xref: /openbmc/qemu/block/qed.c (revision e8d1e0cd)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199                            char *buf, size_t buflen)
200 {
201     int ret;
202     if (n >= buflen) {
203         return -EINVAL;
204     }
205     ret = bdrv_pread(file, offset, n, buf, 0);
206     if (ret < 0) {
207         return ret;
208     }
209     buf[n] = '\0';
210     return 0;
211 }
212 
213 /**
214  * Allocate new clusters
215  *
216  * @s:          QED state
217  * @n:          Number of contiguous clusters to allocate
218  * @ret:        Offset of first allocated cluster
219  *
220  * This function only produces the offset where the new clusters should be
221  * written.  It updates BDRVQEDState but does not make any changes to the image
222  * file.
223  *
224  * Called with table_lock held.
225  */
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
227 {
228     uint64_t offset = s->file_size;
229     s->file_size += n * s->header.cluster_size;
230     return offset;
231 }
232 
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
234 {
235     /* Honor O_DIRECT memory alignment requirements */
236     return qemu_blockalign(s->bs,
237                            s->header.cluster_size * s->header.table_size);
238 }
239 
240 /**
241  * Allocate a new zeroed L2 table
242  *
243  * Called with table_lock held.
244  */
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 {
247     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248 
249     l2_table->table = qed_alloc_table(s);
250     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251 
252     memset(l2_table->table->offsets, 0,
253            s->header.cluster_size * s->header.table_size);
254     return l2_table;
255 }
256 
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
258 {
259     qemu_co_mutex_lock(&s->table_lock);
260 
261     /* No reentrancy is allowed.  */
262     assert(!s->allocating_write_reqs_plugged);
263     if (s->allocating_acb != NULL) {
264         /* Another allocating write came concurrently.  This cannot happen
265          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
266          */
267         qemu_co_mutex_unlock(&s->table_lock);
268         return false;
269     }
270 
271     s->allocating_write_reqs_plugged = true;
272     qemu_co_mutex_unlock(&s->table_lock);
273     return true;
274 }
275 
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
277 {
278     qemu_co_mutex_lock(&s->table_lock);
279     assert(s->allocating_write_reqs_plugged);
280     s->allocating_write_reqs_plugged = false;
281     qemu_co_queue_next(&s->allocating_write_reqs);
282     qemu_co_mutex_unlock(&s->table_lock);
283 }
284 
285 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
286 {
287     int ret;
288 
289     trace_qed_need_check_timer_cb(s);
290     assert_bdrv_graph_readable();
291 
292     if (!qed_plug_allocating_write_reqs(s)) {
293         return;
294     }
295 
296     /* Ensure writes are on disk before clearing flag */
297     ret = bdrv_co_flush(s->bs->file->bs);
298     if (ret < 0) {
299         qed_unplug_allocating_write_reqs(s);
300         return;
301     }
302 
303     s->header.features &= ~QED_F_NEED_CHECK;
304     ret = qed_write_header(s);
305     (void) ret;
306 
307     qed_unplug_allocating_write_reqs(s);
308 
309     ret = bdrv_co_flush(s->bs);
310     (void) ret;
311 }
312 
313 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
314 {
315     BDRVQEDState *s = opaque;
316     GRAPH_RDLOCK_GUARD();
317 
318     qed_need_check_timer(opaque);
319     bdrv_dec_in_flight(s->bs);
320 }
321 
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324     BDRVQEDState *s = opaque;
325     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
326 
327     bdrv_inc_in_flight(s->bs);
328     qemu_coroutine_enter(co);
329 }
330 
331 static void qed_start_need_check_timer(BDRVQEDState *s)
332 {
333     trace_qed_start_need_check_timer(s);
334 
335     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
336      * migration.
337      */
338     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
339                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
340 }
341 
342 /* It's okay to call this multiple times or when no timer is started */
343 static void qed_cancel_need_check_timer(BDRVQEDState *s)
344 {
345     trace_qed_cancel_need_check_timer(s);
346     timer_del(s->need_check_timer);
347 }
348 
349 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
350 {
351     BDRVQEDState *s = bs->opaque;
352 
353     qed_cancel_need_check_timer(s);
354     timer_free(s->need_check_timer);
355 }
356 
357 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
358                                         AioContext *new_context)
359 {
360     BDRVQEDState *s = bs->opaque;
361 
362     s->need_check_timer = aio_timer_new(new_context,
363                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
364                                         qed_need_check_timer_cb, s);
365     if (s->header.features & QED_F_NEED_CHECK) {
366         qed_start_need_check_timer(s);
367     }
368 }
369 
370 static void bdrv_qed_drain_begin(BlockDriverState *bs)
371 {
372     BDRVQEDState *s = bs->opaque;
373 
374     /* Fire the timer immediately in order to start doing I/O as soon as the
375      * header is flushed.
