1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "qemu/timer.h" 18 #include "qemu/bswap.h" 19 #include "qemu/option.h" 20 #include "trace.h" 21 #include "qed.h" 22 #include "sysemu/block-backend.h" 23 #include "qapi/qmp/qdict.h" 24 #include "qapi/qobject-input-visitor.h" 25 #include "qapi/qapi-visit-block-core.h" 26 27 static QemuOptsList qed_create_opts; 28 29 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 30 const char *filename) 31 { 32 const QEDHeader *header = (const QEDHeader *)buf; 33 34 if (buf_size < sizeof(*header)) { 35 return 0; 36 } 37 if (le32_to_cpu(header->magic) != QED_MAGIC) { 38 return 0; 39 } 40 return 100; 41 } 42 43 /** 44 * Check whether an image format is raw 45 * 46 * @fmt: Backing file format, may be NULL 47 */ 48 static bool qed_fmt_is_raw(const char *fmt) 49 { 50 return fmt && strcmp(fmt, "raw") == 0; 51 } 52 53 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 54 { 55 cpu->magic = le32_to_cpu(le->magic); 56 cpu->cluster_size = le32_to_cpu(le->cluster_size); 57 cpu->table_size = le32_to_cpu(le->table_size); 58 cpu->header_size = le32_to_cpu(le->header_size); 59 cpu->features = le64_to_cpu(le->features); 60 cpu->compat_features = le64_to_cpu(le->compat_features); 61 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 62 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 63 cpu->image_size = le64_to_cpu(le->image_size); 64 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 65 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 66 } 67 68 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 69 { 70 le->magic = cpu_to_le32(cpu->magic); 71 le->cluster_size = cpu_to_le32(cpu->cluster_size); 72 le->table_size = cpu_to_le32(cpu->table_size); 73 le->header_size = cpu_to_le32(cpu->header_size); 74 le->features = cpu_to_le64(cpu->features); 75 le->compat_features = cpu_to_le64(cpu->compat_features); 76 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 77 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 78 le->image_size = cpu_to_le64(cpu->image_size); 79 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 80 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 81 } 82 83 int qed_write_header_sync(BDRVQEDState *s) 84 { 85 QEDHeader le; 86 int ret; 87 88 qed_header_cpu_to_le(&s->header, &le); 89 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 90 if (ret != sizeof(le)) { 91 return ret; 92 } 93 return 0; 94 } 95 96 /** 97 * Update header in-place (does not rewrite backing filename or other strings) 98 * 99 * This function only updates known header fields in-place and does not affect 100 * extra data after the QED header. 101 * 102 * No new allocating reqs can start while this function runs. 103 */ 104 static int coroutine_fn qed_write_header(BDRVQEDState *s) 105 { 106 /* We must write full sectors for O_DIRECT but cannot necessarily generate 107 * the data following the header if an unrecognized compat feature is 108 * active. Therefore, first read the sectors containing the header, update 109 * them, and write back. 110 */ 111 112 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 113 size_t len = nsectors * BDRV_SECTOR_SIZE; 114 uint8_t *buf; 115 struct iovec iov; 116 QEMUIOVector qiov; 117 int ret; 118 119 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 120 121 buf = qemu_blockalign(s->bs, len); 122 iov = (struct iovec) { 123 .iov_base = buf, 124 .iov_len = len, 125 }; 126 qemu_iovec_init_external(&qiov, &iov, 1); 127 128 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 129 if (ret < 0) { 130 goto out; 131 } 132 133 /* Update header */ 134 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 135 136 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 137 if (ret < 0) { 138 goto out; 139 } 140 141 ret = 0; 142 out: 143 qemu_vfree(buf); 144 return ret; 145 } 146 147 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 148 { 149 uint64_t table_entries; 150 uint64_t l2_size; 151 152 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 153 l2_size = table_entries * cluster_size; 154 155 return l2_size * table_entries; 156 } 157 158 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 159 { 160 if (cluster_size < QED_MIN_CLUSTER_SIZE || 161 cluster_size > QED_MAX_CLUSTER_SIZE) { 162 return false; 163 } 164 if (cluster_size & (cluster_size - 1)) { 165 return false; /* not power of 2 */ 166 } 167 return true; 168 } 169 170 static bool qed_is_table_size_valid(uint32_t table_size) 171 { 172 if (table_size < QED_MIN_TABLE_SIZE || 173 table_size > QED_MAX_TABLE_SIZE) { 174 return false; 175 } 176 if (table_size & (table_size - 1)) { 177 return false; /* not power of 2 */ 178 } 179 return true; 180 } 181 182 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 183 uint32_t table_size) 184 { 185 if (image_size % BDRV_SECTOR_SIZE != 0) { 186 return false; /* not multiple of sector size */ 187 } 188 if (image_size > qed_max_image_size(cluster_size, table_size)) { 189 return false; /* image is too large */ 190 } 191 return true; 192 } 193 194 /** 195 * Read a string of known length from the image file 196 * 197 * @file: Image file 198 * @offset: File offset to start of string, in bytes 199 * @n: String length in bytes 200 * @buf: Destination buffer 201 * @buflen: Destination buffer length in bytes 202 * @ret: 0 on success, -errno on failure 203 * 204 * The string is NUL-terminated. 205 */ 206 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 207 char *buf, size_t buflen) 208 { 209 int ret; 210 if (n >= buflen) { 211 return -EINVAL; 212 } 213 ret = bdrv_pread(file, offset, buf, n); 214 if (ret < 0) { 215 return ret; 216 } 217 buf[n] = '\0'; 218 return 0; 219 } 220 221 /** 222 * Allocate new clusters 223 * 224 * @s: QED state 225 * @n: Number of contiguous clusters to allocate 226 * @ret: Offset of first allocated cluster 227 * 228 * This function only produces the offset where the new clusters should be 229 * written. It updates BDRVQEDState but does not make any changes to the image 230 * file. 231 * 232 * Called with table_lock held. 233 */ 234 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 235 { 236 uint64_t offset = s->file_size; 237 s->file_size += n * s->header.cluster_size; 238 return offset; 239 } 240 241 QEDTable *qed_alloc_table(BDRVQEDState *s) 242 { 243 /* Honor O_DIRECT memory alignment requirements */ 244 return qemu_blockalign(s->bs, 245 s->header.cluster_size * s->header.table_size); 246 } 247 248 /** 249 * Allocate a new zeroed L2 table 250 * 251 * Called with table_lock held. 252 */ 253 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 254 { 255 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 256 257 l2_table->table = qed_alloc_table(s); 258 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 259 260 memset(l2_table->table->offsets, 0, 261 s->header.cluster_size * s->header.table_size); 262 return l2_table; 263 } 264 265 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 266 { 267 qemu_co_mutex_lock(&s->table_lock); 268 269 /* No reentrancy is allowed. */ 270 assert(!s->allocating_write_reqs_plugged); 271 if (s->allocating_acb != NULL) { 272 /* Another allocating write came concurrently. This cannot happen 273 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 274 */ 275 qemu_co_mutex_unlock(&s->table_lock); 276 return false; 277 } 278 279 s->allocating_write_reqs_plugged = true; 280 qemu_co_mutex_unlock(&s->table_lock); 281 return true; 282 } 283 284 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 285 { 286 qemu_co_mutex_lock(&s->table_lock); 287 assert(s->allocating_write_reqs_plugged); 288 s->allocating_write_reqs_plugged = false; 289 qemu_co_queue_next(&s->allocating_write_reqs); 290 qemu_co_mutex_unlock(&s->table_lock); 291 } 292 293 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 294 { 295 BDRVQEDState *s = opaque; 296 int ret; 297 298 trace_qed_need_check_timer_cb(s); 299 300 if (!qed_plug_allocating_write_reqs(s)) { 301 return; 302 } 303 304 /* Ensure writes are on disk before clearing flag */ 305 ret = bdrv_co_flush(s->bs->file->bs); 306 if (ret < 0) { 307 qed_unplug_allocating_write_reqs(s); 308 return; 309 } 310 311 s->header.features &= ~QED_F_NEED_CHECK; 312 ret = qed_write_header(s); 313 (void) ret; 314 315 qed_unplug_allocating_write_reqs(s); 316 317 ret = bdrv_co_flush(s->bs); 318 (void) ret; 319 } 320 321 static void qed_need_check_timer_cb(void *opaque) 322 { 323 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 324 qemu_coroutine_enter(co); 325 } 326 327 static void qed_start_need_check_timer(BDRVQEDState *s) 328 { 329 trace_qed_start_need_check_timer(s); 330 331 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 332 * migration. 