULL;
768     QDict *qdict;
769     Visitor *v;
770     BlockDriverState *bs = NULL;
771     int ret;
772 
773     static const QDictRenames opt_renames[] = {
774         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
775         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
776         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
777         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
778         { NULL, NULL },
779     };
780 
781     /* Parse options and convert legacy syntax */
782     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
783 
784     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
785         ret = -EINVAL;
786         goto fail;
787     }
788 
789     /* Create and open the file (protocol layer) */
790     ret = bdrv_co_create_file(filename, opts, errp);
791     if (ret < 0) {
792         goto fail;
793     }
794 
795     bs = bdrv_co_open(filename, NULL, NULL,
796                       BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
797     if (bs == NULL) {
798         ret = -EIO;
799         goto fail;
800     }
801 
802     /* Now get the QAPI type BlockdevCreateOptions */
803     qdict_put_str(qdict, "driver", "qed");
804     qdict_put_str(qdict, "file", bs->node_name);
805 
806     v = qobject_input_visitor_new_flat_confused(qdict, errp);
807     if (!v) {
808         ret = -EINVAL;
809         goto fail;
810     }
811 
812     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
813     visit_free(v);
814     if (!create_options) {
815         ret = -EINVAL;
816         goto fail;
817     }
818 
819     /* Silently round up size */
820     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
821     create_options->u.qed.size =
822         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
823 
824     /* Create the qed image (format layer) */
825     ret = bdrv_qed_co_create(create_options, errp);
826 
827 fail:
828     qobject_unref(qdict);
829     bdrv_co_unref(bs);
830     qapi_free_BlockdevCreateOptions(create_options);
831     return ret;
832 }
833 
834 static int coroutine_fn GRAPH_RDLOCK
835 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
836                          int64_t bytes, int64_t *pnum, int64_t *map,
837                          BlockDriverState **file)
838 {
839     BDRVQEDState *s = bs->opaque;
840     size_t len = MIN(bytes, SIZE_MAX);
841     int status;
842     QEDRequest request = { .l2_table = NULL };
843     uint64_t offset;
844     int ret;
845 
846     qemu_co_mutex_lock(&s->table_lock);
847     ret = qed_find_cluster(s, &request, pos, &len, &offset);
848 
849     *pnum = len;
850     switch (ret) {
851     case QED_CLUSTER_FOUND:
852         *map = offset | qed_offset_into_cluster(s, pos);
853         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
854         *file = bs->file->bs;
855         break;
856     case QED_CLUSTER_ZERO:
857         status = BDRV_BLOCK_ZERO;
858         break;
859     case QED_CLUSTER_L2:
860     case QED_CLUSTER_L1:
861         status = 0;
862         break;
863     default:
864         assert(ret < 0);
865         status = ret;
866         break;
867     }
868 
869     qed_unref_l2_cache_entry(request.l2_table);
870     qemu_co_mutex_unlock(&s->table_lock);
871 
872     return status;
873 }
874 
875 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
876 {
877     return acb->bs->opaque;
878 }
879 
880 /**
881  * Read from the backing file or zero-fill if no backing file
882  *
883  * @s:              QED state
884  * @pos:            Byte position in device
885  * @qiov:           Destination I/O vector
886  *
887  * This function reads qiov->size bytes starting at pos from the backing file.
888  * If there is no backing file then zeroes are read.
