1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "qemu/memalign.h" 24 #include "trace.h" 25 #include "qed.h" 26 #include "sysemu/block-backend.h" 27 #include "qapi/qmp/qdict.h" 28 #include "qapi/qobject-input-visitor.h" 29 #include "qapi/qapi-visit-block-core.h" 30 31 static QemuOptsList qed_create_opts; 32 33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 34 const char *filename) 35 { 36 const QEDHeader *header = (const QEDHeader *)buf; 37 38 if (buf_size < sizeof(*header)) { 39 return 0; 40 } 41 if (le32_to_cpu(header->magic) != QED_MAGIC) { 42 return 0; 43 } 44 return 100; 45 } 46 47 /** 48 * Check whether an image format is raw 49 * 50 * @fmt: Backing file format, may be NULL 51 */ 52 static bool qed_fmt_is_raw(const char *fmt) 53 { 54 return fmt && strcmp(fmt, "raw") == 0; 55 } 56 57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 58 { 59 cpu->magic = le32_to_cpu(le->magic); 60 cpu->cluster_size = le32_to_cpu(le->cluster_size); 61 cpu->table_size = le32_to_cpu(le->table_size); 62 cpu->header_size = le32_to_cpu(le->header_size); 63 cpu->features = le64_to_cpu(le->features); 64 cpu->compat_features = le64_to_cpu(le->compat_features); 65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 67 cpu->image_size = le64_to_cpu(le->image_size); 68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 70 } 71 72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 73 { 74 le->magic = cpu_to_le32(cpu->magic); 75 le->cluster_size = cpu_to_le32(cpu->cluster_size); 76 le->table_size = cpu_to_le32(cpu->table_size); 77 le->header_size = cpu_to_le32(cpu->header_size); 78 le->features = cpu_to_le64(cpu->features); 79 le->compat_features = cpu_to_le64(cpu->compat_features); 80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 82 le->image_size = cpu_to_le64(cpu->image_size); 83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 85 } 86 87 int qed_write_header_sync(BDRVQEDState *s) 88 { 89 QEDHeader le; 90 91 qed_header_cpu_to_le(&s->header, &le); 92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0); 93 } 94 95 /** 96 * Update header in-place (does not rewrite backing filename or other strings) 97 * 98 * This function only updates known header fields in-place and does not affect 99 * extra data after the QED header. 100 * 101 * No new allocating reqs can start while this function runs. 102 */ 103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s) 104 { 105 /* We must write full sectors for O_DIRECT but cannot necessarily generate 106 * the data following the header if an unrecognized compat feature is 107 * active. Therefore, first read the sectors containing the header, update 108 * them, and write back. 109 */ 110 111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 112 size_t len = nsectors * BDRV_SECTOR_SIZE; 113 uint8_t *buf; 114 int ret; 115 116 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 117 118 buf = qemu_blockalign(s->bs, len); 119 120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 121 if (ret < 0) { 122 goto out; 123 } 124 125 /* Update header */ 126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 127 128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 129 if (ret < 0) { 130 goto out; 131 } 132 133 ret = 0; 134 out: 135 qemu_vfree(buf); 136 return ret; 137 } 138 139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 140 { 141 uint64_t table_entries; 142 uint64_t l2_size; 143 144 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 145 l2_size = table_entries * cluster_size; 146 147 return l2_size * table_entries; 148 } 149 150 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 151 { 152 if (cluster_size < QED_MIN_CLUSTER_SIZE || 153 cluster_size > QED_MAX_CLUSTER_SIZE) { 154 return false; 155 } 156 if (cluster_size & (cluster_size - 1)) { 157 return false; /* not power of 2 */ 158 } 159 return true; 160 } 161 162 static bool qed_is_table_size_valid(uint32_t table_size) 163 { 164 if (table_size < QED_MIN_TABLE_SIZE || 165 table_size > QED_MAX_TABLE_SIZE) { 166 return false; 167 } 168 if (table_size & (table_size - 1)) { 169 return false; /* not power of 2 */ 170 } 171 return true; 172 } 173 174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 175 uint32_t table_size) 176 { 177 if (image_size % BDRV_SECTOR_SIZE != 0) { 178 return false; /* not multiple of sector size */ 179 } 180 if (image_size > qed_max_image_size(cluster_size, table_size)) { 181 return false; /* image is too large */ 182 } 183 return true; 184 } 185 186 /** 187 * Read a string of known length from the image file 188 * 189 * @file: Image file 190 * @offset: File offset to start of string, in bytes 191 * @n: String length in bytes 192 * @buf: Destination buffer 193 * @buflen: Destination buffer length in bytes 194 * @ret: 0 on success, -errno on failure 195 * 196 * The string is NUL-terminated. 197 */ 198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 199 char *buf, size_t buflen) 200 { 201 int ret; 202 if (n >= buflen) { 203 return -EINVAL; 204 } 205 ret = bdrv_pread(file, offset, n, buf, 0); 206 if (ret < 0) { 207 return ret; 208 } 209 buf[n] = '\0'; 210 return 0; 211 } 212 213 /** 214 * Allocate new clusters 215 * 216 * @s: QED state 217 * @n: Number of contiguous clusters to allocate 218 * @ret: Offset of first allocated cluster 219 * 220 * This function only produces the offset where the new clusters should be 221 * written. It updates BDRVQEDState but does not make any changes to the image 222 * file. 223 * 224 * Called with table_lock held. 225 */ 226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 227 { 228 uint64_t offset = s->file_size; 229 s->file_size += n * s->header.cluster_size; 230 return offset; 231 } 232 233 QEDTable *qed_alloc_table(BDRVQEDState *s) 234 { 235 /* Honor O_DIRECT memory alignment requirements */ 236 return qemu_blockalign(s->bs, 237 s->header.cluster_size * s->header.table_size); 238 } 239 240 /** 241 * Allocate a new zeroed L2 table 242 * 243 * Called with table_lock held. 244 */ 245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 246 { 247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 248 249 l2_table->table = qed_alloc_table(s); 250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 251 252 memset(l2_table->table->offsets, 0, 253 s->header.cluster_size * s->header.table_size); 254 return l2_table; 255 } 256 257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s) 258 { 259 qemu_co_mutex_lock(&s->table_lock); 260 261 /* No reentrancy is allowed. */ 262 assert(!s->allocating_write_reqs_plugged); 263 if (s->allocating_acb != NULL) { 264 /* Another allocating write came concurrently. This cannot happen 265 * from bdrv_qed_drain_begin, but it can happen when the timer runs. 266 */ 267 qemu_co_mutex_unlock(&s->table_lock); 268 return false; 269 } 270 271 s->allocating_write_reqs_plugged = true; 272 qemu_co_mutex_unlock(&s->table_lock); 273 return true; 274 } 275 276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s) 277 { 278 qemu_co_mutex_lock(&s->table_lock); 279 assert(s->allocating_write_reqs_plugged); 280 s->allocating_write_reqs_plugged = false; 281 qemu_co_queue_next(&s->allocating_write_reqs); 282 qemu_co_mutex_unlock(&s->table_lock); 283 } 284 285 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s) 286 { 287 int ret; 288 289 trace_qed_need_check_timer_cb(s); 290 assert_bdrv_graph_readable(); 291 292 if (!qed_plug_allocating_write_reqs(s)) { 293 return; 294 } 295 296 /* Ensure writes are on disk before clearing flag */ 297 ret = bdrv_co_flush(s->bs->file->bs); 298 if (ret < 0) { 299 qed_unplug_allocating_write_reqs(s); 300 return; 301 } 302 303 s->header.features &= ~QED_F_NEED_CHECK; 304 ret = qed_write_header(s); 305 (void) ret; 306 307 qed_unplug_allocating_write_reqs(s); 308 309 ret = bdrv_co_flush(s->bs); 310 (void) ret; 311 } 312 313 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 314 { 315 BDRVQEDState *s = opaque; 316 GRAPH_RDLOCK_GUARD(); 317 318 qed_need_check_timer(opaque); 319 bdrv_dec_in_flight(s->bs); 320 } 321 322 static void qed_need_check_timer_cb(void *opaque) 323 { 324 BDRVQEDState *s = opaque; 325 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 326 327 bdrv_inc_in_flight(s->bs); 328 qemu_coroutine_enter(co); 329 } 330 331 static void qed_start_need_check_timer(BDRVQEDState *s) 332 { 333 trace_qed_start_need_check_timer(s); 334 335 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 336 * migration. 337 */ 338 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 339 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 340 } 341 342 /* It's okay to call this multiple times or when no timer is started */ 343 static void qed_cancel_need_check_timer(BDRVQEDState *s) 344 { 345 trace_qed_cancel_need_check_timer(s); 346 timer_del(s->need_check_timer); 347 } 348 349 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 350 { 351 BDRVQEDState *s = bs->opaque; 352 353 qed_cancel_need_check_timer(s); 354 timer_free(s->need_check_timer); 355 } 356 357 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 358 AioContext *new_context) 359 { 360 BDRVQEDState *s = bs->opaque; 361 362 s->need_check_timer = aio_timer_new(new_context, 363 QEMU_CLOCK_VIRTUAL, SCALE_NS, 364 qed_need_check_timer_cb, s); 365 if (s->header.features & QED_F_NEED_CHECK) { 366 qed_start_need_check_timer(s); 367 } 368 } 369 370 static void bdrv_qed_drain_begin(BlockDriverState *bs) 371 { 372 BDRVQEDState *s = bs->opaque; 373 374 /* Fire the timer immediately in order to start doing I/O as soon as the 375 * header is flushed. 376 */ 377 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 378 Coroutine *co; 379 380 qed_cancel_need_check_timer(s); 381 co = qemu_coroutine_create(qed_need_check_timer_entry, s); 382 bdrv_inc_in_flight(bs); 383 aio_co_enter(bdrv_get_aio_context(bs), co); 384 } 385 } 386 387 static void bdrv_qed_init_state(BlockDriverState *bs) 388 { 389 BDRVQEDState *s = bs->opaque; 390 391 memset(s, 0, sizeof(BDRVQEDState)); 392 s->bs = bs; 393 qemu_co_mutex_init(&s->table_lock); 394 qemu_co_queue_init(&s->allocating_write_reqs); 395 } 396 397 /* Called with table_lock held. */ 398 static int coroutine_fn GRAPH_RDLOCK 399 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) 400 { 401 BDRVQEDState *s = bs->opaque; 402 QEDHeader le_header; 403 int64_t file_size; 404 int ret; 405 406 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0); 407 if (ret < 0) { 408 error_setg(errp, "Failed to read QED header"); 409 return ret; 410 } 411 qed_header_le_to_cpu(&le_header, &s->header); 412 413 if (s->header.magic != QED_MAGIC) { 414 error_setg(errp, "Image not in QED format"); 415 return -EINVAL; 416 } 417 if (s->header.features & ~QED_FEATURE_MASK) { 418 /* image uses unsupported feature bits */ 419 error_setg(errp, "Unsupported QED features: %" PRIx64, 420 s->header.features & ~QED_FEATURE_MASK); 421 return -ENOTSUP; 422 } 423 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 424 error_setg(errp, "QED cluster size is invalid"); 425 return -EINVAL; 426 } 427 428 /* Round down file size to the last cluster */ 429 file_size = bdrv_co_getlength(bs->file->bs); 430 if (file_size < 0) { 431 error_setg(errp, "Failed to get file length"); 432 return file_size; 433 } 434 s->file_size = qed_start_of_cluster(s, file_size); 435 436 if (!qed_is_table_size_valid(s->header.table_size)) { 437 error_setg(errp, "QED table size is invalid"); 438 return -EINVAL; 439 } 440 if (!qed_is_image_size_valid(s->header.image_size, 441 s->header.cluster_size, 442 s->header.table_size)) { 443 error_setg(errp, "QED image size is invalid"); 444 