376      */
377     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
378         Coroutine *co;
379 
380         qed_cancel_need_check_timer(s);
381         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
382         bdrv_inc_in_flight(bs);
383         aio_co_enter(bdrv_get_aio_context(bs), co);
384     }
385 }
386 
387 static void bdrv_qed_init_state(BlockDriverState *bs)
388 {
389     BDRVQEDState *s = bs->opaque;
390 
391     memset(s, 0, sizeof(BDRVQEDState));
392     s->bs = bs;
393     qemu_co_mutex_init(&s->table_lock);
394     qemu_co_queue_init(&s->allocating_write_reqs);
395 }
396 
397 /* Called with table_lock held.  */
398 static int coroutine_fn GRAPH_RDLOCK
399 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
400 {
401     BDRVQEDState *s = bs->opaque;
402     QEDHeader le_header;
403     int64_t file_size;
404     int ret;
405 
406     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
407     if (ret < 0) {
408         error_setg(errp, "Failed to read QED header");
409         return ret;
410     }
411     qed_header_le_to_cpu(&le_header, &s->header);
412 
413     if (s->header.magic != QED_MAGIC) {
414         error_setg(errp, "Image not in QED format");
415         return -EINVAL;
416     }
417     if (s->header.features & ~QED_FEATURE_MASK) {
418         /* image uses unsupported feature bits */
419         error_setg(errp, "Unsupported QED features: %" PRIx64,
420                    s->header.features & ~QED_FEATURE_MASK);
421         return -ENOTSUP;
422     }
423     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
424         error_setg(errp, "QED cluster size is invalid");
425         return -EINVAL;
426     }
427 
428     /* Round down file size to the last cluster */
429     file_size = bdrv_co_getlength(bs->file->bs);
430     if (file_size < 0) {
431         error_setg(errp, "Failed to get file length");
432         return file_size;
433     }
434     s->file_size = qed_start_of_cluster(s, file_size);
435 
436     if (!qed_is_table_size_valid(s->header.table_size)) {
437         error_setg(errp, "QED table size is invalid");
438         return -EINVAL;
439     }
440     if (!qed_is_image_size_valid(s->header.image_size,
441                                  s->header.cluster_size,
442                                  s->header.table_size)) {
443         error_setg(errp, "QED image size is invalid");
444         return -EINVAL;
445     }
446     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
447         error_setg(errp, "QED table offset is invalid");
448         return -EINVAL;
449     }
450 
451     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
452                       sizeof(uint64_t);
453     s->l2_shift = ctz32(s->header.cluster_size);
454     s->l2_mask = s->table_nelems - 1;
455     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
456 
457     /* Header size calculation must not overflow uint32_t */
458     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
459         error_setg(errp, "QED header size is too large");
460         return -EINVAL;
461     }
462 
463     if ((s->header.features & QED_F_BACKING_FILE)) {
464         g_autofree char *backing_file_str = NULL;
465 
466         if ((uint64_t)s->header.backing_filename_offset +
467             s->header.backing_filename_size >
468             s->header.cluster_size * s->header.header_size) {
469             error_setg(errp, "QED backing filename offset is invalid");
470             return -EINVAL;
471         }
472 
473         backing_file_str = g_malloc(sizeof(bs->backing_file));
474         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
475                               s->header.backing_filename_size,
476                               backing_file_str, sizeof(bs->backing_file));
477         if (ret < 0) {
478             error_setg(errp, "Failed to read backing filename");
479             return ret;
480         }
481 
482         if (!g_str_equal(backing_file_str, bs->backing_file)) {
483             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
484                     backing_file_str);
485             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
486                     backing_file_str);
487         }
488 
489         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
490             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
491         }
492     }
493 
494     /* Reset unknown autoclear feature bits.  This is a backwards
495      * compatibility mechanism that allows images to be opened by older
496      * programs, which "knock out" unknown feature bits.  When an image is
497      * opened by a newer program again it can detect that the autoclear
498      * feature is no longer valid.
499      */
500     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
501         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
502         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
503 
504         ret = qed_write_header_sync(s);
505         if (ret) {
506             error_setg(errp, "Failed to update header");
507             return ret;
508         }
509 
510         /* From here on only known autoclear feature bits are valid */
511         bdrv_co_flush(bs->file->bs);
512     }
513 
514     s->l1_table = qed_alloc_table(s);
515     qed_init_l2_cache(&s->l2_cache);
516 
517     ret = qed_read_l1_table_sync(s);
518     if (ret) {
519         error_setg(errp, "Failed to read L1 table");
520         goto out;
521     }
522 
523     /* If image was not closed cleanly, check consistency */
524     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
525         /* Read-only images cannot be fixed.  There is no risk of corruption
526          * since write operations are not possible.  Therefore, allow
527          * potentially inconsistent images to be opened read-only.  This can
528          * aid data recovery from an otherwise inconsistent image.
