1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "qemu/timer.h" 18 #include "qemu/bswap.h" 19 #include "qemu/option.h" 20 #include "trace.h" 21 #include "qed.h" 22 #include "sysemu/block-backend.h" 23 24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 25 const char *filename) 26 { 27 const QEDHeader *header = (const QEDHeader *)buf; 28 29 if (buf_size < sizeof(*header)) { 30 return 0; 31 } 32 if (le32_to_cpu(header->magic) != QED_MAGIC) { 33 return 0; 34 } 35 return 100; 36 } 37 38 /** 39 * Check whether an image format is raw 40 * 41 * @fmt: Backing file format, may be NULL 42 */ 43 static bool qed_fmt_is_raw(const char *fmt) 44 { 45 return fmt && strcmp(fmt, "raw") == 0; 46 } 47 48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 49 { 50 cpu->magic = le32_to_cpu(le->magic); 51 cpu->cluster_size = le32_to_cpu(le->cluster_size); 52 cpu->table_size = le32_to_cpu(le->table_size); 53 cpu->header_size = le32_to_cpu(le->header_size); 54 cpu->features = le64_to_cpu(le->features); 55 cpu->compat_features = le64_to_cpu(le->compat_features); 56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 58 cpu->image_size = le64_to_cpu(le->image_size); 59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 61 } 62 63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 64 { 65 le->magic = cpu_to_le32(cpu->magic); 66 le->cluster_size = cpu_to_le32(cpu->cluster_size); 67 le->table_size = cpu_to_le32(cpu->table_size); 68 le->header_size = cpu_to_le32(cpu->header_size); 69 le->features = cpu_to_le64(cpu->features); 70 le->compat_features = cpu_to_le64(cpu->compat_features); 71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 73 le->image_size = cpu_to_le64(cpu->image_size); 74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 76 } 77 78 int qed_write_header_sync(BDRVQEDState *s) 79 { 80 QEDHeader le; 81 int ret; 82 83 qed_header_cpu_to_le(&s->header, &le); 84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 85 if (ret != sizeof(le)) { 86 return ret; 87 } 88 return 0; 89 } 90 91 /** 92 * Update header in-place (does not rewrite backing filename or other strings) 93 * 94 * This function only updates known header fields in-place and does not affect 95 * extra data after the QED header. 96 * 97 * No new allocating reqs can start while this function runs. 98 */ 99 static int coroutine_fn qed_write_header(BDRVQEDState *s) 100 { 101 /* We must write full sectors for O_DIRECT but cannot necessarily generate 102 * the data following the header if an unrecognized compat feature is 103 * active. Therefore, first read the sectors containing the header, update 104 * them, and write back. 105 */ 106 107 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 108 size_t len = nsectors * BDRV_SECTOR_SIZE; 109 uint8_t *buf; 110 struct iovec iov; 111 QEMUIOVector qiov; 112 int ret; 113 114 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 115 116 buf = qemu_blockalign(s->bs, len); 117 iov = (struct iovec) { 118 .iov_base = buf, 119 .iov_len = len, 120 }; 121 qemu_iovec_init_external(&qiov, &iov, 1); 122 123 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 124 if (ret < 0) { 125 goto out; 126 } 127 128 /* Update header */ 129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 130 131 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 132 if (ret < 0) { 133 goto out; 134 } 135 136 ret = 0; 137 out: 138 qemu_vfree(buf); 139 return ret; 140 } 141 142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 143 { 144 uint64_t table_entries; 145 uint64_t l2_size; 146 147 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 148 l2_size = table_entries * cluster_size; 149 150 return l2_size * table_entries; 151 } 152 153 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 154 { 155 if (cluster_size < QED_MIN_CLUSTER_SIZE || 156 cluster_size > QED_MAX_CLUSTER_SIZE) { 157 return false; 158 } 159 if (cluster_size & (cluster_size - 1)) { 160 return false; /* not power of 2 */ 161 } 162 return true; 163 } 164 165 static bool qed_is_table_size_valid(uint32_t table_size) 166 { 167 if (table_size < QED_MIN_TABLE_SIZE || 168 table_size > QED_MAX_TABLE_SIZE) { 169 return false; 170 } 171 if (table_size & (table_size - 1)) { 172 return false; /* not power of 2 */ 173 } 174 return true; 175 } 176 177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 178 uint32_t table_size) 179 { 180 if (image_size % BDRV_SECTOR_SIZE != 0) { 181 return false; /* not multiple of sector size */ 182 } 183 if (image_size > qed_max_image_size(cluster_size, table_size)) { 184 return false; /* image is too large */ 185 } 186 return true; 187 } 188 189 /** 190 * Read a string of known length from the image file 191 * 192 * @file: Image file 193 * @offset: File offset to start of string, in bytes 194 * @n: String length in bytes 195 * @buf: Destination buffer 196 * @buflen: Destination buffer length in bytes 197 * @ret: 0 on success, -errno on failure 198 * 199 * The string is NUL-terminated. 