return -EINVAL; 445 } 446 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 447 error_setg(errp, "QED table offset is invalid"); 448 return -EINVAL; 449 } 450 451 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 452 sizeof(uint64_t); 453 s->l2_shift = ctz32(s->header.cluster_size); 454 s->l2_mask = s->table_nelems - 1; 455 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 456 457 /* Header size calculation must not overflow uint32_t */ 458 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 459 error_setg(errp, "QED header size is too large"); 460 return -EINVAL; 461 } 462 463 if ((s->header.features & QED_F_BACKING_FILE)) { 464 g_autofree char *backing_file_str = NULL; 465 466 if ((uint64_t)s->header.backing_filename_offset + 467 s->header.backing_filename_size > 468 s->header.cluster_size * s->header.header_size) { 469 error_setg(errp, "QED backing filename offset is invalid"); 470 return -EINVAL; 471 } 472 473 backing_file_str = g_malloc(sizeof(bs->backing_file)); 474 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 475 s->header.backing_filename_size, 476 backing_file_str, sizeof(bs->backing_file)); 477 if (ret < 0) { 478 error_setg(errp, "Failed to read backing filename"); 479 return ret; 480 } 481 482 if (!g_str_equal(backing_file_str, bs->backing_file)) { 483 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 484 backing_file_str); 485 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file), 486 backing_file_str); 487 } 488 489 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 490 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 491 } 492 } 493 494 /* Reset unknown autoclear feature bits. This is a backwards 495 * compatibility mechanism that allows images to be opened by older 496 * programs, which "knock out" unknown feature bits. When an image is 497 * opened by a newer program again it can detect that the autoclear 498 * feature is no longer valid. 499 */ 500 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 501 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 502 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 503 504 ret = qed_write_header_sync(s); 505 if (ret) { 506 error_setg(errp, "Failed to update header"); 507 return ret; 508 } 509 510 /* From here on only known autoclear feature bits are valid */ 511 bdrv_co_flush(bs->file->bs); 512 } 513 514 s->l1_table = qed_alloc_table(s); 515 qed_init_l2_cache(&s->l2_cache); 516 517 ret = qed_read_l1_table_sync(s); 518 if (ret) { 519 error_setg(errp, "Failed to read L1 table"); 520 goto out; 521 } 522 523 /* If image was not closed cleanly, check consistency */ 524 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 525 /* Read-only images cannot be fixed. There is no risk of corruption 526 * since write operations are not possible. Therefore, allow 527 * potentially inconsistent images to be opened read-only. This can 528 * aid data recovery from an otherwise inconsistent image. 529 */ 530 if (!bdrv_is_read_only(bs->file->bs) && 531 !(flags & BDRV_O_INACTIVE)) { 532 BdrvCheckResult result = {0}; 533 534 ret = qed_check(s, &result, true); 535 if (ret) { 536 error_setg(errp, "Image corrupted"); 537 goto out; 538 } 539 } 540 } 541 542 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 543 544 out: 545 if (ret) { 546 qed_free_l2_cache(&s->l2_cache); 547 qemu_vfree(s->l1_table); 548 } 549 return ret; 550 } 551 552 typedef struct QEDOpenCo { 553 BlockDriverState *bs; 554 QDict *options; 555 int flags; 556 Error **errp; 557 int ret; 558 } QEDOpenCo; 559 560 static void coroutine_fn GRAPH_RDLOCK bdrv_qed_open_entry(void *opaque) 561 { 562 QEDOpenCo *qoc = opaque; 563 BDRVQEDState *s = qoc->bs->opaque; 564 565 qemu_co_mutex_lock(&s->table_lock); 566 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 567 qemu_co_mutex_unlock(&s->table_lock); 568 } 569 570 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 571 Error **errp) 572 { 573 QEDOpenCo qoc = { 574 .bs = bs, 575 .options = options, 576 .flags = flags, 577 .errp = errp, 578 .ret = -EINPROGRESS 579 }; 580 int ret; 581 582 assume_graph_lock(); /* FIXME */ 583 584 ret = bdrv_open_file_child(NULL, options, "file", bs, errp); 585 if (ret < 0) { 586 return ret; 587 } 588 589 bdrv_qed_init_state(bs); 590 if (qemu_in_coroutine()) { 591 bdrv_qed_open_entry(&qoc); 592 } else { 593 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 594 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 595 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 596 } 597 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 598 return qoc.ret; 599 } 600 601 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 602 { 603 BDRVQEDState *s = bs->opaque; 604 605 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 606 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size); 607 } 608 609 /* We have nothing to do for QED reopen, stubs just return 610 * success */ 611 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 612 BlockReopenQueue *queue, Error **errp) 613 { 614 return 0; 615 } 616 617 static void bdrv_qed_close(BlockDriverState *bs) 618 { 619 BDRVQEDState *s = bs->opaque; 620 621 bdrv_qed_detach_aio_context(bs); 622 623 /* Ensure writes reach stable storage */ 624 bdrv_flush(bs->file->bs); 625 626 /* Clean shutdown, no check required on next open */ 627 if (s->header.features & QED_F_NEED_CHECK) { 628 s->header.features &= ~QED_F_NEED_CHECK; 629 qed_write_header_sync(s); 630 } 631 632 qed_free_l2_cache(&s->l2_cache); 633 qemu_vfree(s->l1_table); 634 } 635 636 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 637 Error **errp) 638 { 639 BlockdevCreateOptionsQed *qed_opts; 640 BlockBackend *blk = NULL; 641 BlockDriverState *bs = NULL; 642 643 QEDHeader header; 644 QEDHeader le_header; 645 uint8_t *l1_table = NULL; 646 size_t l1_size; 647 int ret = 0; 648 649 assert(opts->driver == BLOCKDEV_DRIVER_QED); 650 qed_opts = &opts->u.qed; 651 652 /* Validate options and set default values */ 653 if (!qed_opts->has_cluster_size) { 654 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 655 } 656 if (!qed_opts->has_table_size) { 657 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 658 } 659 660 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 661 error_setg(errp, "QED cluster size must be within range [%u, %u] " 662 "and power of 2", 663 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 664 return -EINVAL; 665 } 666 if (!qed_is_table_size_valid(qed_opts->table_size)) { 667 error_setg(errp, "QED table size must be within range [%u, %u] " 668 "and power of 2", 669 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 670 return -EINVAL; 671 } 672 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 673 qed_opts->table_size)) 674 { 675 error_setg(errp, "QED image size must be a non-zero multiple of " 676 "cluster size and less than %" PRIu64 " bytes", 677 qed_max_image_size(qed_opts->cluster_size, 678 qed_opts->table_size)); 679 return -EINVAL; 680 } 681 682 /* Create BlockBackend to write to the image */ 683 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp); 684 if (bs == NULL) { 685 return -EIO; 686 } 687 688 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 689 errp); 690 if (!blk) { 691 ret = -EPERM; 692 goto out; 693 } 694 blk_set_allow_write_beyond_eof(blk, true); 695 696 /* Prepare image format */ 697 header = (QEDHeader) { 698 .magic = QED_MAGIC, 699 .cluster_size = qed_opts->cluster_size, 700 .table_size = qed_opts->table_size, 701 .header_size = 1, 702 .features = 0, 703 .compat_features = 0, 704 .l1_table_offset = qed_opts->cluster_size, 705 .image_size = qed_opts->size, 706 }; 707 708 l1_size = header.cluster_size * header.table_size; 709 710 /* 711 * The QED format associates file length with allocation status, 712 * so a new file (which is empty) must have a length of 0. 713 */ 714 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 715 if (ret < 0) { 716 goto out; 717 } 718 719 if (qed_opts->backing_file) { 720 header.features |= QED_F_BACKING_FILE; 721 header.backing_filename_offset = sizeof(le_header); 722 header.backing_filename_size = strlen(qed_opts->backing_file); 723 724 if (qed_opts->has_backing_fmt) { 725 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 726 if (qed_fmt_is_raw(backing_fmt)) { 727 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 728 } 729 } 730 } 731 732 qed_header_cpu_to_le(&header, &le_header); 733 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0); 734 if (ret < 0) { 735 goto out; 736 } 737 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size, 738 qed_opts->backing_file, 0); 739 if (ret < 0) { 740 goto out; 741 } 742 743 l1_table = g_malloc0(l1_size); 744 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0); 745 if (ret < 0) { 746 goto out; 747 } 748 749 ret = 0; /* success */ 750 out: 751 g_free(l1_table); 752 blk_unref(blk); 753 bdrv_unref(bs); 754 return ret; 755 } 756 757 static int coroutine_fn GRAPH_RDLOCK 758 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename, 759 QemuOpts *opts, Error **errp) 760 { 761 BlockdevCreateOptions *create_options = NULL; 762 QDict *qdict; 763 Visitor *v; 764 BlockDriverState *bs = NULL; 765 int ret; 766 767 static const QDictRenames opt_renames[] = { 768 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 769 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 770 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 771 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 772 { NULL, NULL }, 773 }; 774 775 /* Parse options and convert legacy syntax */ 776 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 777 778 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 779 ret = -EINVAL; 780 goto fail; 781 } 782 783 /* Create and open the file (protocol layer) */ 784 ret = bdrv_co_create_file(filename, opts, errp); 785 if (ret < 0) { 786 goto fail; 787 } 788 789 bs = bdrv_co_open(filename, NULL, NULL, 790 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 791 if (bs == NULL) { 792 ret = -EIO; 793 goto fail; 794 } 795 796 /* Now get the QAPI type BlockdevCreateOptions */ 797 qdict_put_str(qdict, "driver", "qed"); 798 qdict_put_str(qdict, "file", bs->node_name); 799 800 v = qobject_input_visitor_new_flat_confused(qdict, errp); 801 if (!v) { 802 ret = -EINVAL; 803 goto fail; 804 } 805 806 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 807 visit_free(v); 808 if (!create_options) { 809 ret = -EINVAL; 810 goto fail; 811 } 812 813 /* Silently round up size */ 814 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 815 create_options->u.qed.size = 816 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 817 818 /* Create the qed image (format layer) */ 819 ret = bdrv_qed_co_create(create_options, errp); 820 821 fail: 822 qobject_unref(qdict); 823 bdrv_unref(bs); 824 qapi_free_BlockdevCreateOptions(create_options); 825 return ret; 826 } 827 828 static int coroutine_fn GRAPH_RDLOCK 829 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos, 830 int64_t bytes, int64_t *pnum, int64_t *map, 831 BlockDriverState **file) 832 { 833 BDRVQEDState *s = bs->opaque; 834 size_t len = MIN(bytes, SIZE_MAX); 835 int status; 836 QEDRequest request = { .l2_table = NULL }; 837 uint64_t offset; 838 int ret; 839 840 qemu_co_mutex_lock(&s->table_lock); 841 ret = qed_find_cluster(s, &request, pos, &len, &offset); 842 843 *pnum = len; 844 switch (ret) { 845 case QED_CLUSTER_FOUND: 846 *map = offset | qed_offset_into_cluster(s, pos); 847 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 848 *file = bs->file->bs; 849 break; 850 case QED_CLUSTER_ZERO: 