529          */
530         if (!bdrv_is_read_only(bs->file->bs) &&
531             !(flags & BDRV_O_INACTIVE)) {
532             BdrvCheckResult result = {0};
533 
534             ret = qed_check(s, &result, true);
535             if (ret) {
536                 error_setg(errp, "Image corrupted");
537                 goto out;
538             }
539         }
540     }
541 
542     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
543 
544 out:
545     if (ret) {
546         qed_free_l2_cache(&s->l2_cache);
547         qemu_vfree(s->l1_table);
548     }
549     return ret;
550 }
551 
552 typedef struct QEDOpenCo {
553     BlockDriverState *bs;
554     QDict *options;
555     int flags;
556     Error **errp;
557     int ret;
558 } QEDOpenCo;
559 
560 static void coroutine_fn GRAPH_RDLOCK bdrv_qed_open_entry(void *opaque)
561 {
562     QEDOpenCo *qoc = opaque;
563     BDRVQEDState *s = qoc->bs->opaque;
564 
565     qemu_co_mutex_lock(&s->table_lock);
566     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
567     qemu_co_mutex_unlock(&s->table_lock);
568 }
569 
570 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
571                          Error **errp)
572 {
573     QEDOpenCo qoc = {
574         .bs = bs,
575         .options = options,
576         .flags = flags,
577         .errp = errp,
578         .ret = -EINPROGRESS
579     };
580     int ret;
581 
582     assume_graph_lock(); /* FIXME */
583 
584     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
585     if (ret < 0) {
586         return ret;
587     }
588 
589     bdrv_qed_init_state(bs);
590     if (qemu_in_coroutine()) {
591         bdrv_qed_open_entry(&qoc);
592     } else {
593         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
594         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
595         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
596     }
597     return qoc.ret;
598 }
599 
600 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
601 {
602     BDRVQEDState *s = bs->opaque;
603 
604     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
605     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
606 }
607 
608 /* We have nothing to do for QED reopen, stubs just return
609  * success */
610 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
611                                    BlockReopenQueue *queue, Error **errp)
612 {
613     return 0;
614 }
615 
616 static void bdrv_qed_close(BlockDriverState *bs)
617 {
618     BDRVQEDState *s = bs->opaque;
619 
620     bdrv_qed_detach_aio_context(bs);
621 
622     /* Ensure writes reach stable storage */
623     bdrv_flush(bs->file->bs);
624 
625     /* Clean shutdown, no check required on next open */
626     if (s->header.features & QED_F_NEED_CHECK) {
627         s->header.features &= ~QED_F_NEED_CHECK;
628         qed_write_header_sync(s);
629     }
630 
631     qed_free_l2_cache(&s->l2_cache);
632     qemu_vfree(s->l1_table);
633 }
634 
635 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
636                                            Error **errp)
637 {
638     BlockdevCreateOptionsQed *qed_opts;
639     BlockBackend *blk = NULL;
640     BlockDriverState *bs = NULL;
641 
642     QEDHeader header;
643     QEDHeader le_header;
644     uint8_t *l1_table = NULL;
645     size_t l1_size;
646     int ret = 0;
647 
648     assert(opts->driver == BLOCKDEV_DRIVER_QED);
649     qed_opts = &opts->u.qed;
650 
651     /* Validate options and set default values */
652     if (!qed_opts->has_cluster_size) {
653         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
654     }
655     if (!qed_opts->has_table_size) {
656         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
657     }
658 
659     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
660         error_setg(errp, "QED cluster size must be within range [%u, %u] "
661                          "and power of 2",
662                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
663         return -EINVAL;
664     }
665     if (!qed_is_table_size_valid(qed_opts->table_size)) {
666         error_setg(errp, "QED table size must be within range [%u, %u] "
667                          "and power of 2",
668                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
669         return -EINVAL;
670     }
671     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
672                                  qed_opts->table_size))
673     {
674         error_setg(errp, "QED image size must be a non-zero multiple of "
675                          "cluster size and less than %" PRIu64 " bytes",
676                    qed_max_image_size(qed_opts->cluster_size,
677                                       qed_opts->table_size));
678         return -EINVAL;
679     }
680 
681     /* Create BlockBackend to write to the image */
682     bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
683     if (bs == NULL) {
684         return -EIO;
685     }
686 
687     blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
688                              errp);
689     if (!blk) {
690         ret = -EPERM;
691         goto out;
692     }
693     blk_set_allow_write_beyond_eof(blk, true);
694 
695     /* Prepare image format */
696     header = (QEDHeader) {
697         .magic = QED_MAGIC,
698         .cluster_size = qed_opts->cluster_size,
699         .table_size = qed_opts->table_size,
700         .header_size = 1,
701         .features = 0,
702         .compat_features = 0,
703         .l1_table_offset = qed_opts->cluster_size,
704         .image_size = qed_opts->size,
705     };
706 
707     l1_size = header.cluster_size * header.table_size;
708 
709     /*
710      * The QED format associates file length with allocation status,
711      * so a new file (which is empty) must have a length of 0.