333 */ 334 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 335 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 336 } 337 338 /* It's okay to call this multiple times or when no timer is started */ 339 static void qed_cancel_need_check_timer(BDRVQEDState *s) 340 { 341 trace_qed_cancel_need_check_timer(s); 342 timer_del(s->need_check_timer); 343 } 344 345 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 346 { 347 BDRVQEDState *s = bs->opaque; 348 349 qed_cancel_need_check_timer(s); 350 timer_free(s->need_check_timer); 351 } 352 353 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 354 AioContext *new_context) 355 { 356 BDRVQEDState *s = bs->opaque; 357 358 s->need_check_timer = aio_timer_new(new_context, 359 QEMU_CLOCK_VIRTUAL, SCALE_NS, 360 qed_need_check_timer_cb, s); 361 if (s->header.features & QED_F_NEED_CHECK) { 362 qed_start_need_check_timer(s); 363 } 364 } 365 366 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 367 { 368 BDRVQEDState *s = bs->opaque; 369 370 /* Fire the timer immediately in order to start doing I/O as soon as the 371 * header is flushed. 372 */ 373 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 374 qed_cancel_need_check_timer(s); 375 qed_need_check_timer_entry(s); 376 } 377 } 378 379 static void bdrv_qed_init_state(BlockDriverState *bs) 380 { 381 BDRVQEDState *s = bs->opaque; 382 383 memset(s, 0, sizeof(BDRVQEDState)); 384 s->bs = bs; 385 qemu_co_mutex_init(&s->table_lock); 386 qemu_co_queue_init(&s->allocating_write_reqs); 387 } 388 389 /* Called with table_lock held. */ 390 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 391 int flags, Error **errp) 392 { 393 BDRVQEDState *s = bs->opaque; 394 QEDHeader le_header; 395 int64_t file_size; 396 int ret; 397 398 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 399 if (ret < 0) { 400 return ret; 401 } 402 qed_header_le_to_cpu(&le_header, &s->header); 403 404 if (s->header.magic != QED_MAGIC) { 405 error_setg(errp, "Image not in QED format"); 406 return -EINVAL; 407 } 408 if (s->header.features & ~QED_FEATURE_MASK) { 409 /* image uses unsupported feature bits */ 410 error_setg(errp, "Unsupported QED features: %" PRIx64, 411 s->header.features & ~QED_FEATURE_MASK); 412 return -ENOTSUP; 413 } 414 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 415 return -EINVAL; 416 } 417 418 /* Round down file size to the last cluster */ 419 file_size = bdrv_getlength(bs->file->bs); 420 if (file_size < 0) { 421 return file_size; 422 } 423 s->file_size = qed_start_of_cluster(s, file_size); 424 425 if (!qed_is_table_size_valid(s->header.table_size)) { 426 return -EINVAL; 427 } 428 if (!qed_is_image_size_valid(s->header.image_size, 429 s->header.cluster_size, 430 s->header.table_size)) { 431 return -EINVAL; 432 } 433 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 434 return -EINVAL; 435 } 436 437 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 438 sizeof(uint64_t); 439 s->l2_shift = ctz32(s->header.cluster_size); 440 s->l2_mask = s->table_nelems - 1; 441 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 442 443 /* Header size calculation must not overflow uint32_t */ 444 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 445 return -EINVAL; 446 } 447 448 if ((s->header.features & QED_F_BACKING_FILE)) { 449 if ((uint64_t)s->header.backing_filename_offset + 450 s->header.backing_filename_size > 451 s->header.cluster_size * s->header.header_size) { 452 return -EINVAL; 453 } 454 455 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 456 s->header.backing_filename_size, bs->backing_file, 457 sizeof(bs->backing_file)); 458 if (ret < 0) { 459 return ret; 460 } 461 462 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 463 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 464 } 465 } 466 467 /* Reset unknown autoclear feature bits. This is a backwards 468 * compatibility mechanism that allows images to be opened by older 469 * programs, which "knock out" unknown feature bits. When an image is 470 * opened by a newer program again it can detect that the autoclear 471 * feature is no longer valid. 