851 status = BDRV_BLOCK_ZERO; 852 break; 853 case QED_CLUSTER_L2: 854 case QED_CLUSTER_L1: 855 status = 0; 856 break; 857 default: 858 assert(ret < 0); 859 status = ret; 860 break; 861 } 862 863 qed_unref_l2_cache_entry(request.l2_table); 864 qemu_co_mutex_unlock(&s->table_lock); 865 866 return status; 867 } 868 869 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 870 { 871 return acb->bs->opaque; 872 } 873 874 /** 875 * Read from the backing file or zero-fill if no backing file 876 * 877 * @s: QED state 878 * @pos: Byte position in device 879 * @qiov: Destination I/O vector 880 * 881 * This function reads qiov->size bytes starting at pos from the backing file. 882 * If there is no backing file then zeroes are read. 883 */ 884 static int coroutine_fn GRAPH_RDLOCK 885 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov) 886 { 887 if (s->bs->backing) { 888 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 889 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 890 } 891 qemu_iovec_memset(qiov, 0, 0, qiov->size); 892 return 0; 893 } 894 895 /** 896 * Copy data from backing file into the image 897 * 898 * @s: QED state 899 * @pos: Byte position in device 900 * @len: Number of bytes 901 * @offset: Byte offset in image file 902 */ 903 static int coroutine_fn GRAPH_RDLOCK 904 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len, 905 uint64_t offset) 906 { 907 QEMUIOVector qiov; 908 int ret; 909 910 /* Skip copy entirely if there is no work to do */ 911 if (len == 0) { 912 return 0; 913 } 914 915 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 916 917 ret = qed_read_backing_file(s, pos, &qiov); 918 919 if (ret) { 920 goto out; 921 } 922 923 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 924 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 925 if (ret < 0) { 926 goto out; 927 } 928 ret = 0; 929 out: 930 qemu_vfree(qemu_iovec_buf(&qiov)); 931 return ret; 932 } 933 934 /** 935 * Link one or more contiguous clusters into a table 936 * 937 * @s: QED state 938 * @table: L2 table 939 * @index: First cluster index 940 * @n: Number of contiguous clusters 941 * @cluster: First cluster offset 942 * 943 * The cluster offset may be an allocated byte offset in the image file, the 944 * zero cluster marker, or the unallocated cluster marker. 945 * 946 * Called with table_lock held. 947 */ 948 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 949 int index, unsigned int n, 950 uint64_t cluster) 951 { 952 int i; 953 for (i = index; i < index + n; i++) { 954 table->offsets[i] = cluster; 955 if (!qed_offset_is_unalloc_cluster(cluster) && 956 !qed_offset_is_zero_cluster(cluster)) { 957 cluster += s->header.cluster_size; 958 } 959 } 960 } 961 962 /* Called with table_lock held. */ 963 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 964 { 965 BDRVQEDState *s = acb_to_s(acb); 966 967 /* Free resources */ 968 qemu_iovec_destroy(&acb->cur_qiov); 969 qed_unref_l2_cache_entry(acb->request.l2_table); 970 971 /* Free the buffer we may have allocated for zero writes */ 972 if (acb->flags & QED_AIOCB_ZERO) { 973 qemu_vfree(acb->qiov->iov[0].iov_base); 974 acb->qiov->iov[0].iov_base = NULL; 975 } 976 977 /* Start next allocating write request waiting behind this one. Note that 978 * requests enqueue themselves when they first hit an unallocated cluster 979 * but they wait until the entire request is finished before waking up the 980 * next request in the queue. This ensures that we don't cycle through 981 * requests multiple times but rather finish one at a time completely. 982 */ 983 if (acb == s->allocating_acb) { 984 s->allocating_acb = NULL; 985 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 986 qemu_co_queue_next(&s->allocating_write_reqs); 987 } else if (s->header.features & QED_F_NEED_CHECK) { 988 qed_start_need_check_timer(s); 989 } 990 } 991 } 992 993 /** 994 * Update L1 table with new L2 table offset and write it out 995 * 996 * Called with table_lock held. 997 */ 998 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb) 999 { 1000 BDRVQEDState *s = acb_to_s(acb); 1001 CachedL2Table *l2_table = acb->request.l2_table; 1002 uint64_t l2_offset = l2_table->offset; 1003 int index, ret; 1004 1005 index = qed_l1_index(s, acb->cur_pos); 1006 s->l1_table->offsets[index] = l2_table->offset; 1007 1008 ret = qed_write_l1_table(s, index, 1); 1009 1010 /* Commit the current L2 table to the cache */ 1011 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 1012 1013 /* This is guaranteed to succeed because we just committed the entry to the 1014 * cache. 1015 */ 1016 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 1017 assert(acb->request.l2_table != NULL); 1018 1019 return ret; 1020 } 1021 1022 1023 /** 1024 * Update L2 table with new cluster offsets and write them out 1025 * 1026 * Called with table_lock held. 1027 */ 1028 static int coroutine_fn GRAPH_RDLOCK 1029 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1030 { 1031 BDRVQEDState *s = acb_to_s(acb); 1032 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1033 int index, ret; 1034 1035 if (need_alloc) { 1036 qed_unref_l2_cache_entry(acb->request.l2_table); 1037 acb->request.l2_table = qed_new_l2_table(s); 1038 } 1039 1040 index = qed_l2_index(s, acb->cur_pos); 1041 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1042 offset); 1043 1044 if (need_alloc) { 1045 /* Write out the whole new L2 table */ 1046 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1047 if (ret) { 1048 return ret; 1049 } 1050 return qed_aio_write_l1_update(acb); 1051 } else { 1052 /* Write out only the updated part of the L2 table */ 1053 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1054 false); 1055 if (ret) { 1056 return ret; 1057 } 1058 } 1059 return 0; 1060 } 1061 1062 /** 1063 * Write data