889  */
890 static int coroutine_fn GRAPH_RDLOCK
891 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
892 {
893     if (s->bs->backing) {
894         BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
895         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
896     }
897     qemu_iovec_memset(qiov, 0, 0, qiov->size);
898     return 0;
899 }
900 
901 /**
902  * Copy data from backing file into the image
903  *
904  * @s:          QED state
905  * @pos:        Byte position in device
906  * @len:        Number of bytes
907  * @offset:     Byte offset in image file
908  */
909 static int coroutine_fn GRAPH_RDLOCK
910 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
911                            uint64_t offset)
912 {
913     QEMUIOVector qiov;
914     int ret;
915 
916     /* Skip copy entirely if there is no work to do */
917     if (len == 0) {
918         return 0;
919     }
920 
921     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
922 
923     ret = qed_read_backing_file(s, pos, &qiov);
924 
925     if (ret) {
926         goto out;
927     }
928 
929     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
930     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
931     if (ret < 0) {
932         goto out;
933     }
934     ret = 0;
935 out:
936     qemu_vfree(qemu_iovec_buf(&qiov));
937     return ret;
938 }
939 
940 /**
941  * Link one or more contiguous clusters into a table
942  *
943  * @s:              QED state
944  * @table:          L2 table
945  * @index:          First cluster index
946  * @n:              Number of contiguous clusters
947  * @cluster:        First cluster offset
948  *
949  * The cluster offset may be an allocated byte offset in the image file, the
950  * zero cluster marker, or the unallocated cluster marker.
951  *
952  * Called with table_lock held.
953  */
954 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
955                                              int index, unsigned int n,
956                                              uint64_t cluster)
957 {
958     int i;
959     for (i = index; i < index + n; i++) {
960         table->offsets[i] = cluster;
961         if (!qed_offset_is_unalloc_cluster(cluster) &&
962             !qed_offset_is_zero_cluster(cluster)) {
963             cluster += s->header.cluster_size;
964         }
965     }
966 }
967 
968 /* Called with table_lock held.  */
969 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
970 {
971     BDRVQEDState *s = acb_to_s(acb);
972 
973     /* Free resources */
974     qemu_iovec_destroy(&acb->cur_qiov);
975     qed_unref_l2_cache_entry(acb->request.l2_table);
976 
977     /* Free the buffer we may have allocated for zero writes */
978     if (acb->flags & QED_AIOCB_ZERO) {
979         qemu_vfree(acb->qiov->iov[0].iov_base);
980         acb->qiov->iov[0].iov_base = NULL;
981     }
982 
983     /* Start next allocating write request waiting behind this one.  Note that
984      * requests enqueue themselves when they first hit an unallocated cluster
985      * but they wait until the entire request is finished before waking up the
986      * next request in the queue.  This ensures that we don't cycle through
987      * requests multiple times but rather finish one at a time completely.
988      */
989     if (acb == s->allocating_acb) {
990         s->allocating_acb = NULL;
991         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
992             qemu_co_queue_next(&s->allocating_write_reqs);
993         } else if (s->header.features & QED_F_NEED_CHECK) {
994             qed_start_need_check_timer(s);
995         }
996     }
997 }
998 
999 /**
1000  * Update L1 table with new L2 table offset and write it out
1001  *
1002  * Called with table_lock held.
1003  */
1004 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
1005 {
1006     BDRVQEDState *s = acb_to_s(acb);
1007     CachedL2Table *l2_table = acb->request.l2_table;
1008     uint64_t l2_offset = l2_table->offset;
1009     int index, ret;
1010 
1011     index = qed_l1_index(s, acb->cur_pos);
1012     s->l1_table->offsets[index] = l2_table->offset;
1013 
1014     ret = qed_write_l1_table(s, index, 1);
1015 
1016     /* Commit the current L2 table to the cache */
1017     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1018 
1019     /* This is guaranteed to succeed because we just committed the entry to the
1020      * cache.
1021      */
1022     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1023     assert(acb->request.l2_table != NULL);
1024 
1025     return ret;
1026 }
1027 
1028 
1029 /**
1030  * Update L2 table with new cluster offsets and write them out
1031  *
1032  * Called with table_lock held.
1033  */
1034 static int coroutine_fn GRAPH_RDLOCK
1035 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1036 {
1037     BDRVQEDState *s = acb_to_s(acb);
1038     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1039     int index, ret;
1040 
1041     if (need_alloc) {
1042         qed_unref_l2_cache_entry(acb->request.l2_table);
1043         acb->request.l2_table = qed_new_l2_table(s);
1044     }
1045 
1046     index = qed_l2_index(s, acb->cur_pos);
1047     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1048                          offset);
1049 
1050     if (need_alloc) {
1051         /* Write out the whole new L2 table */
1052         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1053         if (ret) {
1054             return ret;
1055         }
1056         return qed_aio_write_l1_update(acb);
1057     } else {
1058         /* Write out only the updated part of the L2 table */
1059         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1060                                  false);
1061         if (ret) {
1062             return ret;
1063         }
1064     }
1065     return 0;
1066 }
1067 
1068 /**
1069  * Write data to the image file
1070  *
1071  * Called with table_lock *not* held.