472 */ 473 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 474 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 475 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 476 477 ret = qed_write_header_sync(s); 478 if (ret) { 479 return ret; 480 } 481 482 /* From here on only known autoclear feature bits are valid */ 483 bdrv_flush(bs->file->bs); 484 } 485 486 s->l1_table = qed_alloc_table(s); 487 qed_init_l2_cache(&s->l2_cache); 488 489 ret = qed_read_l1_table_sync(s); 490 if (ret) { 491 goto out; 492 } 493 494 /* If image was not closed cleanly, check consistency */ 495 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 496 /* Read-only images cannot be fixed. There is no risk of corruption 497 * since write operations are not possible. Therefore, allow 498 * potentially inconsistent images to be opened read-only. This can 499 * aid data recovery from an otherwise inconsistent image. 500 */ 501 if (!bdrv_is_read_only(bs->file->bs) && 502 !(flags & BDRV_O_INACTIVE)) { 503 BdrvCheckResult result = {0}; 504 505 ret = qed_check(s, &result, true); 506 if (ret) { 507 goto out; 508 } 509 } 510 } 511 512 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 513 514 out: 515 if (ret) { 516 qed_free_l2_cache(&s->l2_cache); 517 qemu_vfree(s->l1_table); 518 } 519 return ret; 520 } 521 522 typedef struct QEDOpenCo { 523 BlockDriverState *bs; 524 QDict *options; 525 int flags; 526 Error **errp; 527 int ret; 528 } QEDOpenCo; 529 530 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 531 { 532 QEDOpenCo *qoc = opaque; 533 BDRVQEDState *s = qoc->bs->opaque; 534 535 qemu_co_mutex_lock(&s->table_lock); 536 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 537 qemu_co_mutex_unlock(&s->table_lock); 538 } 539 540 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 541 Error **errp) 542 { 543 QEDOpenCo qoc = { 544 .bs = bs, 545 .options = options, 546 .flags = flags, 547 .errp = errp, 548 .ret = -EINPROGRESS 549 }; 550 551 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 552 false, errp); 553 if (!bs->file) { 554 return -EINVAL; 555 } 556 557 bdrv_qed_init_state(bs); 558 if (qemu_in_coroutine()) { 559 bdrv_qed_open_entry(&qoc); 560 } else { 561 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 562 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 563 } 564 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 565 return qoc.ret; 566 } 567 568 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 569 { 570 BDRVQEDState *s = bs->opaque; 571 572 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 573 } 574 575 /* We have nothing to do for QED reopen, stubs just return 576 * success */ 577 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 578 BlockReopenQueue *queue, Error **errp) 579 { 580 return 0; 581 } 582 583 static void bdrv_qed_close(BlockDriverState *bs) 584 { 585 BDRVQEDState *s = bs->opaque; 586 587 bdrv_qed_detach_aio_context(bs); 588 589 /* Ensure writes reach stable storage */ 590 bdrv_flush(bs->file->bs); 591 592 /* Clean shutdown, no check required on next open */ 593 if (s->header.features & QED_F_NEED_CHECK) { 594 s->header.features &= ~QED_F_NEED_CHECK; 595 qed_write_header_sync(s); 596 } 597 598 qed_free_l2_cache(&s->l2_cache); 599 qemu_vfree(s->l1_table); 600 } 601 602 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 603 Error **errp) 604 { 605 BlockdevCreateOptionsQed *qed_opts; 606 BlockBackend *blk = NULL; 607 BlockDriverState *bs = NULL; 608 609 QEDHeader header; 610 QEDHeader le_header; 611 uint8_t *l1_table = NULL; 612 size_t l1_size; 613 int ret = 0; 614 615 assert(opts->driver == BLOCKDEV_DRIVER_QED); 616 qed_opts = &opts->u.qed; 617 618 /* Validate options and set default values */ 619 if (!qed_opts->has_cluster_size) { 620 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 621 } 622 if (!qed_opts->has_table_size) { 623 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 624 } 625 626 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 