to the image file 1064 * 1065 * Called with table_lock *not* held. 1066 */ 1067 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb) 1068 { 1069 BDRVQEDState *s = acb_to_s(acb); 1070 uint64_t offset = acb->cur_cluster + 1071 qed_offset_into_cluster(s, acb->cur_pos); 1072 1073 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1074 1075 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1076 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1077 &acb->cur_qiov, 0); 1078 } 1079 1080 /** 1081 * Populate untouched regions of new data cluster 1082 * 1083 * Called with table_lock held. 1084 */ 1085 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb) 1086 { 1087 BDRVQEDState *s = acb_to_s(acb); 1088 uint64_t start, len, offset; 1089 int ret; 1090 1091 qemu_co_mutex_unlock(&s->table_lock); 1092 1093 /* Populate front untouched region of new data cluster */ 1094 start = qed_start_of_cluster(s, acb->cur_pos); 1095 len = qed_offset_into_cluster(s, acb->cur_pos); 1096 1097 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1098 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1099 if (ret < 0) { 1100 goto out; 1101 } 1102 1103 /* Populate back untouched region of new data cluster */ 1104 start = acb->cur_pos + acb->cur_qiov.size; 1105 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1106 offset = acb->cur_cluster + 1107 qed_offset_into_cluster(s, acb->cur_pos) + 1108 acb->cur_qiov.size; 1109 1110 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1111 ret = qed_copy_from_backing_file(s, start, len, offset); 1112 if (ret < 0) { 1113 goto out; 1114 } 1115 1116 ret = qed_aio_write_main(acb); 1117 if (ret < 0) { 1118 goto out; 1119 } 1120 1121 if (s->bs->backing) { 1122 /* 1123 * Flush new data clusters before updating the L2 table 1124 * 1125 * This flush is necessary when a backing file is in use. A crash 1126 * during an allocating write could result in empty clusters in the 1127 * image. If the write only touched a subregion of the cluster, 1128 * then backing image sectors have been lost in the untouched 1129 * region. The solution is to flush after writing a new data 1130 * cluster and before updating the L2 table. 1131 */ 1132 ret = bdrv_co_flush(s->bs->file->bs); 1133 } 1134 1135 out: 1136 qemu_co_mutex_lock(&s->table_lock); 1137 return ret; 1138 } 1139 1140 /** 1141 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1142 */ 1143 static bool qed_should_set_need_check(BDRVQEDState *s) 1144 { 1145 /* The flush before L2 update path ensures consistency */ 1146 if (s->bs->backing) { 1147 return false; 1148 } 1149 1150 return !(s->header.features & QED_F_NEED_CHECK); 1151 } 1152 1153 /** 1154 * Write new data cluster 1155 * 1156 * @acb: Write request 1157 * @len: Length in bytes 1158 * 1159 * This path is taken when writing to previously unallocated clusters. 1160 * 1161 * Called with table_lock held. 1162 */ 1163 static int coroutine_fn GRAPH_RDLOCK 1164 qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1165 { 1166 BDRVQEDState *s = acb_to_s(acb); 1167 int ret; 1168 1169 /* Cancel timer when the first allocating request comes in */ 1170 if (s->allocating_acb == NULL) { 1171 qed_cancel_need_check_timer(s); 1172 } 1173 1174 /* Freeze this request if another allocating write is in progress */ 1175 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1176 if (s->allocating_acb != NULL) { 1177 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1178 assert(s->allocating_acb == NULL); 1179 } 1180 s->allocating_acb = acb; 1181 return -EAGAIN; /* start over with looking up table entries */ 1182 } 1183 1184 acb->cur_nclusters = qed_bytes_to_clusters(s, 1185 qed_offset_into_cluster(s, acb->cur_pos) + len); 1186 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1187 1188 if (acb->flags & QED_AIOCB_ZERO) { 1189 /* Skip ahead if the clusters are already zero */ 1190 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1191 return 0; 1192 } 1193 acb->cur_cluster = 1; 1194 } else { 1195 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1196 } 1197 1198 if (qed_should_set_need_check(s)) { 1199 s->header.features |= QED_F_NEED_CHECK; 1200 ret = qed_write_header(s); 1201 if (ret < 0) { 1202 return ret; 1203 } 1204 } 1205 1206 if (!(acb->flags & QED_AIOCB_ZERO)) { 1207 ret = qed_aio_write_cow(acb); 1208 if (ret < 0) { 1209 return ret; 1210 } 1211 } 1212 1213 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1214 } 1215 1216 /** 1217 * Write data cluster in place 1218 * 1219 * @acb: Write request 1220 * @offset: Cluster offset in bytes 1221 * @len: Length in bytes 1222 * 1223 * This path is taken when writing to already allocated clusters. 1224 * 1225 * Called with table_lock held. 1226 */ 1227 static int coroutine_fn GRAPH_RDLOCK 1228 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1229 { 1230 BDRVQEDState *s = acb_to_s(acb); 1231 int r; 1232 1233 qemu_co_mutex_unlock(&s->table_lock); 1234 1235 /* Allocate buffer for zero writes */ 1236 if (acb->flags & QED_AIOCB_ZERO) { 1237 struct iovec *iov = acb->qiov->iov; 1238 1239 if (!iov->iov_base) { 1240 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1241 if (iov->iov_base == NULL) { 1242 r = -ENOMEM; 1243 goto out; 1244 } 1245 memset(iov->iov_base, 0, iov->iov_len); 1246 } 1247 } 1248 1249 /* Calculate the I/O vector */ 1250 acb->cur_cluster = offset; 1251 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1252 1253 /* Do the actual write. */ 1254 r = qed_aio_write_main(acb); 1255 out: 1256 qemu_co_mutex_lock(&s->table_lock); 1257 return r; 1258 } 1259 1260 /** 1261 * Write data cluster 1262 * 1263 * @opaque: Write request 1264 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1265 * @offset: Cluster offset in bytes 1266 * @len: Length in bytes 1267 * 1268 * Called with table_lock held. 