1072  */
1073 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1074 {
1075     BDRVQEDState *s = acb_to_s(acb);
1076     uint64_t offset = acb->cur_cluster +
1077                       qed_offset_into_cluster(s, acb->cur_pos);
1078 
1079     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1080 
1081     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1082     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1083                            &acb->cur_qiov, 0);
1084 }
1085 
1086 /**
1087  * Populate untouched regions of new data cluster
1088  *
1089  * Called with table_lock held.
1090  */
1091 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1092 {
1093     BDRVQEDState *s = acb_to_s(acb);
1094     uint64_t start, len, offset;
1095     int ret;
1096 
1097     qemu_co_mutex_unlock(&s->table_lock);
1098 
1099     /* Populate front untouched region of new data cluster */
1100     start = qed_start_of_cluster(s, acb->cur_pos);
1101     len = qed_offset_into_cluster(s, acb->cur_pos);
1102 
1103     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1104     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1105     if (ret < 0) {
1106         goto out;
1107     }
1108 
1109     /* Populate back untouched region of new data cluster */
1110     start = acb->cur_pos + acb->cur_qiov.size;
1111     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1112     offset = acb->cur_cluster +
1113              qed_offset_into_cluster(s, acb->cur_pos) +
1114              acb->cur_qiov.size;
1115 
1116     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1117     ret = qed_copy_from_backing_file(s, start, len, offset);
1118     if (ret < 0) {
1119         goto out;
1120     }
1121 
1122     ret = qed_aio_write_main(acb);
1123     if (ret < 0) {
1124         goto out;
1125     }
1126 
1127     if (s->bs->backing) {
1128         /*
1129          * Flush new data clusters before updating the L2 table
1130          *
1131          * This flush is necessary when a backing file is in use.  A crash
1132          * during an allocating write could result in empty clusters in the
1133          * image.  If the write only touched a subregion of the cluster,
1134          * then backing image sectors have been lost in the untouched
1135          * region.  The solution is to flush after writing a new data
1136          * cluster and before updating the L2 table.
1137          */
1138         ret = bdrv_co_flush(s->bs->file->bs);
1139     }
1140 
1141 out:
1142     qemu_co_mutex_lock(&s->table_lock);
1143     return ret;
1144 }
1145 
1146 /**
1147  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1148  */
1149 static bool GRAPH_RDLOCK qed_should_set_need_check(BDRVQEDState *s)
1150 {
1151     /* The flush before L2 update path ensures consistency */
1152     if (s->bs->backing) {
1153         return false;
1154     }
1155 
1156     return !(s->header.features & QED_F_NEED_CHECK);
1157 }
1158 
1159 /**
1160  * Write new data cluster
1161  *
1162  * @acb:        Write request
1163  * @len:        Length in bytes
1164  *
1165  * This path is taken when writing to previously unallocated clusters.
1166  *
1167  * Called with table_lock held.