712      */
713     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
714     if (ret < 0) {
715         goto out;
716     }
717 
718     if (qed_opts->backing_file) {
719         header.features |= QED_F_BACKING_FILE;
720         header.backing_filename_offset = sizeof(le_header);
721         header.backing_filename_size = strlen(qed_opts->backing_file);
722 
723         if (qed_opts->has_backing_fmt) {
724             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
725             if (qed_fmt_is_raw(backing_fmt)) {
726                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
727             }
728         }
729     }
730 
731     qed_header_cpu_to_le(&header, &le_header);
732     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
733     if (ret < 0) {
734         goto out;
735     }
736     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
737                      qed_opts->backing_file, 0);
738     if (ret < 0) {
739         goto out;
740     }
741 
742     l1_table = g_malloc0(l1_size);
743     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
744     if (ret < 0) {
745         goto out;
746     }
747 
748     ret = 0; /* success */
749 out:
750     g_free(l1_table);
751     blk_unref(blk);
752     bdrv_unref(bs);
753     return ret;
754 }
755 
756 static int coroutine_fn GRAPH_RDLOCK
757 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
758                         QemuOpts *opts, Error **errp)
759 {
760     BlockdevCreateOptions *create_options = NULL;
761     QDict *qdict;
762     Visitor *v;
763     BlockDriverState *bs = NULL;
764     int ret;
765 
766     static const QDictRenames opt_renames[] = {
767         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
768         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
769         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
770         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
771         { NULL, NULL },
772     };
773 
774     /* Parse options and convert legacy syntax */
775     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
776 
777     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
778         ret = -EINVAL;
779         goto fail;
780     }
781 
782     /* Create and open the file (protocol layer) */
783     ret = bdrv_co_create_file(filename, opts, errp);
784     if (ret < 0) {
785         goto fail;
786     }
787 
788     bs = bdrv_co_open(filename, NULL, NULL,
789                       BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
790     if (bs == NULL) {
791         ret = -EIO;
792         goto fail;
793     }
794 
795     /* Now get the QAPI type BlockdevCreateOptions */
796     qdict_put_str(qdict, "driver", "qed");
797     qdict_put_str(qdict, "file", bs->node_name);
798 
799     v = qobject_input_visitor_new_flat_confused(qdict, errp);
800     if (!v) {
801         ret = -EINVAL;
802         goto fail;
803     }
804 
805     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
806     visit_free(v);
807     if (!create_options) {
808         ret = -EINVAL;
809         goto fail;
810     }
811 
812     /* Silently round up size */
813     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
814     create_options->u.qed.size =
815         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
816 
817     /* Create the qed image (format layer) */
818     ret = bdrv_qed_co_create(create_options, errp);
819 
820 fail:
821     qobject_unref(qdict);
822     bdrv_unref(bs);
823     qapi_free_BlockdevCreateOptions(create_options);
824     return ret;
825 }
826 
827 static int coroutine_fn GRAPH_RDLOCK
828 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
829                          int64_t bytes, int64_t *pnum, int64_t *map,
830                          BlockDriverState **file)
831 {
832     BDRVQEDState *s = bs->opaque;
833     size_t len = MIN(bytes, SIZE_MAX);
834     int status;
835     QEDRequest request = { .l2_table = NULL };
836     uint64_t offset;
837     int ret;
838 
839     qemu_co_mutex_lock(&s->table_lock);
840     ret = qed_find_cluster(s, &request, pos, &len, &offset);
841 
842     *pnum = len;
843     switch (ret) {
844     case QED_CLUSTER_FOUND:
845         *map = offset | qed_offset_into_cluster(s, pos);
846         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
847         *file = bs->file->bs;
848         break;
849     case QED_CLUSTER_ZERO:
850         status = BDRV_BLOCK_ZERO;
851         break;
852     case QED_CLUSTER_L2:
853     case QED_CLUSTER_L1:
854         status = 0;
855         break;
856     default:
857         assert(ret < 0);
858         status = ret;
859         break;
860     }
861 
862     qed_unref_l2_cache_entry(request.l2_table);
863     qemu_co_mutex_unlock(&s->table_lock);
864 
865     return status;
866 }
867 
868 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
869 {
870     return acb->bs->opaque;
871 }
872 
873 /**
874  * Read from the backing file or zero-fill if no backing file
875  *
876  * @s:              QED state
877  * @pos:            Byte position in device
878  * @qiov:           Destination I/O vector
879  *
880  * This function reads qiov->size bytes starting at pos from the backing file.
881  * If there is no backing file then zeroes are read.
882  */
883 static int coroutine_fn GRAPH_RDLOCK
884 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
885 {
886     if (s->bs->backing) {
887         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
888         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
889     }
890     qemu_iovec_memset(qiov, 0, 0, qiov->size);
891     return 0;
892 }
893 
894 /**
895  * Copy data from backing file into the image
896  *
897  * @s:          QED state
898  * @pos:        Byte position in device
899  * @len:        Number of bytes
900  * @offset:     Byte offset in image file
901  */
902 static int coroutine_fn GRAPH_RDLOCK
903 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
904                            uint64_t offset)
905 {
906     QEMUIOVector qiov;
907     int ret;
908 
909     /* Skip copy entirely if there is no work to do */
910     if (len == 0) {
911         return 0;
912     }
913 
914     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
915 
916     ret = qed_read_backing_file(s, pos, &qiov);
917 
918     if (ret) {
919         goto out;
920     }
921 
922     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
923     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
924     if (ret < 0) {
925         goto out;
926     }
927     ret = 0;
928 out:
929     qemu_vfree(qemu_iovec_buf(&qiov));
930     return ret;
931 }
932 
933 /**
934  * Link one or more contiguous clusters into a table
935  *
936  * @s:              QED state
937  * @table:          L2 table
938  * @index:          First cluster index
939  * @n:              Number of contiguous clusters
940  * @cluster:        First cluster offset
941  *
942  * The cluster offset may be an allocated byte offset in the image file, the
943  * zero cluster marker, or the unallocated cluster marker.
944  *
945  * Called with table_lock held.
946  */
947 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
948                                              int index, unsigned int n,
949                                              uint64_t cluster)
950 {
951     int i;
952     for (i = index; i < index + n; i++) {
953         table->offsets[i] = cluster;
954         if (!qed_offset_is_unalloc_cluster(cluster) &&
955             !qed_offset_is_zero_cluster(cluster)) {
956             cluster += s->header.cluster_size;
957         }
958     }
959 }
960 
961 /* Called with table_lock held.  */
962 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
963 {
964     BDRVQEDState *s = acb_to_s(acb);
965 
966     /* Free resources */
967     qemu_iovec_destroy(&acb->cur_qiov);
968     qed_unref_l2_cache_entry(acb->request.l2_table);
969 
970     /* Free the buffer we may have allocated for zero writes */
971     if (acb->flags & QED_AIOCB_ZERO) {
972         qemu_vfree(acb->qiov->iov[0].iov_base);
973         acb->qiov->iov[0].iov_base = NULL;
974     }
975 
976     /* Start next allocating write request waiting behind this one.  Note that
977      * requests enqueue themselves when they first hit an unallocated cluster
978      * but they wait until the entire request is finished before waking up the
979      * next request in the queue.  This ensures that we don't cycle through
980      * requests multiple times but rather finish one at a time completely.