1269 */ 1270 static int coroutine_fn GRAPH_RDLOCK 1271 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len) 1272 { 1273 QEDAIOCB *acb = opaque; 1274 1275 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1276 1277 acb->find_cluster_ret = ret; 1278 1279 switch (ret) { 1280 case QED_CLUSTER_FOUND: 1281 return qed_aio_write_inplace(acb, offset, len); 1282 1283 case QED_CLUSTER_L2: 1284 case QED_CLUSTER_L1: 1285 case QED_CLUSTER_ZERO: 1286 return qed_aio_write_alloc(acb, len); 1287 1288 default: 1289 g_assert_not_reached(); 1290 } 1291 } 1292 1293 /** 1294 * Read data cluster 1295 * 1296 * @opaque: Read request 1297 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1298 * @offset: Cluster offset in bytes 1299 * @len: Length in bytes 1300 * 1301 * Called with table_lock held. 1302 */ 1303 static int coroutine_fn GRAPH_RDLOCK 1304 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len) 1305 { 1306 QEDAIOCB *acb = opaque; 1307 BDRVQEDState *s = acb_to_s(acb); 1308 BlockDriverState *bs = acb->bs; 1309 int r; 1310 1311 qemu_co_mutex_unlock(&s->table_lock); 1312 1313 /* Adjust offset into cluster */ 1314 offset += qed_offset_into_cluster(s, acb->cur_pos); 1315 1316 trace_qed_aio_read_data(s, acb, ret, offset, len); 1317 1318 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1319 1320 /* Handle zero cluster and backing file reads, otherwise read 1321 * data cluster directly. 1322 */ 1323 if (ret == QED_CLUSTER_ZERO) { 1324 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1325 r = 0; 1326 } else if (ret != QED_CLUSTER_FOUND) { 1327 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1328 } else { 1329 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1330 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1331 &acb->cur_qiov, 0); 1332 } 1333 1334 qemu_co_mutex_lock(&s->table_lock); 1335 return r; 1336 } 1337 1338 /** 1339 * Begin next I/O or complete the request 1340 */ 1341 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb) 1342 { 1343 BDRVQEDState *s = acb_to_s(acb); 1344 uint64_t offset; 1345 size_t len; 1346 int ret; 1347 1348 qemu_co_mutex_lock(&s->table_lock); 1349 while (1) { 1350 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1351 1352 acb->qiov_offset += acb->cur_qiov.size; 1353 acb->cur_pos += acb->cur_qiov.size; 1354 qemu_iovec_reset(&acb->cur_qiov); 1355 1356 /* Complete request */ 1357 if (acb->cur_pos >= acb->end_pos) { 1358 ret = 0; 1359 break; 1360 } 1361 1362 /* Find next cluster and start I/O */ 1363 len = acb->end_pos - acb->cur_pos; 1364 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1365 if (ret < 0) { 1366 break; 1367 } 1368 1369 if (acb->flags & QED_AIOCB_WRITE) { 1370 ret = qed_aio_write_data(acb, ret, offset, len); 1371 } else { 1372 ret = qed_aio_read_data(acb, ret, offset, len); 1373 } 1374 1375 if (ret < 0 && ret != -EAGAIN) { 1376 break; 1377 } 1378 } 1379 1380 trace_qed_aio_complete(s, acb, ret); 1381 qed_aio_complete(acb); 1382 qemu_co_mutex_unlock(&s->table_lock); 1383 return ret; 1384 } 1385 1386 static int coroutine_fn GRAPH_RDLOCK 1387 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, 1388 int nb_sectors, int flags) 1389 { 1390 QEDAIOCB acb = { 1391 .bs = bs, 1392 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1393 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1394 .qiov = qiov, 1395 .flags = flags, 1396 }; 1397 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1398 1399 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1400 1401 /* Start request */ 1402 return qed_aio_next_io(&acb); 1403 } 1404 1405 static int coroutine_fn GRAPH_RDLOCK 1406 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 1407 QEMUIOVector *qiov) 1408 { 1409 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1410 } 1411 1412 static int coroutine_fn GRAPH_RDLOCK 1413 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 1414 QEMUIOVector *qiov, int flags) 1415 { 1416 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1417 } 1418 1419 static int coroutine_fn GRAPH_RDLOCK 1420 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1421 BdrvRequestFlags flags) 1422 { 1423 BDRVQEDState *s = bs->opaque; 1424 1425 /* 1426 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1427 * then it will be allocated during request processing. 1428 */ 1429 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1430 1431 /* 1432 * QED is not prepared for 63bit write-zero requests, so rely on 1433 * max_pwrite_zeroes. 1434 */ 1435 assert(bytes <= INT_MAX); 1436 1437 /* Fall back if the request is not aligned */ 1438 if (qed_offset_into_cluster(s, offset) || 1439 qed_offset_into_cluster(s, bytes)) { 1440 return -ENOTSUP; 1441 } 1442 1443 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1444 bytes >> BDRV_SECTOR_BITS, 1445 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1446 } 1447 1448 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1449 int64_t offset, 1450 bool exact, 1451 PreallocMode prealloc, 1452 BdrvRequestFlags flags, 1453 Error **errp) 1454 { 1455 BDRVQEDState *s = bs->opaque; 1456 uint64_t old_image_size; 1457 int ret; 1458 1459 if (prealloc != PREALLOC_MODE_OFF) { 1460 error_setg(errp, "Unsupported preallocation mode '%s'", 1461 PreallocMode_str(prealloc)); 1462 return -ENOTSUP; 1463 } 1464 1465 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1466 s->header.table_size)) { 1467 error_setg(errp, "Invalid image size specified"); 1468 return -EINVAL; 1469 } 1470 1471 if ((uint64_t)offset < s->header.image_size) { 1472 error_setg(errp, "Shrinking images is currently not supported"); 1473 return -ENOTSUP; 1474 } 1475 1476 old_image_size = s->header.image_size; 1477 s->header.image_size = offset; 1478 ret = qed_write_header_sync(s); 1479 if (ret < 0) { 1480 s->header.image_size = old_image_size; 