200 */ 201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 202 char *buf, size_t buflen) 203 { 204 int ret; 205 if (n >= buflen) { 206 return -EINVAL; 207 } 208 ret = bdrv_pread(file, offset, buf, n); 209 if (ret < 0) { 210 return ret; 211 } 212 buf[n] = '\0'; 213 return 0; 214 } 215 216 /** 217 * Allocate new clusters 218 * 219 * @s: QED state 220 * @n: Number of contiguous clusters to allocate 221 * @ret: Offset of first allocated cluster 222 * 223 * This function only produces the offset where the new clusters should be 224 * written. It updates BDRVQEDState but does not make any changes to the image 225 * file. 226 * 227 * Called with table_lock held. 228 */ 229 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 230 { 231 uint64_t offset = s->file_size; 232 s->file_size += n * s->header.cluster_size; 233 return offset; 234 } 235 236 QEDTable *qed_alloc_table(BDRVQEDState *s) 237 { 238 /* Honor O_DIRECT memory alignment requirements */ 239 return qemu_blockalign(s->bs, 240 s->header.cluster_size * s->header.table_size); 241 } 242 243 /** 244 * Allocate a new zeroed L2 table 245 * 246 * Called with table_lock held. 247 */ 248 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 249 { 250 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 251 252 l2_table->table = qed_alloc_table(s); 253 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 254 255 memset(l2_table->table->offsets, 0, 256 s->header.cluster_size * s->header.table_size); 257 return l2_table; 258 } 259 260 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 261 { 262 qemu_co_mutex_lock(&s->table_lock); 263 264 /* No reentrancy is allowed. */ 265 assert(!s->allocating_write_reqs_plugged); 266 if (s->allocating_acb != NULL) { 267 /* Another allocating write came concurrently. This cannot happen 268 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 269 */ 270 qemu_co_mutex_unlock(&s->table_lock); 271 return false; 272 } 273 274 s->allocating_write_reqs_plugged = true; 275 qemu_co_mutex_unlock(&s->table_lock); 276 return true; 277 } 278 279 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 280 { 281 qemu_co_mutex_lock(&s->table_lock); 282 assert(s->allocating_write_reqs_plugged); 283 s->allocating_write_reqs_plugged = false; 284 qemu_co_queue_next(&s->allocating_write_reqs); 285 qemu_co_mutex_unlock(&s->table_lock); 286 } 287 288 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 289 { 290 BDRVQEDState *s = opaque; 291 int ret; 292 293 trace_qed_need_check_timer_cb(s); 294 295 if (!qed_plug_allocating_write_reqs(s)) { 296 return; 297 } 298 299 /* Ensure writes are on disk before clearing flag */ 300 ret = bdrv_co_flush(s->bs->file->bs); 301 if (ret < 0) { 302 qed_unplug_allocating_write_reqs(s); 303 return; 304 } 305 306 s->header.features &= ~QED_F_NEED_CHECK; 307 ret = qed_write_header(s); 308 (void) ret; 309 310 qed_unplug_allocating_write_reqs(s); 311 312 ret = bdrv_co_flush(s->bs); 313 (void) ret; 314 } 315 316 static void qed_need_check_timer_cb(void *opaque) 317 { 318 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 319 qemu_coroutine_enter(co); 320 } 321 322 static void qed_start_need_check_timer(BDRVQEDState *s) 323 { 324 trace_qed_start_need_check_timer(s); 325 326 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 327 * migration. 328 */ 329 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 330 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 331 } 332 333 /* It's okay to call this multiple times or when no timer is started */ 334 static void qed_cancel_need_check_timer(BDRVQEDState *s) 335 { 336 trace_qed_cancel_need_check_timer(s); 337 timer_del(s->need_check_timer); 338 } 339 340 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 341 { 342 BDRVQEDState *s = bs->opaque; 343 344 qed_cancel_need_check_timer(s); 345 timer_free(s->need_check_timer); 346 } 347 348 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 349 AioContext *new_context) 350 { 351 BDRVQEDState *s = bs->opaque; 352 353 s->need_check_timer = aio_timer_new(new_context, 354 QEMU_CLOCK_VIRTUAL, SCALE_NS, 355 qed_need_check_timer_cb, s); 356 if (s->header.features & QED_F_NEED_CHECK) { 357 qed_start_need_check_timer(s); 358 } 359 } 360 361 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 362 { 363 BDRVQEDState *s = bs->opaque; 364 365 /* Fire the timer immediately in order to start doing I/O as soon as the 366 * header is flushed. 367 */ 368 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 369 qed_cancel_need_check_timer(s); 370 qed_need_check_timer_entry(s); 371 } 372 } 373 374 static void bdrv_qed_init_state(BlockDriverState *bs) 375 { 376 BDRVQEDState *s = bs->opaque; 377 378 memset(s, 0, sizeof(BDRVQEDState)); 379 s->bs = bs; 380 qemu_co_mutex_init(&s->table_lock); 381 qemu_co_queue_init(&s->allocating_write_reqs); 382 } 383 384 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, 385 Error **errp) 386 { 387 BDRVQEDState *s = bs->opaque; 388 QEDHeader le_header; 389 int64_t file_size; 390 int ret; 391 392 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 393 if (ret < 0) { 394 return ret; 395 } 396 qed_header_le_to_cpu(&le_header, &s->header); 397 398 if (s->header.magic != QED_MAGIC) { 399 error_setg(errp, "Image not in QED format"); 400 return -EINVAL; 401 } 402 if (s->header.features & ~QED_FEATURE_MASK) { 403 /* image uses unsupported feature bits */ 404 error_setg(errp, "Unsupported QED features: %" PRIx64, 405 s->header.features & ~QED_FEATURE_MASK); 406 return -ENOTSUP; 407 } 408 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 409 return -EINVAL; 410 } 411 412 /* Round down file size to the last cluster */ 413 file_size = bdrv_getlength(bs->file->bs); 414 if (file_size < 0) { 415 return file_size; 416 } 417 s->file_size = qed_start_of_cluster(s, file_size); 418 419 if (!qed_is_table_size_valid(s->header.table_size)) { 420 return -EINVAL; 421 } 422 if (!qed_is_image_size_valid(s->header.image_size, 