981      */
982     if (acb == s->allocating_acb) {
983         s->allocating_acb = NULL;
984         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
985             qemu_co_queue_next(&s->allocating_write_reqs);
986         } else if (s->header.features & QED_F_NEED_CHECK) {
987             qed_start_need_check_timer(s);
988         }
989     }
990 }
991 
992 /**
993  * Update L1 table with new L2 table offset and write it out
994  *
995  * Called with table_lock held.
996  */
997 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
998 {
999     BDRVQEDState *s = acb_to_s(acb);
1000     CachedL2Table *l2_table = acb->request.l2_table;
1001     uint64_t l2_offset = l2_table->offset;
1002     int index, ret;
1003 
1004     index = qed_l1_index(s, acb->cur_pos);
1005     s->l1_table->offsets[index] = l2_table->offset;
1006 
1007     ret = qed_write_l1_table(s, index, 1);
1008 
1009     /* Commit the current L2 table to the cache */
1010     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1011 
1012     /* This is guaranteed to succeed because we just committed the entry to the
1013      * cache.
1014      */
1015     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1016     assert(acb->request.l2_table != NULL);
1017 
1018     return ret;
1019 }
1020 
1021 
1022 /**
1023  * Update L2 table with new cluster offsets and write them out
1024  *
1025  * Called with table_lock held.
1026  */
1027 static int coroutine_fn GRAPH_RDLOCK
1028 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1029 {
1030     BDRVQEDState *s = acb_to_s(acb);
1031     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1032     int index, ret;
1033 
1034     if (need_alloc) {
1035         qed_unref_l2_cache_entry(acb->request.l2_table);
1036         acb->request.l2_table = qed_new_l2_table(s);
1037     }
1038 
1039     index = qed_l2_index(s, acb->cur_pos);
1040     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1041                          offset);
1042 
1043     if (need_alloc) {
1044         /* Write out the whole new L2 table */
1045         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1046         if (ret) {
1047             return ret;
1048         }
1049         return qed_aio_write_l1_update(acb);
1050     } else {
1051         /* Write out only the updated part of the L2 table */
1052         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1053                                  false);
1054         if (ret) {
1055             return ret;
1056         }
1057     }
1058     return 0;
1059 }
1060 
1061 /**
1062  * Write data to the image file
1063  *
1064  * Called with table_lock *not* held.
1065  */
1066 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1067 {
1068     BDRVQEDState *s = acb_to_s(acb);
1069     uint64_t offset = acb->cur_cluster +
1070                       qed_offset_into_cluster(s, acb->cur_pos);
1071 
1072     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1073 
1074     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1075     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1076                            &acb->cur_qiov, 0);
1077 }
1078 
1079 /**
1080  * Populate untouched regions of new data cluster
1081  *
1082  * Called with table_lock held.
1083  */
1084 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1085 {
1086     BDRVQEDState *s = acb_to_s(acb);
1087     uint64_t start, len, offset;
1088     int ret;
1089 
1090     qemu_co_mutex_unlock(&s->table_lock);
1091 
1092     /* Populate front untouched region of new data cluster */
1093     start = qed_start_of_cluster(s, acb->cur_pos);
1094     len = qed_offset_into_cluster(s, acb->cur_pos);
1095 
1096     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1097     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1098     if (ret < 0) {
1099         goto out;
1100     }
1101 
1102     /* Populate back untouched region of new data cluster */
1103     start = acb->cur_pos + acb->cur_qiov.size;
1104     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1105     offset = acb->cur_cluster +
1106              qed_offset_into_cluster(s, acb->cur_pos) +
1107              acb->cur_qiov.size;
1108 
1109     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1110     ret = qed_copy_from_backing_file(s, start, len, offset);
1111     if (ret < 0) {
1112         goto out;
1113     }
1114 
1115     ret = qed_aio_write_main(acb);
1116     if (ret < 0) {
1117         goto out;
1118     }
1119 
1120     if (s->bs->backing) {
1121         /*
1122          * Flush new data clusters before updating the L2 table
1123          *
1124          * This flush is necessary when a backing file is in use.  A crash
1125          * during an allocating write could result in empty clusters in the
1126          * image.  If the write only touched a subregion of the cluster,
1127          * then backing image sectors have been lost in the untouched
1128          * region.  The solution is to flush after writing a new data
1129          * cluster and before updating the L2 table.
1130          */
1131         ret = bdrv_co_flush(s->bs->file->bs);
1132     }
1133 
1134 out:
1135     qemu_co_mutex_lock(&s->table_lock);
1136     return ret;
1137 }
1138 
1139 /**
1140  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1141  */
1142 static bool qed_should_set_need_check(BDRVQEDState *s)
1143 {
1144     /* The flush before L2 update path ensures consistency */
1145     if (s->bs->backing) {
1146         return false;
1147     }
1148 
1149     return !(s->header.features & QED_F_NEED_CHECK);
1150 }
1151 
1152 /**
1153  * Write new data cluster
1154  *
1155  * @acb:        Write request
1156  * @len:        Length in bytes
1157  *
1158  * This path is taken when writing to previously unallocated clusters.