1168  */
1169 static int coroutine_fn GRAPH_RDLOCK
1170 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1171 {
1172     BDRVQEDState *s = acb_to_s(acb);
1173     int ret;
1174 
1175     /* Cancel timer when the first allocating request comes in */
1176     if (s->allocating_acb == NULL) {
1177         qed_cancel_need_check_timer(s);
1178     }
1179 
1180     /* Freeze this request if another allocating write is in progress */
1181     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1182         if (s->allocating_acb != NULL) {
1183             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1184             assert(s->allocating_acb == NULL);
1185         }
1186         s->allocating_acb = acb;
1187         return -EAGAIN; /* start over with looking up table entries */
1188     }
1189 
1190     acb->cur_nclusters = qed_bytes_to_clusters(s,
1191             qed_offset_into_cluster(s, acb->cur_pos) + len);
1192     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1193 
1194     if (acb->flags & QED_AIOCB_ZERO) {
1195         /* Skip ahead if the clusters are already zero */
1196         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1197             return 0;
1198         }
1199         acb->cur_cluster = 1;
1200     } else {
1201         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1202     }
1203 
1204     if (qed_should_set_need_check(s)) {
1205         s->header.features |= QED_F_NEED_CHECK;
1206         ret = qed_write_header(s);
1207         if (ret < 0) {
1208             return ret;
1209         }
1210     }
1211 
1212     if (!(acb->flags & QED_AIOCB_ZERO)) {
1213         ret = qed_aio_write_cow(acb);
1214         if (ret < 0) {
1215             return ret;
1216         }
1217     }
1218 
1219     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1220 }
1221 
1222 /**
1223  * Write data cluster in place
1224  *
1225  * @acb:        Write request
1226  * @offset:     Cluster offset in bytes
1227  * @len:        Length in bytes
1228  *
1229  * This path is taken when writing to already allocated clusters.
1230  *
1231  * Called with table_lock held.
1232  */
1233 static int coroutine_fn GRAPH_RDLOCK
1234 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1235 {
1236     BDRVQEDState *s = acb_to_s(acb);
1237     int r;
1238 
1239     qemu_co_mutex_unlock(&s->table_lock);
1240 
1241     /* Allocate buffer for zero writes */
1242     if (acb->flags & QED_AIOCB_ZERO) {
1243         struct iovec *iov = acb->qiov->iov;
1244 
1245         if (!iov->iov_base) {
1246             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1247             if (iov->iov_base == NULL) {
1248                 r = -ENOMEM;
1249                 goto out;
1250             }
1251             memset(iov->iov_base, 0, iov->iov_len);
1252         }
1253     }
1254 
1255     /* Calculate the I/O vector */
1256     acb->cur_cluster = offset;
1257     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1258 
1259     /* Do the actual write.  */
1260     r = qed_aio_write_main(acb);
1261 out:
1262     qemu_co_mutex_lock(&s->table_lock);
1263     return r;
1264 }
1265 
1266 /**
1267  * Write data cluster
1268  *
1269  * @opaque:     Write request
1270  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1271  * @offset:     Cluster offset in bytes
1272  * @len:        Length in bytes
1273  *
1274  * Called with table_lock held.
1275  */
1276 static int coroutine_fn GRAPH_RDLOCK
1277 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1278 {
1279     QEDAIOCB *acb = opaque;
1280 
1281     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1282 
1283     acb->find_cluster_ret = ret;
1284 
1285     switch (ret) {
1286     case QED_CLUSTER_FOUND:
1287         return qed_aio_write_inplace(acb, offset, len);
1288 
1289     case QED_CLUSTER_L2:
1290     case QED_CLUSTER_L1:
1291     case QED_CLUSTER_ZERO:
1292         return qed_aio_write_alloc(acb, len);
1293 
1294     default:
1295         g_assert_not_reached();
1296     }
1297 }
1298 
1299 /**
1300  * Read data cluster
1301  *
1302  * @opaque:     Read request
1303  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1304  * @offset:     Cluster offset in bytes
1305  * @len:        Length in bytes
1306  *
1307  * Called with table_lock held.
1308  */
1309 static int coroutine_fn GRAPH_RDLOCK
1310 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1311 {
1312     QEDAIOCB *acb = opaque;
1313     BDRVQEDState *s = acb_to_s(acb);
1314     BlockDriverState *bs = acb->bs;
1315     int r;
1316 
1317     qemu_co_mutex_unlock(&s->table_lock);
1318 
1319     /* Adjust offset into cluster */
1320     offset += qed_offset_into_cluster(s, acb->cur_pos);
1321 
1322     trace_qed_aio_read_data(s, acb, ret, offset, len);
1323 
1324     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1325 
1326     /* Handle zero cluster and backing file reads, otherwise read
1327      * data cluster directly.