627 error_setg(errp, "QED cluster size must be within range [%u, %u] " 628 "and power of 2", 629 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 630 return -EINVAL; 631 } 632 if (!qed_is_table_size_valid(qed_opts->table_size)) { 633 error_setg(errp, "QED table size must be within range [%u, %u] " 634 "and power of 2", 635 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 636 return -EINVAL; 637 } 638 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 639 qed_opts->table_size)) 640 { 641 error_setg(errp, "QED image size must be a non-zero multiple of " 642 "cluster size and less than %" PRIu64 " bytes", 643 qed_max_image_size(qed_opts->cluster_size, 644 qed_opts->table_size)); 645 return -EINVAL; 646 } 647 648 /* Create BlockBackend to write to the image */ 649 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 650 if (bs == NULL) { 651 return -EIO; 652 } 653 654 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL); 655 ret = blk_insert_bs(blk, bs, errp); 656 if (ret < 0) { 657 goto out; 658 } 659 blk_set_allow_write_beyond_eof(blk, true); 660 661 /* Prepare image format */ 662 header = (QEDHeader) { 663 .magic = QED_MAGIC, 664 .cluster_size = qed_opts->cluster_size, 665 .table_size = qed_opts->table_size, 666 .header_size = 1, 667 .features = 0, 668 .compat_features = 0, 669 .l1_table_offset = qed_opts->cluster_size, 670 .image_size = qed_opts->size, 671 }; 672 673 l1_size = header.cluster_size * header.table_size; 674 675 /* File must start empty and grow, check truncate is supported */ 676 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp); 677 if (ret < 0) { 678 goto out; 679 } 680 681 if (qed_opts->has_backing_file) { 682 header.features |= QED_F_BACKING_FILE; 683 header.backing_filename_offset = sizeof(le_header); 684 header.backing_filename_size = strlen(qed_opts->backing_file); 685 686 if (qed_opts->has_backing_fmt) { 687 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 688 if (qed_fmt_is_raw(backing_fmt)) { 689 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 690 } 691 } 692 } 693 694 qed_header_cpu_to_le(&header, &le_header); 695 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 696 if (ret < 0) { 697 goto out; 698 } 699 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 700 header.backing_filename_size, 0); 701 if (ret < 0) { 702 goto out; 703 } 704 705 l1_table = g_malloc0(l1_size); 706 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 707 if (ret < 0) { 708 goto out; 709 } 710 711 ret = 0; /* success */ 712 out: 713 g_free(l1_table); 714 blk_unref(blk); 715 bdrv_unref(bs); 716 return ret; 717 } 718 719 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename, 720 QemuOpts *opts, 721 Error **errp) 722 { 723 BlockdevCreateOptions *create_options = NULL; 724 QDict *qdict = NULL; 725 QObject *qobj; 726 Visitor *v; 727 BlockDriverState *bs = NULL; 728 Error *local_err = NULL; 729 int ret; 730 731 static const QDictRenames opt_renames[] = { 732 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 733 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 734 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 735 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 736 { NULL, NULL }, 737 }; 738 739 /* Parse options and convert legacy syntax */ 740 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 741 742 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 743 ret = -EINVAL; 744 goto fail; 745 } 746 747 /* Create and open the file (protocol layer) */ 748 ret = bdrv_create_file(filename, opts, &local_err); 749 if (ret < 0) { 750 error_propagate(errp, local_err); 751 goto fail; 752 } 753 754 bs = bdrv_open(filename, NULL, NULL, 755 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 756 if (bs == NULL) { 757 ret = -EIO; 758 goto fail; 759 } 760 761 /* Now get the QAPI type BlockdevCreateOptions */ 762 qdict_put_str(qdict, "driver", "qed"); 763 qdict_put_str(qdict, "file", bs->node_name); 764 765 qobj = qdict_crumple(qdict, errp); 766 QDECREF(qdict); 767 qdict = qobject_to(QDict, qobj); 768 if (qdict == NULL) { 769 ret = -EINVAL; 770 goto fail; 771 } 772 773 v = qobject_input_visitor_new_keyval(QOBJECT(qdict)); 774 