423 s->header.cluster_size, 424 s->header.table_size)) { 425 return -EINVAL; 426 } 427 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 428 return -EINVAL; 429 } 430 431 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 432 sizeof(uint64_t); 433 s->l2_shift = ctz32(s->header.cluster_size); 434 s->l2_mask = s->table_nelems - 1; 435 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 436 437 /* Header size calculation must not overflow uint32_t */ 438 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 439 return -EINVAL; 440 } 441 442 if ((s->header.features & QED_F_BACKING_FILE)) { 443 if ((uint64_t)s->header.backing_filename_offset + 444 s->header.backing_filename_size > 445 s->header.cluster_size * s->header.header_size) { 446 return -EINVAL; 447 } 448 449 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 450 s->header.backing_filename_size, bs->backing_file, 451 sizeof(bs->backing_file)); 452 if (ret < 0) { 453 return ret; 454 } 455 456 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 457 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 458 } 459 } 460 461 /* Reset unknown autoclear feature bits. This is a backwards 462 * compatibility mechanism that allows images to be opened by older 463 * programs, which "knock out" unknown feature bits. When an image is 464 * opened by a newer program again it can detect that the autoclear 465 * feature is no longer valid. 466 */ 467 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 468 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 469 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 470 471 ret = qed_write_header_sync(s); 472 if (ret) { 473 return ret; 474 } 475 476 /* From here on only known autoclear feature bits are valid */ 477 bdrv_flush(bs->file->bs); 478 } 479 480 s->l1_table = qed_alloc_table(s); 481 qed_init_l2_cache(&s->l2_cache); 482 483 ret = qed_read_l1_table_sync(s); 484 if (ret) { 485 goto out; 486 } 487 488 /* If image was not closed cleanly, check consistency */ 489 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 490 /* Read-only images cannot be fixed. There is no risk of corruption 491 * since write operations are not possible. Therefore, allow 492 * potentially inconsistent images to be opened read-only. This can 493 * aid data recovery from an otherwise inconsistent image. 494 */ 495 if (!bdrv_is_read_only(bs->file->bs) && 496 !(flags & BDRV_O_INACTIVE)) { 497 BdrvCheckResult result = {0}; 498 499 ret = qed_check(s, &result, true); 500 if (ret) { 501 goto out; 502 } 503 } 504 } 505 506 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 507 508 out: 509 if (ret) { 510 qed_free_l2_cache(&s->l2_cache); 511 qemu_vfree(s->l1_table); 512 } 513 return ret; 514 } 515 516 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 517 Error **errp) 518 { 519 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 520 false, errp); 521 if (!bs->file) { 522 return -EINVAL; 523 } 524 525 bdrv_qed_init_state(bs); 526 return bdrv_qed_do_open(bs, options, flags, errp); 527 } 528 529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 530 { 531 BDRVQEDState *s = bs->opaque; 532 533 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 534 } 535 536 /* We have nothing to do for QED reopen, stubs just return 537 * success */ 538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 539 BlockReopenQueue *queue, Error **errp) 540 { 541 return 0; 542 } 543 544 static void bdrv_qed_close(BlockDriverState *bs) 545 { 546 BDRVQEDState *s = bs->opaque; 547 548 bdrv_qed_detach_aio_context(bs); 549 550 /* Ensure writes reach stable storage */ 551 bdrv_flush(bs->file->bs); 552 553 /* Clean shutdown, no check required on next open */ 554 if (s->header.features & QED_F_NEED_CHECK) { 555 s->header.features &= ~QED_F_NEED_CHECK; 556 qed_write_header_sync(s); 557 } 558 559 qed_free_l2_cache(&s->l2_cache); 560 qemu_vfree(s->l1_table); 561 } 562 563 static int qed_create(const char *filename, uint32_t cluster_size, 564 uint64_t image_size, uint32_t table_size, 565 const char *backing_file, const char *backing_fmt, 566 QemuOpts *opts, Error **errp) 567 { 568 QEDHeader header = { 569 .magic = QED_MAGIC, 570 .cluster_size = cluster_size, 571 .table_size = table_size, 572 .header_size = 1, 573 .features = 0, 574 .compat_features = 0, 575 .l1_table_offset = cluster_size, 576 .image_size = image_size, 577 }; 578 QEDHeader le_header; 579 uint8_t *l1_table = NULL; 580 size_t l1_size = header.cluster_size * header.table_size; 581 Error *local_err = NULL; 582 int ret = 0; 583 BlockBackend *blk; 584 585 ret = bdrv_create_file(filename, opts, &local_err); 586 if (ret < 0) { 587 error_propagate(errp, local_err); 588 return ret; 589 } 590 591 blk = blk_new_open(filename, NULL, NULL, 592 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, 593 &local_err); 594 if (blk == NULL) { 595 error_propagate(errp, local_err); 596 return -EIO; 597 } 598 599 blk_set_allow_write_beyond_eof(blk, true); 600 601 /* File must start empty and grow, check truncate is supported */ 602 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp); 603 if (ret < 0) { 604 goto out; 605 } 606 607 if (backing_file) { 608 header.features |= QED_F_BACKING_FILE; 609 header.backing_filename_offset = sizeof(le_header); 610 header.backing_filename_size = strlen(backing_file); 611 612 if (qed_fmt_is_raw(backing_fmt)) { 613 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 614 } 615 } 616 