1328      */
1329     if (ret == QED_CLUSTER_ZERO) {
1330         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1331         r = 0;
1332     } else if (ret != QED_CLUSTER_FOUND) {
1333         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1334     } else {
1335         BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1336         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1337                            &acb->cur_qiov, 0);
1338     }
1339 
1340     qemu_co_mutex_lock(&s->table_lock);
1341     return r;
1342 }
1343 
1344 /**
1345  * Begin next I/O or complete the request
1346  */
1347 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1348 {
1349     BDRVQEDState *s = acb_to_s(acb);
1350     uint64_t offset;
1351     size_t len;
1352     int ret;
1353 
1354     qemu_co_mutex_lock(&s->table_lock);
1355     while (1) {
1356         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1357 
1358         acb->qiov_offset += acb->cur_qiov.size;
1359         acb->cur_pos += acb->cur_qiov.size;
1360         qemu_iovec_reset(&acb->cur_qiov);
1361 
1362         /* Complete request */
1363         if (acb->cur_pos >= acb->end_pos) {
1364             ret = 0;
1365             break;
1366         }
1367 
1368         /* Find next cluster and start I/O */
1369         len = acb->end_pos - acb->cur_pos;
1370         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1371         if (ret < 0) {
1372             break;
1373         }
1374 
1375         if (acb->flags & QED_AIOCB_WRITE) {
1376             ret = qed_aio_write_data(acb, ret, offset, len);
1377         } else {
1378             ret = qed_aio_read_data(acb, ret, offset, len);
1379         }
1380 
1381         if (ret < 0 && ret != -EAGAIN) {
1382             break;
1383         }
1384     }
1385 
1386     trace_qed_aio_complete(s, acb, ret);
1387     qed_aio_complete(acb);
1388     qemu_co_mutex_unlock(&s->table_lock);
1389     return ret;
1390 }
1391 
1392 static int coroutine_fn GRAPH_RDLOCK
1393 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1394                int nb_sectors, int flags)
1395 {
1396     QEDAIOCB acb = {
1397         .bs         = bs,
1398         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1399         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1400         .qiov       = qiov,
1401         .flags      = flags,
1402     };
1403     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1404 
1405     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1406 
1407     /* Start request */
1408     return qed_aio_next_io(&acb);
1409 }
1410 
1411 static int coroutine_fn GRAPH_RDLOCK
1412 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1413                   QEMUIOVector *qiov)
1414 {
1415     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1416 }
1417 
1418 static int coroutine_fn GRAPH_RDLOCK
1419 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1420                    QEMUIOVector *qiov, int flags)
1421 {
1422     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1423 }
1424 
1425 static int coroutine_fn GRAPH_RDLOCK
1426 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1427                           BdrvRequestFlags flags)
1428 {
1429     BDRVQEDState *s = bs->opaque;
1430 
1431     /*
1432      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1433      * then it will be allocated during request processing.
1434      */
1435     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1436 
1437     /*
1438      * QED is not prepared for 63bit write-zero requests, so rely on
1439      * max_pwrite_zeroes.