1159  *
1160  * Called with table_lock held.
1161  */
1162 static int coroutine_fn GRAPH_RDLOCK
1163 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1164 {
1165     BDRVQEDState *s = acb_to_s(acb);
1166     int ret;
1167 
1168     /* Cancel timer when the first allocating request comes in */
1169     if (s->allocating_acb == NULL) {
1170         qed_cancel_need_check_timer(s);
1171     }
1172 
1173     /* Freeze this request if another allocating write is in progress */
1174     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1175         if (s->allocating_acb != NULL) {
1176             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1177             assert(s->allocating_acb == NULL);
1178         }
1179         s->allocating_acb = acb;
1180         return -EAGAIN; /* start over with looking up table entries */
1181     }
1182 
1183     acb->cur_nclusters = qed_bytes_to_clusters(s,
1184             qed_offset_into_cluster(s, acb->cur_pos) + len);
1185     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1186 
1187     if (acb->flags & QED_AIOCB_ZERO) {
1188         /* Skip ahead if the clusters are already zero */
1189         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1190             return 0;
1191         }
1192         acb->cur_cluster = 1;
1193     } else {
1194         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1195     }
1196 
1197     if (qed_should_set_need_check(s)) {
1198         s->header.features |= QED_F_NEED_CHECK;
1199         ret = qed_write_header(s);
1200         if (ret < 0) {
1201             return ret;
1202         }
1203     }
1204 
1205     if (!(acb->flags & QED_AIOCB_ZERO)) {
1206         ret = qed_aio_write_cow(acb);
1207         if (ret < 0) {
1208             return ret;
1209         }
1210     }
1211 
1212     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1213 }
1214 
1215 /**
1216  * Write data cluster in place
1217  *
1218  * @acb:        Write request
1219  * @offset:     Cluster offset in bytes
1220  * @len:        Length in bytes
1221  *
1222  * This path is taken when writing to already allocated clusters.
1223  *
1224  * Called with table_lock held.
1225  */
1226 static int coroutine_fn GRAPH_RDLOCK
1227 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1228 {
1229     BDRVQEDState *s = acb_to_s(acb);
1230     int r;
1231 
1232     qemu_co_mutex_unlock(&s->table_lock);
1233 
1234     /* Allocate buffer for zero writes */
1235     if (acb->flags & QED_AIOCB_ZERO) {
1236         struct iovec *iov = acb->qiov->iov;
1237 
1238         if (!iov->iov_base) {
1239             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1240             if (iov->iov_base == NULL) {
1241                 r = -ENOMEM;
1242                 goto out;
1243             }
1244             memset(iov->iov_base, 0, iov->iov_len);
1245         }
1246     }
1247 
1248     /* Calculate the I/O vector */
1249     acb->cur_cluster = offset;
1250     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1251 
1252     /* Do the actual write.  */
1253     r = qed_aio_write_main(acb);
1254 out:
1255     qemu_co_mutex_lock(&s->table_lock);
1256     return r;
1257 }
1258 
1259 /**
1260  * Write data cluster
1261  *
1262  * @opaque:     Write request
1263  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1264  * @offset:     Cluster offset in bytes
1265  * @len:        Length in bytes
1266  *
1267  * Called with table_lock held.
1268  */
1269 static int coroutine_fn GRAPH_RDLOCK
1270 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1271 {
1272     QEDAIOCB *acb = opaque;
1273 
1274     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1275 
1276     acb->find_cluster_ret = ret;
1277 
1278     switch (ret) {
1279     case QED_CLUSTER_FOUND:
1280         return qed_aio_write_inplace(acb, offset, len);
1281 
1282     case QED_CLUSTER_L2:
1283     case QED_CLUSTER_L1:
1284     case QED_CLUSTER_ZERO:
1285         return qed_aio_write_alloc(acb, len);
1286 
1287     default:
1288         g_assert_not_reached();
1289     }
1290 }
1291 
1292 /**
1293  * Read data cluster
1294  *
1295  * @opaque:     Read request
1296  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1297  * @offset:     Cluster offset in bytes
1298  * @len:        Length in bytes
1299  *
1300  * Called with table_lock held.
1301  */
1302 static int coroutine_fn GRAPH_RDLOCK
1303 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1304 {
1305     QEDAIOCB *acb = opaque;
1306     BDRVQEDState *s = acb_to_s(acb);
1307     BlockDriverState *bs = acb->bs;
1308     int r;
1309 
1310     qemu_co_mutex_unlock(&s->table_lock);
1311 
1312     /* Adjust offset into cluster */
1313     offset += qed_offset_into_cluster(s, acb->cur_pos);
1314 
1315     trace_qed_aio_read_data(s, acb, ret, offset, len);
1316 
1317     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1318 
1319     /* Handle zero cluster and backing file reads, otherwise read
1320      * data cluster directly.