617 qed_header_cpu_to_le(&header, &le_header); 618 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 619 if (ret < 0) { 620 goto out; 621 } 622 ret = blk_pwrite(blk, sizeof(le_header), backing_file, 623 header.backing_filename_size, 0); 624 if (ret < 0) { 625 goto out; 626 } 627 628 l1_table = g_malloc0(l1_size); 629 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 630 if (ret < 0) { 631 goto out; 632 } 633 634 ret = 0; /* success */ 635 out: 636 g_free(l1_table); 637 blk_unref(blk); 638 return ret; 639 } 640 641 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename, 642 QemuOpts *opts, 643 Error **errp) 644 { 645 uint64_t image_size = 0; 646 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 647 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 648 char *backing_file = NULL; 649 char *backing_fmt = NULL; 650 int ret; 651 652 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), 653 BDRV_SECTOR_SIZE); 654 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); 655 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT); 656 cluster_size = qemu_opt_get_size_del(opts, 657 BLOCK_OPT_CLUSTER_SIZE, 658 QED_DEFAULT_CLUSTER_SIZE); 659 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE, 660 QED_DEFAULT_TABLE_SIZE); 661 662 if (!qed_is_cluster_size_valid(cluster_size)) { 663 error_setg(errp, "QED cluster size must be within range [%u, %u] " 664 "and power of 2", 665 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 666 ret = -EINVAL; 667 goto finish; 668 } 669 if (!qed_is_table_size_valid(table_size)) { 670 error_setg(errp, "QED table size must be within range [%u, %u] " 671 "and power of 2", 672 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 673 ret = -EINVAL; 674 goto finish; 675 } 676 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 677 error_setg(errp, "QED image size must be a non-zero multiple of " 678 "cluster size and less than %" PRIu64 " bytes", 679 qed_max_image_size(cluster_size, table_size)); 680 ret = -EINVAL; 681 goto finish; 682 } 683 684 ret = qed_create(filename, cluster_size, image_size, table_size, 685 backing_file, backing_fmt, opts, errp); 686 687 finish: 688 g_free(backing_file); 689 g_free(backing_fmt); 690 return ret; 691 } 692 693 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 694 bool want_zero, 695 int64_t pos, int64_t bytes, 696 int64_t *pnum, int64_t *map, 697 BlockDriverState **file) 698 { 699 BDRVQEDState *s = bs->opaque; 700 size_t len = MIN(bytes, SIZE_MAX); 701 int status; 702 QEDRequest request = { .l2_table = NULL }; 703 uint64_t offset; 704 int ret; 705 706 qemu_co_mutex_lock(&s->table_lock); 707 ret = qed_find_cluster(s, &request, pos, &len, &offset); 708 709 *pnum = len; 710 switch (ret) { 711 case QED_CLUSTER_FOUND: 712 *map = offset | qed_offset_into_cluster(s, pos); 713 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 714 *file = bs->file->bs; 715 break; 716 case QED_CLUSTER_ZERO: 717 status = BDRV_BLOCK_ZERO; 718 break; 719 case QED_CLUSTER_L2: 720 case QED_CLUSTER_L1: 721 status = 0; 722 break; 723 default: 724 assert(ret < 0); 725 status = ret; 726 break; 727 } 728 729 qed_unref_l2_cache_entry(request.l2_table); 730 qemu_co_mutex_unlock(&s->table_lock); 731 732 return status; 733 } 734 735 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 736 { 737 return acb->bs->opaque; 738 } 739 740 /** 741 * Read from the backing file or zero-fill if no backing file 742 * 743 * @s: QED state 744 * @pos: Byte position in device 745 * @qiov: Destination I/O vector 746 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 747 * @cb: Completion function 748 * @opaque: User data for completion function 749 * 750 * This function reads qiov->size bytes starting at pos from the backing file. 751 * If there is no backing file then zeroes are read. 752 */ 753 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 754 QEMUIOVector *qiov, 755 QEMUIOVector **backing_qiov) 756 { 757 uint64_t backing_length = 0; 758 size_t size; 759 int ret; 760 761 /* If there is a backing file, get its length. Treat the absence of a 762 * backing file like a zero length backing file. 763 */ 764 if (s->bs->backing) { 765 int64_t l = bdrv_getlength(s->bs->backing->bs); 766 if (l < 0) { 767 return l; 768 } 769 backing_length = l; 770 } 771 772 /* Zero all sectors if reading beyond the end of the backing file */ 773 if (pos >= backing_length || 774 pos + qiov->size > backing_length) { 775 qemu_iovec_memset(qiov, 0, 0, qiov->size); 776 } 777 778 /* Complete now if there are no backing file sectors to read */ 779 if (pos >= backing_length) { 780 return 0; 781 } 782 783 /* If the read straddles the end of the backing file, shorten it */ 784 size = MIN((uint64_t)backing_length - pos, qiov->size); 785 786 assert(*backing_qiov == NULL); 787 *backing_qiov = g_new(QEMUIOVector, 1); 788 qemu_iovec_init(*backing_qiov, qiov->niov); 789 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 790 791 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 792 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 793 if (ret < 0) { 794 return ret; 795 } 796 return 0; 797 } 798 799 /** 800 * Copy data from backing file into the image 801 * 802 * @s: QED state 803 * @pos: Byte position in device 804 * @len: Number of bytes 805 * @offset: Byte offset in image file 806 */ 807 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 808 uint64_t pos, uint64_t len, 809 uint64_t offset) 810 { 811 