1440      */
1441     assert(bytes <= INT_MAX);
1442 
1443     /* Fall back if the request is not aligned */
1444     if (qed_offset_into_cluster(s, offset) ||
1445         qed_offset_into_cluster(s, bytes)) {
1446         return -ENOTSUP;
1447     }
1448 
1449     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1450                           bytes >> BDRV_SECTOR_BITS,
1451                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1452 }
1453 
1454 static int coroutine_fn GRAPH_RDLOCK
1455 bdrv_qed_co_truncate(BlockDriverState *bs, int64_t offset, bool exact,
1456                      PreallocMode prealloc, BdrvRequestFlags flags,
1457                      Error **errp)
1458 {
1459     BDRVQEDState *s = bs->opaque;
1460     uint64_t old_image_size;
1461     int ret;
1462 
1463     if (prealloc != PREALLOC_MODE_OFF) {
1464         error_setg(errp, "Unsupported preallocation mode '%s'",
1465                    PreallocMode_str(prealloc));
1466         return -ENOTSUP;
1467     }
1468 
1469     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1470                                  s->header.table_size)) {
1471         error_setg(errp, "Invalid image size specified");
1472         return -EINVAL;
1473     }
1474 
1475     if ((uint64_t)offset < s->header.image_size) {
1476         error_setg(errp, "Shrinking images is currently not supported");
1477         return -ENOTSUP;
1478     }
1479 
1480     old_image_size = s->header.image_size;
1481     s->header.image_size = offset;
1482     ret = qed_write_header_sync(s);
1483     if (ret < 0) {
1484         s->header.image_size = old_image_size;
1485         error_setg_errno(errp, -ret, "Failed to update the image size");
1486     }
1487     return ret;
1488 }
1489 
1490 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1491 {
1492     BDRVQEDState *s = bs->opaque;
1493     return s->header.image_size;
1494 }
1495 
1496 static int coroutine_fn
1497 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1498 {
1499     BDRVQEDState *s = bs->opaque;
1500 
1501     memset(bdi, 0, sizeof(*bdi));
1502     bdi->cluster_size = s->header.cluster_size;
1503     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1504     return 0;
1505 }
1506 
1507 static int coroutine_fn GRAPH_RDLOCK
1508 bdrv_qed_co_change_backing_file(BlockDriverState *bs, const char *backing_file,
1509                                 const char *backing_fmt)
1510 {
1511     BDRVQEDState *s = bs->opaque;
1512     QEDHeader new_header, le_header;
1513     void *buffer;
1514     size_t buffer_len, backing_file_len;
1515     int ret;
1516 
1517     /* Refuse to set backing filename if unknown compat feature bits are
1518      * active.  If the image uses an unknown compat feature then we may not
1519      * know the layout of data following the header structure and cannot safely
1520      * add a new string.
1521      */
1522     if (backing_file && (s->header.compat_features &
1523                          ~QED_COMPAT_FEATURE_MASK)) {
1524         return -ENOTSUP;
1525     }
1526 
1527     memcpy(&new_header, &s->header, sizeof(new_header));
1528 
1529     new_header.features &= ~(QED_F_BACKING_FILE |
1530                              QED_F_BACKING_FORMAT_NO_PROBE);
1531 
1532     /* Adjust feature flags */
1533     if (backing_file) {
1534         new_header.features |= QED_F_BACKING_FILE;
1535 
1536         if (qed_fmt_is_raw(backing_fmt)) {
1537             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1538         }
1539     }
1540 
1541     /* Calculate new header size */
1542     backing_file_len = 0;
1543 
1544     if (backing_file) {
1545         backing_file_len = strlen(backing_file);
1546     }
1547 
1548     buffer_len = sizeof(new_header);
1549     new_header.backing_filename_offset = buffer_len;
1550     new_header.backing_filename_size = backing_file_len;
1551     buffer_len += backing_file_len;
1552 
1553     /* Make sure we can rewrite header without failing */
1554     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1555         return -ENOSPC;
1556     }
1557 
1558     /* Prepare new header */
1559     buffer = g_malloc(buffer_len);
1560 
1561     qed_header_cpu_to_le(&new_header, &le_header);
1562     memcpy(buffer, &le_header, sizeof(le_header));
1563     buffer_len = sizeof(le_header);
1564 
1565     if (backing_file) {