1321      */
1322     if (ret == QED_CLUSTER_ZERO) {
1323         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1324         r = 0;
1325     } else if (ret != QED_CLUSTER_FOUND) {
1326         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1327     } else {
1328         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1329         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1330                            &acb->cur_qiov, 0);
1331     }
1332 
1333     qemu_co_mutex_lock(&s->table_lock);
1334     return r;
1335 }
1336 
1337 /**
1338  * Begin next I/O or complete the request
1339  */
1340 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1341 {
1342     BDRVQEDState *s = acb_to_s(acb);
1343     uint64_t offset;
1344     size_t len;
1345     int ret;
1346 
1347     qemu_co_mutex_lock(&s->table_lock);
1348     while (1) {
1349         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1350 
1351         acb->qiov_offset += acb->cur_qiov.size;
1352         acb->cur_pos += acb->cur_qiov.size;
1353         qemu_iovec_reset(&acb->cur_qiov);
1354 
1355         /* Complete request */
1356         if (acb->cur_pos >= acb->end_pos) {
1357             ret = 0;
1358             break;
1359         }
1360 
1361         /* Find next cluster and start I/O */
1362         len = acb->end_pos - acb->cur_pos;
1363         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1364         if (ret < 0) {
1365             break;
1366         }
1367 
1368         if (acb->flags & QED_AIOCB_WRITE) {
1369             ret = qed_aio_write_data(acb, ret, offset, len);
1370         } else {
1371             ret = qed_aio_read_data(acb, ret, offset, len);
1372         }
1373 
1374         if (ret < 0 && ret != -EAGAIN) {
1375             break;
1376         }
1377     }
1378 
1379     trace_qed_aio_complete(s, acb, ret);
1380     qed_aio_complete(acb);
1381     qemu_co_mutex_unlock(&s->table_lock);
1382     return ret;
1383 }
1384 
1385 static int coroutine_fn GRAPH_RDLOCK
1386 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1387                int nb_sectors, int flags)
1388 {
1389     QEDAIOCB acb = {
1390         .bs         = bs,
1391         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1392         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1393         .qiov       = qiov,
1394         .flags      = flags,
1395     };
1396     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1397 
1398     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1399 
1400     /* Start request */
1401     return qed_aio_next_io(&acb);
1402 }
1403 
1404 static int coroutine_fn GRAPH_RDLOCK
1405 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1406                   QEMUIOVector *qiov)
1407 {
1408     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1409 }
1410 
1411 static int coroutine_fn GRAPH_RDLOCK
1412 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1413                    QEMUIOVector *qiov, int flags)
1414 {
1415     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1416 }
1417 
1418 static int coroutine_fn GRAPH_RDLOCK
1419 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1420                           BdrvRequestFlags flags)
1421 {
1422     BDRVQEDState *s = bs->opaque;
1423 
1424     /*
1425      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1426      * then it will be allocated during request processing.
1427      */
1428     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1429 
1430     /*
1431      * QED is not prepared for 63bit write-zero requests, so rely on
1432      * max_pwrite_zeroes.
1433      */
1434     assert(bytes <= INT_MAX);
1435 
1436     /* Fall back if the request is not aligned */
1437     if (qed_offset_into_cluster(s, offset) ||
1438         qed_offset_into_cluster(s, bytes)) {
1439         return -ENOTSUP;
1440     }
1441 
1442     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1443                           bytes >> BDRV_SECTOR_BITS,
1444                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1445 }
1446 
1447 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1448                                              int64_t offset,
1449                                              bool exact,
1450                                              PreallocMode prealloc,
1451                                              BdrvRequestFlags flags,
1452                                              Error **errp)
1453 {
1454     BDRVQEDState *s = bs->opaque;
1455     uint64_t old_image_size;
1456     int ret;
1457 
1458     if (prealloc != PREALLOC_MODE_OFF) {
1459         error_setg(errp, "Unsupported preallocation mode '%s'",
1460                    PreallocMode_str(prealloc));
1461         return -ENOTSUP;
1462     }
1463 
1464     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1465                                  s->header.table_size)) {
1466         error_setg(errp, "Invalid image size specified");
1467         return -EINVAL;
1468     }
1469 
1470     if ((uint64_t)offset < s->header.image_size) {
1471         error_setg(errp, "Shrinking images is currently not supported");
1472         return -ENOTSUP;
1473     }
1474 
1475     old_image_size = s->header.image_size;
1476     s->header.image_size = offset;
1477     ret = qed_write_header_sync(s);
1478     if (ret < 0) {
1479         s->header.image_size = old_image_size;
1480         error_setg_errno(errp, -ret, "Failed to update the image size");
1481     }
1482     return ret;
1483 }
1484 
1485 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1486 {
1487     BDRVQEDState *s = bs->opaque;
1488     return s->header.image_size;
1489 }
1490 
1491 static int coroutine_fn
1492 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1493 {
1494     BDRVQEDState *s = bs->opaque;
1495 
1496     memset(bdi, 0, sizeof(*bdi));
1497     bdi->cluster_size = s->header.cluster_size;
1498     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1499     return 0;
1500 }
1501 
1502 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1503                                         const char *backing_file,
1504                                         const char *backing_fmt)
1505 {
1506     BDRVQEDState *s = bs->opaque;
1507     QEDHeader new_header, le_header;
1508     void *buffer;
1509     size_t buffer_len, backing_file_len;
1510     int ret;
1511 
1512     /* Refuse to set backing filename if unknown compat feature bits are
1513      * active.  If the image uses an unknown compat feature then we may not
1514      * know the layout of data following the header structure and cannot safely
1515      * add a new string.