QEMUIOVector qiov; 812 QEMUIOVector *backing_qiov = NULL; 813 struct iovec iov; 814 int ret; 815 816 /* Skip copy entirely if there is no work to do */ 817 if (len == 0) { 818 return 0; 819 } 820 821 iov = (struct iovec) { 822 .iov_base = qemu_blockalign(s->bs, len), 823 .iov_len = len, 824 }; 825 qemu_iovec_init_external(&qiov, &iov, 1); 826 827 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 828 829 if (backing_qiov) { 830 qemu_iovec_destroy(backing_qiov); 831 g_free(backing_qiov); 832 backing_qiov = NULL; 833 } 834 835 if (ret) { 836 goto out; 837 } 838 839 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 840 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 841 if (ret < 0) { 842 goto out; 843 } 844 ret = 0; 845 out: 846 qemu_vfree(iov.iov_base); 847 return ret; 848 } 849 850 /** 851 * Link one or more contiguous clusters into a table 852 * 853 * @s: QED state 854 * @table: L2 table 855 * @index: First cluster index 856 * @n: Number of contiguous clusters 857 * @cluster: First cluster offset 858 * 859 * The cluster offset may be an allocated byte offset in the image file, the 860 * zero cluster marker, or the unallocated cluster marker. 861 * 862 * Called with table_lock held. 863 */ 864 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 865 int index, unsigned int n, 866 uint64_t cluster) 867 { 868 int i; 869 for (i = index; i < index + n; i++) { 870 table->offsets[i] = cluster; 871 if (!qed_offset_is_unalloc_cluster(cluster) && 872 !qed_offset_is_zero_cluster(cluster)) { 873 cluster += s->header.cluster_size; 874 } 875 } 876 } 877 878 /* Called with table_lock held. */ 879 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 880 { 881 BDRVQEDState *s = acb_to_s(acb); 882 883 /* Free resources */ 884 qemu_iovec_destroy(&acb->cur_qiov); 885 qed_unref_l2_cache_entry(acb->request.l2_table); 886 887 /* Free the buffer we may have allocated for zero writes */ 888 if (acb->flags & QED_AIOCB_ZERO) { 889 qemu_vfree(acb->qiov->iov[0].iov_base); 890 acb->qiov->iov[0].iov_base = NULL; 891 } 892 893 /* Start next allocating write request waiting behind this one. Note that 894 * requests enqueue themselves when they first hit an unallocated cluster 895 * but they wait until the entire request is finished before waking up the 896 * next request in the queue. This ensures that we don't cycle through 897 * requests multiple times but rather finish one at a time completely. 898 */ 899 if (acb == s->allocating_acb) { 900 s->allocating_acb = NULL; 901 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 902 qemu_co_queue_next(&s->allocating_write_reqs); 903 } else if (s->header.features & QED_F_NEED_CHECK) { 904 qed_start_need_check_timer(s); 905 } 906 } 907 } 908 909 /** 910 * Update L1 table with new L2 table offset and write it out 911 * 912 * Called with table_lock held. 913 */ 914 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 915 { 916 BDRVQEDState *s = acb_to_s(acb); 917 CachedL2Table *l2_table = acb->request.l2_table; 918 uint64_t l2_offset = l2_table->offset; 919 int index, ret; 920 921 index = qed_l1_index(s, acb->cur_pos); 922 s->l1_table->offsets[index] = l2_table->offset; 923 924 ret = qed_write_l1_table(s, index, 1); 925 926 /* Commit the current L2 table to the cache */ 927 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 928 929 /* This is guaranteed to succeed because we just committed the entry to the 930 * cache. 931 */ 932 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 933 assert(acb->request.l2_table != NULL); 934 935 return ret; 936 } 937 938 939 /** 940 * Update L2 table with new cluster offsets and write them out 941 * 942 * Called with table_lock held. 943 */ 944 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 945 { 946 BDRVQEDState *s = acb_to_s(acb); 947 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 948 int index, ret; 949 950 if (need_alloc) { 951 qed_unref_l2_cache_entry(acb->request.l2_table); 952 acb->request.l2_table = qed_new_l2_table(s); 953 } 954 955 index = qed_l2_index(s, acb->cur_pos); 956 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 957 offset); 958 959 if (need_alloc) { 960 /* Write out the whole new L2 table */ 961 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 962 if (ret) { 963 return ret; 964 } 965 return qed_aio_write_l1_update(acb); 966 } else { 967 /* Write out only the updated part of the L2 table */ 968 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 969 false); 970 if (ret) { 971 return ret; 972 } 973 } 974 return 0; 975 } 976 977 /** 978 * Write data to the image file 979 * 980 * Called with table_lock *not* held. 981 */ 982 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 983 { 984 BDRVQEDState *s = acb_to_s(acb); 985 uint64_t offset = acb->cur_cluster + 986 qed_offset_into_cluster(s, acb->cur_pos); 987 988 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 989 990 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 991 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 992 &acb->cur_qiov, 0); 993 } 994 995 /** 996 * Populate untouched regions of new data cluster 997 * 998 * Called with table_lock held. 999 */ 1000 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1001 { 1002 BDRVQEDState *s = acb_to_s(acb); 1003 uint64_t start, len, offset; 1004 int ret; 1005 1006 qemu_co_mutex_unlock(&s->table_lock); 1007 1008 /* Populate front untouched region of new data cluster */ 1009 start = qed_start_of_cluster(s, acb->cur_pos); 