1566         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1567         buffer_len += backing_file_len;
1568     }
1569 
1570     /* Write new header */
1571     ret = bdrv_co_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1572     g_free(buffer);
1573     if (ret == 0) {
1574         memcpy(&s->header, &new_header, sizeof(new_header));
1575     }
1576     return ret;
1577 }
1578 
1579 static void coroutine_fn GRAPH_RDLOCK
1580 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1581 {
1582     BDRVQEDState *s = bs->opaque;
1583     int ret;
1584 
1585     bdrv_qed_do_close(bs);
1586 
1587     bdrv_qed_init_state(bs);
1588     qemu_co_mutex_lock(&s->table_lock);
1589     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1590     qemu_co_mutex_unlock(&s->table_lock);
1591     if (ret < 0) {
1592         error_prepend(errp, "Could not reopen qed layer: ");
1593     }
1594 }
1595 
1596 static int coroutine_fn GRAPH_RDLOCK
1597 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1598                   BdrvCheckMode fix)
1599 {
1600     BDRVQEDState *s = bs->opaque;
1601     int ret;
1602 
1603     qemu_co_mutex_lock(&s->table_lock);
1604     ret = qed_check(s, result, !!fix);
1605     qemu_co_mutex_unlock(&s->table_lock);
1606 
1607     return ret;
1608 }
1609 
1610 static QemuOptsList qed_create_opts = {
1611     .name = "qed-create-opts",
1612     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1613     .desc = {
1614         {
1615             .name = BLOCK_OPT_SIZE,
1616             .type = QEMU_OPT_SIZE,
1617             .help = "Virtual disk size"
1618         },
1619         {
1620             .name = BLOCK_OPT_BACKING_FILE,
1621             .type = QEMU_OPT_STRING,
1622             .help = "File name of a base image"
1623         },
1624         {
1625             .name = BLOCK_OPT_BACKING_FMT,
1626             .type = QEMU_OPT_STRING,
1627             .help = "Image format of the base image"
1628         },
1629         {
1630             .name = BLOCK_OPT_CLUSTER_SIZE,
1631             .type = QEMU_OPT_SIZE,
1632             .help = "Cluster size (in bytes)",
1633             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1634         },
1635         {
1636             .name = BLOCK_OPT_TABLE_SIZE,
1637             .type = QEMU_OPT_SIZE,
1638             .help = "L1/L2 table size (in clusters)"
1639         },
1640         { /* end of list */ }
1641     }
1642 };
1643 
1644 static BlockDriver bdrv_qed = {
1645     .format_name                    = "qed",
1646     .instance_size                  = sizeof(BDRVQEDState),
1647     .create_opts                    = &qed_create_opts,
1648     .is_format                      = true,
1649     .supports_backing               = true,
1650 
1651     .bdrv_probe                     = bdrv_qed_probe,
1652     .bdrv_open                      = bdrv_qed_open,
1653     .bdrv_close                     = bdrv_qed_close,
1654     .bdrv_reopen_prepare            = bdrv_qed_reopen_prepare,
1655     .bdrv_child_perm                = bdrv_default_perms,
1656     .bdrv_co_create                 = bdrv_qed_co_create,
1657     .bdrv_co_create_opts            = bdrv_qed_co_create_opts,
1658     .bdrv_has_zero_init             = bdrv_has_zero_init_1,
1659     .bdrv_co_block_status           = bdrv_qed_co_block_status,
1660     .bdrv_co_readv                  = bdrv_qed_co_readv,
1661     .bdrv_co_writev                 = bdrv_qed_co_writev,
1662     .bdrv_co_pwrite_zeroes          = bdrv_qed_co_pwrite_zeroes,
1663     .bdrv_co_truncate               = bdrv_qed_co_truncate,
1664     .bdrv_co_getlength              = bdrv_qed_co_getlength,
1665     .bdrv_co_get_info               = bdrv_qed_co_get_info,
1666     .bdrv_refresh_limits            = bdrv_qed_refresh_limits,
1667     .bdrv_co_change_backing_file    = bdrv_qed_co_change_backing_file,
1668     .bdrv_co_invalidate_cache       = bdrv_qed_co_invalidate_cache,
1669     .bdrv_co_check                  = bdrv_qed_co_check,
1670     .bdrv_detach_aio_context        = bdrv_qed_detach_aio_context,
1671     .bdrv_attach_aio_context        = bdrv_qed_attach_aio_context,
1672     .bdrv_drain_begin               = bdrv_qed_drain_begin,
1673 };
1674 
1675 static void bdrv_qed_init(void)
1676 {
1677     bdrv_register(&bdrv_qed);
1678 }
1679 
1680 block_init(bdrv_qed_init);
1681