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err); 775 visit_free(v); 776 777 if (local_err) { 778 error_propagate(errp, local_err); 779 ret = -EINVAL; 780 goto fail; 781 } 782 783 /* Silently round up size */ 784 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 785 create_options->u.qed.size = 786 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 787 788 /* Create the qed image (format layer) */ 789 ret = bdrv_qed_co_create(create_options, errp); 790 791 fail: 792 QDECREF(qdict); 793 bdrv_unref(bs); 794 qapi_free_BlockdevCreateOptions(create_options); 795 return ret; 796 } 797 798 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 799 bool want_zero, 800 int64_t pos, int64_t bytes, 801 int64_t *pnum, int64_t *map, 802 BlockDriverState **file) 803 { 804 BDRVQEDState *s = bs->opaque; 805 size_t len = MIN(bytes, SIZE_MAX); 806 int status; 807 QEDRequest request = { .l2_table = NULL }; 808 uint64_t offset; 809 int ret; 810 811 qemu_co_mutex_lock(&s->table_lock); 812 ret = qed_find_cluster(s, &request, pos, &len, &offset); 813 814 *pnum = len; 815 switch (ret) { 816 case QED_CLUSTER_FOUND: 817 *map = offset | qed_offset_into_cluster(s, pos); 818 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 819 *file = bs->file->bs; 820 break; 821 case QED_CLUSTER_ZERO: 822 status = BDRV_BLOCK_ZERO; 823 break; 824 case QED_CLUSTER_L2: 825 case QED_CLUSTER_L1: 826 status = 0; 827 break; 828 default: 829 assert(ret < 0); 830 status = ret; 831 break; 832 } 833 834 qed_unref_l2_cache_entry(request.l2_table); 835 qemu_co_mutex_unlock(&s->table_lock); 836 837 return status; 838 } 839 840 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 841 { 842 return acb->bs->opaque; 843 } 844 845 /** 846 * Read from the backing file or zero-fill if no backing file 847 * 848 * @s: QED state 849 * @pos: Byte position in device 850 * @qiov: Destination I/O vector 851 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 852 * @cb: Completion function 853 * @opaque: User data for completion function 854 * 855 * This function reads qiov->size bytes starting at pos from the backing file. 856 * If there is no backing file then zeroes are read. 857 */ 858 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 859 QEMUIOVector *qiov, 860 QEMUIOVector **backing_qiov) 861 { 862 uint64_t backing_length = 0; 863 size_t size; 864 int ret; 865 866 /* If there is a backing file, get its length. Treat the absence of a 867 * backing file like a zero length backing file. 868 */ 869 if (s->bs->backing) { 870 int64_t l = bdrv_getlength(s->bs->backing->bs); 871 if (l < 0) { 872 return l; 873 } 874 backing_length = l; 875 } 876 877 /* Zero all sectors if reading beyond the end of the backing file */ 878 if (pos >= backing_length || 879 pos + qiov->size > backing_length) { 880 qemu_iovec_memset(qiov, 0, 0, qiov->size); 881 } 882 883 /* Complete now if there are no backing file sectors to read */ 884 if (pos >= backing_length) { 885 return 0; 886 } 887 888 /* If the read straddles the end of the backing file, shorten it */ 889 size = MIN((uint64_t)backing_length - pos, qiov->size); 890 891 assert(*backing_qiov == NULL); 892 *backing_qiov = g_new(QEMUIOVector, 1); 893 qemu_iovec_init(*backing_qiov, qiov->niov); 894 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 895 896 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 897 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 898 if (ret < 0) { 899 return ret; 900 } 901 return 0; 902 } 903 904 /** 905 * Copy data from backing file into the image 906 * 907 * @s: QED state 908 * @pos: Byte position in device 909 * @len: Number of bytes 910 * @offset: Byte offset in image file 911 */ 912 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 913 uint64_t pos, uint64_t len, 914 uint64_t offset) 915 { 916 QEMUIOVector qiov; 917 QEMUIOVector *backing_qiov = NULL; 918 struct iovec iov; 919 int ret; 920 921 /* Skip copy entirely if there is no work to do */ 922 if (len == 0) { 923 return 0; 924 } 925 926 iov = (struct iovec) { 927 .iov_base = qemu_blockalign(s->bs, len), 928 .iov_len = len, 929 }; 930 qemu_iovec_init_external(&qiov, &iov, 1); 931 932 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 