1010 len = qed_offset_into_cluster(s, acb->cur_pos); 1011 1012 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1013 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1014 if (ret < 0) { 1015 goto out; 1016 } 1017 1018 /* Populate back untouched region of new data cluster */ 1019 start = acb->cur_pos + acb->cur_qiov.size; 1020 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1021 offset = acb->cur_cluster + 1022 qed_offset_into_cluster(s, acb->cur_pos) + 1023 acb->cur_qiov.size; 1024 1025 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1026 ret = qed_copy_from_backing_file(s, start, len, offset); 1027 if (ret < 0) { 1028 goto out; 1029 } 1030 1031 ret = qed_aio_write_main(acb); 1032 if (ret < 0) { 1033 goto out; 1034 } 1035 1036 if (s->bs->backing) { 1037 /* 1038 * Flush new data clusters before updating the L2 table 1039 * 1040 * This flush is necessary when a backing file is in use. A crash 1041 * during an allocating write could result in empty clusters in the 1042 * image. If the write only touched a subregion of the cluster, 1043 * then backing image sectors have been lost in the untouched 1044 * region. The solution is to flush after writing a new data 1045 * cluster and before updating the L2 table. 1046 */ 1047 ret = bdrv_co_flush(s->bs->file->bs); 1048 } 1049 1050 out: 1051 qemu_co_mutex_lock(&s->table_lock); 1052 return ret; 1053 } 1054 1055 /** 1056 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1057 */ 1058 static bool qed_should_set_need_check(BDRVQEDState *s) 1059 { 1060 /* The flush before L2 update path ensures consistency */ 1061 if (s->bs->backing) { 1062 return false; 1063 } 1064 1065 return !(s->header.features & QED_F_NEED_CHECK); 1066 } 1067 1068 /** 1069 * Write new data cluster 1070 * 1071 * @acb: Write request 1072 * @len: Length in bytes 1073 * 1074 * This path is taken when writing to previously unallocated clusters. 1075 * 1076 * Called with table_lock held. 1077 */ 1078 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1079 { 1080 BDRVQEDState *s = acb_to_s(acb); 1081 int ret; 1082 1083 /* Cancel timer when the first allocating request comes in */ 1084 if (s->allocating_acb == NULL) { 1085 qed_cancel_need_check_timer(s); 1086 } 1087 1088 /* Freeze this request if another allocating write is in progress */ 1089 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1090 if (s->allocating_acb != NULL) { 1091 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1092 assert(s->allocating_acb == NULL); 1093 } 1094 s->allocating_acb = acb; 1095 return -EAGAIN; /* start over with looking up table entries */ 1096 } 1097 1098 acb->cur_nclusters = qed_bytes_to_clusters(s, 1099 qed_offset_into_cluster(s, acb->cur_pos) + len); 1100 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1101 1102 if (acb->flags & QED_AIOCB_ZERO) { 1103 /* Skip ahead if the clusters are already zero */ 1104 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1105 return 0; 1106 } 1107 acb->cur_cluster = 1; 1108 } else { 1109 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1110 } 1111 1112 if (qed_should_set_need_check(s)) { 1113 s->header.features |= QED_F_NEED_CHECK; 1114 ret = qed_write_header(s); 1115 if (ret < 0) { 1116 return ret; 1117 } 1118 } 1119 1120 if (!(acb->flags & QED_AIOCB_ZERO)) { 1121 ret = qed_aio_write_cow(acb); 1122 if (ret < 0) { 1123 return ret; 1124 } 1125 } 1126 1127 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1128 } 1129 1130 /** 1131 * Write data cluster in place 1132 * 1133 * @acb: Write request 1134 * @offset: Cluster offset in bytes 1135 * @len: Length in bytes 1136 * 1137 * This path is taken when writing to already allocated clusters. 1138 * 1139 * Called with table_lock held. 1140 */ 1141 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1142 size_t len) 1143 { 1144 BDRVQEDState *s = acb_to_s(acb); 1145 int r; 1146 1147 qemu_co_mutex_unlock(&s->table_lock); 1148 1149 /* Allocate buffer for zero writes */ 1150 if (acb->flags & QED_AIOCB_ZERO) { 1151 struct iovec *iov = acb->qiov->iov; 1152 1153 if (!iov->iov_base) { 1154 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1155 if (iov->iov_base == NULL) { 1156 r = -ENOMEM; 1157 goto out; 1158 } 1159 memset(iov->iov_base, 0, iov->iov_len); 1160 } 1161 } 1162 1163 /* Calculate the I/O vector */ 1164 acb->cur_cluster = offset; 1165 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1166 1167 /* Do the actual write. */ 1168 r = qed_aio_write_main(acb); 1169 out: 1170 qemu_co_mutex_lock(&s->table_lock); 1171 return r; 1172 } 1173 1174 /** 1175 * Write data cluster 1176 * 1177 * @opaque: Write request 1178 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1179 * @offset: Cluster offset in bytes 1180 * @len: Length in bytes 1181 * 1182 * Called with table_lock held. 1183 */ 1184 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1185 uint64_t offset, size_t len) 1186 { 1187 QEDAIOCB *acb = opaque; 1188 1189 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1190 1191 acb->find_cluster_ret = ret; 1192 1193 switch (ret) { 1194 case QED_CLUSTER_FOUND: 1195 return qed_aio_write_inplace(acb, offset, len); 1196 1197 case QED_CLUSTER_L2: 1198 case QED_CLUSTER_L1: 1199 case QED_CLUSTER_ZERO: 1200 return qed_aio_write_alloc(acb, len); 1201 1202 default: 1203 g_assert_not_reached(); 1204 } 1205 } 1206 1207 /** 1208 * Read data cluster 1209 * 1210 * @opaque: Read request 1211 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1212 * @offset: Cluster offset in bytes 1213 * @len: Length in bytes 1214 * 1215 * Called with table_lock held. 1216 */ 1217 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1218 uint64_t offset, size_t len) 1219 { 1220 QEDAIOCB *acb = opaque; 1221 BDRVQEDState *s = acb_to_s(acb); 1222 BlockDriverState *bs = acb->bs; 1223 int r; 1224 1225 qemu_co_mutex_unlock(&s->table_lock); 1226 1227 /* Adjust offset into cluster */ 1228 offset += qed_offset_into_cluster(s, acb->cur_pos); 1229 1230 trace_qed_aio_read_data(s, acb, ret, offset, len); 1231 1232 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1233 1234 /* Handle zero cluster and backing file reads, otherwise read 1235 * data cluster directly. 