1516      */
1517     if (backing_file && (s->header.compat_features &
1518                          ~QED_COMPAT_FEATURE_MASK)) {
1519         return -ENOTSUP;
1520     }
1521 
1522     memcpy(&new_header, &s->header, sizeof(new_header));
1523 
1524     new_header.features &= ~(QED_F_BACKING_FILE |
1525                              QED_F_BACKING_FORMAT_NO_PROBE);
1526 
1527     /* Adjust feature flags */
1528     if (backing_file) {
1529         new_header.features |= QED_F_BACKING_FILE;
1530 
1531         if (qed_fmt_is_raw(backing_fmt)) {
1532             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1533         }
1534     }
1535 
1536     /* Calculate new header size */
1537     backing_file_len = 0;
1538 
1539     if (backing_file) {
1540         backing_file_len = strlen(backing_file);
1541     }
1542 
1543     buffer_len = sizeof(new_header);
1544     new_header.backing_filename_offset = buffer_len;
1545     new_header.backing_filename_size = backing_file_len;
1546     buffer_len += backing_file_len;
1547 
1548     /* Make sure we can rewrite header without failing */
1549     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1550         return -ENOSPC;
1551     }
1552 
1553     /* Prepare new header */
1554     buffer = g_malloc(buffer_len);
1555 
1556     qed_header_cpu_to_le(&new_header, &le_header);
1557     memcpy(buffer, &le_header, sizeof(le_header));
1558     buffer_len = sizeof(le_header);
1559 
1560     if (backing_file) {
1561         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1562         buffer_len += backing_file_len;
1563     }
1564 
1565     /* Write new header */
1566     ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1567     g_free(buffer);
1568     if (ret == 0) {
1569         memcpy(&s->header, &new_header, sizeof(new_header));
1570     }
1571     return ret;
1572 }
1573 
1574 static void coroutine_fn GRAPH_RDLOCK
1575 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1576 {
1577     BDRVQEDState *s = bs->opaque;
1578     int ret;
1579 
1580     bdrv_qed_close(bs);
1581 
1582     bdrv_qed_init_state(bs);
1583     qemu_co_mutex_lock(&s->table_lock);
1584     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1585     qemu_co_mutex_unlock(&s->table_lock);
1586     if (ret < 0) {
1587         error_prepend(errp, "Could not reopen qed layer: ");
1588     }
1589 }
1590 
1591 static int coroutine_fn GRAPH_RDLOCK
1592 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1593                   BdrvCheckMode fix)
1594 {
1595     BDRVQEDState *s = bs->opaque;
1596     int ret;
1597 
1598     qemu_co_mutex_lock(&s->table_lock);
1599     ret = qed_check(s, result, !!fix);
1600     qemu_co_mutex_unlock(&s->table_lock);
1601 
1602     return ret;
1603 }
1604 
1605 static QemuOptsList qed_create_opts = {
1606     .name = "qed-create-opts",
1607     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1608     .desc = {
1609         {
1610             .name = BLOCK_OPT_SIZE,
1611             .type = QEMU_OPT_SIZE,
1612             .help = "Virtual disk size"
1613         },
1614         {
1615             .name = BLOCK_OPT_BACKING_FILE,
1616             .type = QEMU_OPT_STRING,
1617             .help = "File name of a base image"
1618         },
1619         {
1620             .name = BLOCK_OPT_BACKING_FMT,
1621             .type = QEMU_OPT_STRING,
1622             .help = "Image format of the base image"
1623         },
1624         {
1625             .name = BLOCK_OPT_CLUSTER_SIZE,
1626             .type = QEMU_OPT_SIZE,
1627             .help = "Cluster size (in bytes)",
1628             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1629         },
1630         {
1631             .name = BLOCK_OPT_TABLE_SIZE,
1632             .type = QEMU_OPT_SIZE,
1633             .help = "L1/L2 table size (in clusters)"
1634         },
1635         { /* end of list */ }
1636     }
1637 };
1638 
1639 static BlockDriver bdrv_qed = {
1640     .format_name              = "qed",
1641     .instance_size            = sizeof(BDRVQEDState),
1642     .create_opts              = &qed_create_opts,
1643     .is_format                = true,
1644     .supports_backing         = true,
1645 
1646     .bdrv_probe               = bdrv_qed_probe,
1647     .bdrv_open                = bdrv_qed_open,
1648     .bdrv_close               = bdrv_qed_close,
1649     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1650     .bdrv_child_perm          = bdrv_default_perms,
1651     .bdrv_co_create           = bdrv_qed_co_create,
1652     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1653     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1654     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1655     .bdrv_co_readv            = bdrv_qed_co_readv,
1656     .bdrv_co_writev           = bdrv_qed_co_writev,
1657     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1658     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1659     .bdrv_co_getlength        = bdrv_qed_co_getlength,
1660     .bdrv_co_get_info         = bdrv_qed_co_get_info,
1661     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1662     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1663     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1664     .bdrv_co_check            = bdrv_qed_co_check,
1665     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1666     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1667     .bdrv_drain_begin         = bdrv_qed_drain_begin,
1668 };
1669 
1670 static void bdrv_qed_init(void)
1671 {
1672     bdrv_register(&bdrv_qed);
1673 }
1674 
1675 block_init(bdrv_qed_init);
1676