933 934 if (backing_qiov) { 935 qemu_iovec_destroy(backing_qiov); 936 g_free(backing_qiov); 937 backing_qiov = NULL; 938 } 939 940 if (ret) { 941 goto out; 942 } 943 944 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 945 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 946 if (ret < 0) { 947 goto out; 948 } 949 ret = 0; 950 out: 951 qemu_vfree(iov.iov_base); 952 return ret; 953 } 954 955 /** 956 * Link one or more contiguous clusters into a table 957 * 958 * @s: QED state 959 * @table: L2 table 960 * @index: First cluster index 961 * @n: Number of contiguous clusters 962 * @cluster: First cluster offset 963 * 964 * The cluster offset may be an allocated byte offset in the image file, the 965 * zero cluster marker, or the unallocated cluster marker. 966 * 967 * Called with table_lock held. 968 */ 969 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 970 int index, unsigned int n, 971 uint64_t cluster) 972 { 973 int i; 974 for (i = index; i < index + n; i++) { 975 table->offsets[i] = cluster; 976 if (!qed_offset_is_unalloc_cluster(cluster) && 977 !qed_offset_is_zero_cluster(cluster)) { 978 cluster += s->header.cluster_size; 979 } 980 } 981 } 982 983 /* Called with table_lock held. */ 984 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 985 { 986 BDRVQEDState *s = acb_to_s(acb); 987 988 /* Free resources */ 989 qemu_iovec_destroy(&acb->cur_qiov); 990 qed_unref_l2_cache_entry(acb->request.l2_table); 991 992 /* Free the buffer we may have allocated for zero writes */ 993 if (acb->flags & QED_AIOCB_ZERO) { 994 qemu_vfree(acb->qiov->iov[0].iov_base); 995 acb->qiov->iov[0].iov_base = NULL; 996 } 997 998 /* Start next allocating write request waiting behind this one. Note that 999 * requests enqueue themselves when they first hit an unallocated cluster 1000 * but they wait until the entire request is finished before waking up the 1001 * next request in the queue. This ensures that we don't cycle through 1002 * requests multiple times but rather finish one at a time completely. 1003 */ 1004 if (acb == s->allocating_acb) { 1005 s->allocating_acb = NULL; 1006 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 1007 qemu_co_queue_next(&s->allocating_write_reqs); 1008 } else if (s->header.features & QED_F_NEED_CHECK) { 1009 qed_start_need_check_timer(s); 1010 } 1011 } 1012 } 1013 1014 /** 1015 * Update L1 table with new L2 table offset and write it out 1016 * 1017 * Called with table_lock held. 1018 */ 1019 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 1020 { 1021 BDRVQEDState *s = acb_to_s(acb); 1022 CachedL2Table *l2_table = acb->request.l2_table; 1023 uint64_t l2_offset = l2_table->offset; 1024 int index, ret; 1025 1026 index = qed_l1_index(s, acb->cur_pos); 1027 s->l1_table->offsets[index] = l2_table->offset; 1028 1029 ret = qed_write_l1_table(s, index, 1); 1030 1031 /* Commit the current L2 table to the cache */ 1032 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 1033 1034 /* This is guaranteed to succeed because we just committed the entry to the 1035 * cache. 1036 */ 1037 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 1038 assert(acb->request.l2_table != NULL); 1039 1040 return ret; 1041 } 1042 1043 1044 /** 1045 * Update L2 table with new cluster offsets and write them out 1046 * 1047 * Called with table_lock held. 1048 */ 1049 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1050 { 1051 BDRVQEDState *s = acb_to_s(acb); 1052 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1053 int index, ret; 1054 1055 if (need_alloc) { 1056 qed_unref_l2_cache_entry(acb->request.l2_table); 1057 acb->request.l2_table = qed_new_l2_table(s); 1058 } 1059 1060 index = qed_l2_index(s, acb->cur_pos); 1061 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1062 offset); 1063 1064 if (need_alloc) { 1065 /* Write out the whole new L2 table */ 1066 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1067 if (ret) { 1068 return ret; 1069 } 1070 return qed_aio_write_l1_update(acb); 1071 } else { 1072 /* Write out only the updated part of the L2 table */ 1073 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1074 false); 1075 if (ret) { 1076 return