1236 */ 1237 if (ret == QED_CLUSTER_ZERO) { 1238 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1239 r = 0; 1240 } else if (ret != QED_CLUSTER_FOUND) { 1241 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1242 &acb->backing_qiov); 1243 } else { 1244 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1245 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1246 &acb->cur_qiov, 0); 1247 } 1248 1249 qemu_co_mutex_lock(&s->table_lock); 1250 return r; 1251 } 1252 1253 /** 1254 * Begin next I/O or complete the request 1255 */ 1256 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1257 { 1258 BDRVQEDState *s = acb_to_s(acb); 1259 uint64_t offset; 1260 size_t len; 1261 int ret; 1262 1263 qemu_co_mutex_lock(&s->table_lock); 1264 while (1) { 1265 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1266 1267 if (acb->backing_qiov) { 1268 qemu_iovec_destroy(acb->backing_qiov); 1269 g_free(acb->backing_qiov); 1270 acb->backing_qiov = NULL; 1271 } 1272 1273 acb->qiov_offset += acb->cur_qiov.size; 1274 acb->cur_pos += acb->cur_qiov.size; 1275 qemu_iovec_reset(&acb->cur_qiov); 1276 1277 /* Complete request */ 1278 if (acb->cur_pos >= acb->end_pos) { 1279 ret = 0; 1280 break; 1281 } 1282 1283 /* Find next cluster and start I/O */ 1284 len = acb->end_pos - acb->cur_pos; 1285 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1286 if (ret < 0) { 1287 break; 1288 } 1289 1290 if (acb->flags & QED_AIOCB_WRITE) { 1291 ret = qed_aio_write_data(acb, ret, offset, len); 1292 } else { 1293 ret = qed_aio_read_data(acb, ret, offset, len); 1294 } 1295 1296 if (ret < 0 && ret != -EAGAIN) { 1297 break; 1298 } 1299 } 1300 1301 trace_qed_aio_complete(s, acb, ret); 1302 qed_aio_complete(acb); 1303 qemu_co_mutex_unlock(&s->table_lock); 1304 return ret; 1305 } 1306 1307 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1308 QEMUIOVector *qiov, int nb_sectors, 1309 int flags) 1310 { 1311 QEDAIOCB acb = { 1312 .bs = bs, 1313 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1314 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1315 .qiov = qiov, 1316 .flags = flags, 1317 }; 1318 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1319 1320 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1321 1322 /* Start request */ 1323 return qed_aio_next_io(&acb); 1324 } 1325 1326 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1327 int64_t sector_num, int nb_sectors, 1328 QEMUIOVector *qiov) 1329 { 1330 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1331 } 1332 1333 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1334 int64_t sector_num, int nb_sectors, 1335 QEMUIOVector *qiov) 1336 { 1337 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1338 } 1339 1340 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1341 int64_t offset, 1342 int bytes, 1343 BdrvRequestFlags flags) 1344 { 1345 BDRVQEDState *s = bs->opaque; 1346 QEMUIOVector qiov; 1347 struct iovec iov; 1348 1349 /* Fall back if the request is not aligned */ 1350 if (qed_offset_into_cluster(s, offset) || 1351 qed_offset_into_cluster(s, bytes)) { 1352 return -ENOTSUP; 1353 } 1354 1355 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1356 * then it will be allocated during request processing. 1357 */ 1358 iov.iov_base = NULL; 1359 iov.iov_len = bytes; 1360 1361 qemu_iovec_init_external(&qiov, &iov, 1); 1362 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1363 bytes >> BDRV_SECTOR_BITS, 1364 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1365 } 1366 1367 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, 1368 PreallocMode prealloc, Error **errp) 1369 { 1370 BDRVQEDState *s = bs->opaque; 1371 uint64_t old_image_size; 1372 int ret; 1373 1374 if (prealloc != PREALLOC_MODE_OFF) { 1375 error_setg(errp, "Unsupported preallocation mode '%s'", 1376 PreallocMode_str(prealloc)); 1377 return -ENOTSUP; 1378 } 1379 1380 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1381 s->header.table_size)) { 1382 error_setg(errp, "Invalid image size specified"); 1383 return -EINVAL; 1384 } 1385 1386 if ((uint64_t)offset < s->header.image_size) { 1387 error_setg(errp, "Shrinking images is currently not supported"); 1388 return -ENOTSUP; 1389 } 1390 1391 old_image_size = s->header.image_size; 1392 s->header.image_size = offset; 1393 ret = qed_write_header_sync(s); 1394 if (ret < 0) { 1395 s->header.image_size = old_image_size; 1396 error_setg_errno(errp, -ret, "Failed to update the image size"); 1397 } 1398 return ret; 1399 } 1400 1401 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1402 { 1403 BDRVQEDState *s = bs->opaque; 1404 return s->header.image_size; 1405 } 1406 1407 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1408 { 1409 BDRVQEDState *s = bs->opaque; 1410 1411 memset(bdi, 0, sizeof(*bdi)); 1412 bdi->cluster_size = s->header.cluster_size; 1413 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1414 bdi->unallocated_blocks_are_zero = true; 1415 return 0; 1416 } 1417 1418 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1419 const char *backing_file, 1420 const char *backing_fmt) 1421 { 1422 BDRVQEDState *s = bs->opaque; 1423 QEDHeader new_header, le_header; 1424 void *buffer; 1425 size_t buffer_len, backing_file_len; 1426 int ret; 1427 1428 /* Refuse to set backing filename if unknown compat feature bits are 1429 * active. If the image uses an unknown compat feature then we may not 1430 * know the layout of data following the header structure and cannot safely 1431 * add a new string. 