1481 error_setg_errno(errp, -ret, "Failed to update the image size"); 1482 } 1483 return ret; 1484 } 1485 1486 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs) 1487 { 1488 BDRVQEDState *s = bs->opaque; 1489 return s->header.image_size; 1490 } 1491 1492 static int coroutine_fn 1493 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1494 { 1495 BDRVQEDState *s = bs->opaque; 1496 1497 memset(bdi, 0, sizeof(*bdi)); 1498 bdi->cluster_size = s->header.cluster_size; 1499 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1500 return 0; 1501 } 1502 1503 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1504 const char *backing_file, 1505 const char *backing_fmt) 1506 { 1507 BDRVQEDState *s = bs->opaque; 1508 QEDHeader new_header, le_header; 1509 void *buffer; 1510 size_t buffer_len, backing_file_len; 1511 int ret; 1512 1513 /* Refuse to set backing filename if unknown compat feature bits are 1514 * active. If the image uses an unknown compat feature then we may not 1515 * know the layout of data following the header structure and cannot safely 1516 * add a new string. 1517 */ 1518 if (backing_file && (s->header.compat_features & 1519 ~QED_COMPAT_FEATURE_MASK)) { 1520 return -ENOTSUP; 1521 } 1522 1523 memcpy(&new_header, &s->header, sizeof(new_header)); 1524 1525 new_header.features &= ~(QED_F_BACKING_FILE | 1526 QED_F_BACKING_FORMAT_NO_PROBE); 1527 1528 /* Adjust feature flags */ 1529 if (backing_file) { 1530 new_header.features |= QED_F_BACKING_FILE; 1531 1532 if (qed_fmt_is_raw(backing_fmt)) { 1533 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1534 } 1535 } 1536 1537 /* Calculate new header size */ 1538 backing_file_len = 0; 1539 1540 if (backing_file) { 1541 backing_file_len = strlen(backing_file); 1542 } 1543 1544 buffer_len = sizeof(new_header); 1545 new_header.backing_filename_offset = buffer_len; 1546 new_header.backing_filename_size = backing_file_len; 1547 buffer_len += backing_file_len; 1548 1549 /* Make sure we can rewrite header without failing */ 1550 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1551 return -ENOSPC; 1552 } 1553 1554 /* Prepare new header */ 1555 buffer = g_malloc(buffer_len); 1556 1557 qed_header_cpu_to_le(&new_header, &le_header); 1558 memcpy(buffer, &le_header, sizeof(le_header)); 1559 buffer_len = sizeof(le_header); 1560 1561 if (backing_file) { 1562 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1563 buffer_len += backing_file_len; 1564 } 1565 1566 /* Write new header */ 1567 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0); 1568 g_free(buffer); 1569 if (ret == 0) { 1570 memcpy(&s->header, &new_header, sizeof(new_header)); 1571 } 1572 return ret; 1573 } 1574 1575 static void coroutine_fn GRAPH_RDLOCK 1576 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp) 1577 { 1578 BDRVQEDState *s = bs->opaque; 1579 int ret; 1580 1581 bdrv_qed_close(bs); 1582 1583 bdrv_qed_init_state(bs); 1584 qemu_co_mutex_lock(&s->table_lock); 1585 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1586 qemu_co_mutex_unlock(&s->table_lock); 1587 if (ret < 0) { 1588 error_prepend(errp, "Could not reopen qed layer: "); 1589 } 1590 } 1591 1592 static int coroutine_fn GRAPH_RDLOCK 1593 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result, 1594 BdrvCheckMode fix) 1595 { 1596 BDRVQEDState *s = bs->opaque; 1597 int ret; 1598 1599 qemu_co_mutex_lock(&s->table_lock); 1600 ret = qed_check(s, result, !!fix); 1601 qemu_co_mutex_unlock(&s->table_lock); 1602 1603 return ret; 1604 } 1605 1606 static QemuOptsList qed_create_opts = { 1607 .name = "qed-create-opts", 1608 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1609 .desc = { 1610 { 1611 .name = BLOCK_OPT_SIZE, 1612 .type = QEMU_OPT_SIZE, 1613 .help = "Virtual disk size" 1614 }, 1615 { 1616 .name = BLOCK_OPT_BACKING_FILE, 1617 .type = QEMU_OPT_STRING, 1618 .help = "File name of a base image" 1619 }, 1620 { 1621 .name = BLOCK_OPT_BACKING_FMT, 1622 .type = QEMU_OPT_STRING, 1623 .help = "Image format of the base image" 1624 }, 1625 { 1626 .name = BLOCK_OPT_CLUSTER_SIZE, 1627 .type = QEMU_OPT_SIZE, 1628 .help = "Cluster size (in bytes)", 1629 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1630 }, 1631 { 1632 .name = BLOCK_OPT_TABLE_SIZE, 1633 .type = QEMU_OPT_SIZE, 1634 .help = "L1/L2 table size (in clusters)" 1635 }, 1636 { /* end of list */ } 1637 } 1638 }; 1639 1640 static BlockDriver bdrv_qed = { 1641 .format_name = "qed", 1642 .instance_size = sizeof(BDRVQEDState), 1643 .create_opts = &qed_create_opts, 1644 .is_format = true, 1645 .supports_backing = true, 1646 1647 .bdrv_probe = bdrv_qed_probe, 1648 .bdrv_open = bdrv_qed_open, 1649 .bdrv_close = bdrv_qed_close, 1650 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1651 .bdrv_child_perm = bdrv_default_perms, 1652 .bdrv_co_create = bdrv_qed_co_create, 1653 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1654 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1655 .bdrv_co_block_status = bdrv_qed_co_block_status, 1656 .bdrv_co_readv = bdrv_qed_co_readv, 1657 .bdrv_co_writev = bdrv_qed_co_writev, 1658 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1659 .bdrv_co_truncate = bdrv_qed_co_truncate, 1660 .bdrv_co_getlength = bdrv_qed_co_getlength, 1661 .bdrv_co_get_info = bdrv_qed_co_get_info, 1662 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1663 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1664 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1665 .bdrv_co_check = bdrv_qed_co_check, 1666 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1667 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1668 .bdrv_drain_begin = bdrv_qed_drain_begin, 1669 }; 1670 1671 static void bdrv_qed_init(void) 1672 { 1673 bdrv_register(&bdrv_qed); 1674 } 1675 1676 block_init(bdrv_qed_init); 1677