1432 */ 1433 if (backing_file && (s->header.compat_features & 1434 ~QED_COMPAT_FEATURE_MASK)) { 1435 return -ENOTSUP; 1436 } 1437 1438 memcpy(&new_header, &s->header, sizeof(new_header)); 1439 1440 new_header.features &= ~(QED_F_BACKING_FILE | 1441 QED_F_BACKING_FORMAT_NO_PROBE); 1442 1443 /* Adjust feature flags */ 1444 if (backing_file) { 1445 new_header.features |= QED_F_BACKING_FILE; 1446 1447 if (qed_fmt_is_raw(backing_fmt)) { 1448 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1449 } 1450 } 1451 1452 /* Calculate new header size */ 1453 backing_file_len = 0; 1454 1455 if (backing_file) { 1456 backing_file_len = strlen(backing_file); 1457 } 1458 1459 buffer_len = sizeof(new_header); 1460 new_header.backing_filename_offset = buffer_len; 1461 new_header.backing_filename_size = backing_file_len; 1462 buffer_len += backing_file_len; 1463 1464 /* Make sure we can rewrite header without failing */ 1465 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1466 return -ENOSPC; 1467 } 1468 1469 /* Prepare new header */ 1470 buffer = g_malloc(buffer_len); 1471 1472 qed_header_cpu_to_le(&new_header, &le_header); 1473 memcpy(buffer, &le_header, sizeof(le_header)); 1474 buffer_len = sizeof(le_header); 1475 1476 if (backing_file) { 1477 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1478 buffer_len += backing_file_len; 1479 } 1480 1481 /* Write new header */ 1482 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1483 g_free(buffer); 1484 if (ret == 0) { 1485 memcpy(&s->header, &new_header, sizeof(new_header)); 1486 } 1487 return ret; 1488 } 1489 1490 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp) 1491 { 1492 BDRVQEDState *s = bs->opaque; 1493 Error *local_err = NULL; 1494 int ret; 1495 1496 bdrv_qed_close(bs); 1497 1498 bdrv_qed_init_state(bs); 1499 if (qemu_in_coroutine()) { 1500 qemu_co_mutex_lock(&s->table_lock); 1501 } 1502 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1503 if (qemu_in_coroutine()) { 1504 qemu_co_mutex_unlock(&s->table_lock); 1505 } 1506 if (local_err) { 1507 error_propagate(errp, local_err); 1508 error_prepend(errp, "Could not reopen qed layer: "); 1509 return; 1510 } else if (ret < 0) { 1511 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1512 return; 1513 } 1514 } 1515 1516 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1517 BdrvCheckMode fix) 1518 { 1519 BDRVQEDState *s = bs->opaque; 1520 1521 return qed_check(s, result, !!fix); 1522 } 1523 1524 static QemuOptsList qed_create_opts = { 1525 .name = "qed-create-opts", 1526 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1527 .desc = { 1528 { 1529 .name = BLOCK_OPT_SIZE, 1530 .type = QEMU_OPT_SIZE, 1531 .help = "Virtual disk size" 1532 }, 1533 { 1534 .name = BLOCK_OPT_BACKING_FILE, 1535 .type = QEMU_OPT_STRING, 1536 .help = "File name of a base image" 1537 }, 1538 { 1539 .name = BLOCK_OPT_BACKING_FMT, 1540 .type = QEMU_OPT_STRING, 1541 .help = "Image format of the base image" 1542 }, 1543 { 1544 .name = BLOCK_OPT_CLUSTER_SIZE, 1545 .type = QEMU_OPT_SIZE, 1546 .help = "Cluster size (in bytes)", 1547 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1548 }, 1549 { 1550 .name = BLOCK_OPT_TABLE_SIZE, 1551 .type = QEMU_OPT_SIZE, 1552 .help = "L1/L2 table size (in clusters)" 1553 }, 1554 { /* end of list */ } 1555 } 1556 }; 1557 1558 static BlockDriver bdrv_qed = { 1559 .format_name = "qed", 1560 .instance_size = sizeof(BDRVQEDState), 1561 .create_opts = &qed_create_opts, 1562 .supports_backing = true, 1563 1564 .bdrv_probe = bdrv_qed_probe, 1565 .bdrv_open = bdrv_qed_open, 1566 .bdrv_close = bdrv_qed_close, 1567 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1568 .bdrv_child_perm = bdrv_format_default_perms, 1569 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1570 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1571 .bdrv_co_block_status = bdrv_qed_co_block_status, 1572 .bdrv_co_readv = bdrv_qed_co_readv, 1573 .bdrv_co_writev = bdrv_qed_co_writev, 1574 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1575 .bdrv_truncate = bdrv_qed_truncate, 1576 .bdrv_getlength = bdrv_qed_getlength, 1577 .bdrv_get_info = bdrv_qed_get_info, 1578 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1579 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1580 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1581 .bdrv_check = bdrv_qed_check, 1582 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1583 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1584 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1585 }; 1586 1587 static void bdrv_qed_init(void) 1588 { 1589 bdrv_register(&bdrv_qed); 1590 } 1591 1592 block_init(bdrv_qed_init); 1593