ret; 1077 } 1078 } 1079 return 0; 1080 } 1081 1082 /** 1083 * Write data to the image file 1084 * 1085 * Called with table_lock *not* held. 1086 */ 1087 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1088 { 1089 BDRVQEDState *s = acb_to_s(acb); 1090 uint64_t offset = acb->cur_cluster + 1091 qed_offset_into_cluster(s, acb->cur_pos); 1092 1093 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1094 1095 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1096 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1097 &acb->cur_qiov, 0); 1098 } 1099 1100 /** 1101 * Populate untouched regions of new data cluster 1102 * 1103 * Called with table_lock held. 1104 */ 1105 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1106 { 1107 BDRVQEDState *s = acb_to_s(acb); 1108 uint64_t start, len, offset; 1109 int ret; 1110 1111 qemu_co_mutex_unlock(&s->table_lock); 1112 1113 /* Populate front untouched region of new data cluster */ 1114 start = qed_start_of_cluster(s, acb->cur_pos); 1115 len = qed_offset_into_cluster(s, acb->cur_pos); 1116 1117 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1118 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1119 if (ret < 0) { 1120 goto out; 1121 } 1122 1123 /* Populate back untouched region of new data cluster */ 1124 start = acb->cur_pos + acb->cur_qiov.size; 1125 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1126 offset = acb->cur_cluster + 1127 qed_offset_into_cluster(s, acb->cur_pos) + 1128 acb->cur_qiov.size; 1129 1130 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1131 ret = qed_copy_from_backing_file(s, start, len, offset); 1132 if (ret < 0) { 1133 goto out; 1134 } 1135 1136 ret = qed_aio_write_main(acb); 1137 if (ret < 0) { 1138 goto out; 1139 } 1140 1141 if (s->bs->backing) { 1142 /* 1143 * Flush new data clusters before updating the L2 table 1144 * 1145 * This flush is necessary when a backing file is in use. A crash 1146 * during an allocating write could result in empty clusters in the 1147 * image. If the write only touched a subregion of the cluster, 1148 * then backing image sectors have been lost in the untouched 1149 * region. The solution is to flush after writing a new data 1150 * cluster and before updating the L2 table. 1151 */ 1152 ret = bdrv_co_flush(s->bs->file->bs); 1153 } 1154 1155 out: 1156 qemu_co_mutex_lock(&s->table_lock); 1157 return ret; 1158 } 1159 1160 /** 1161 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1162 */ 1163 static bool qed_should_set_need_check(BDRVQEDState *s) 1164 { 1165 /* The flush before L2 update path ensures consistency */ 1166 if (s->bs->backing) { 1167 return false; 1168 } 1169 1170 return !(s->header.features & QED_F_NEED_CHECK); 1171 } 1172 1173 /** 1174 * Write new data cluster 1175 * 1176 * @acb: Write request 1177 * @len: Length in bytes 1178 * 1179 * This path is taken when writing to previously unallocated clusters. 1180 * 1181 * Called with table_lock held. 1182 */ 1183 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1184 { 1185 BDRVQEDState *s = acb_to_s(acb); 1186 int ret; 1187 1188 /* Cancel timer when the first allocating request comes in */ 1189 if (s->allocating_acb == NULL) { 1190 qed_cancel_need_check_timer(s); 1191 } 1192 1193 /* Freeze this request if another allocating write is in progress */ 1194 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1195 if (s->allocating_acb != NULL) { 1196 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1197 assert(s->allocating_acb == NULL); 1198 } 1199 s->allocating_acb = acb; 1200 return -EAGAIN; /* start over with looking up table entries */ 1201 } 1202 1203 acb->cur_nclusters = qed_bytes_to_clusters(s, 1204 qed_offset_into_cluster(s, acb->cur_pos) + len); 1205 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1206 1207 if (acb->flags & QED_AIOCB_ZERO) { 1208 /* Skip ahead if the clusters are already zero */ 1209 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1210 return 0; 1211 } 1212 acb->cur_cluster = 1; 1213 } else { 1214 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1215 } 1216 1217 if (qed_should_set_need_check(s)) { 1218 s->header.features |= QED_F_NEED_CHECK; 1219 ret = qed_write_header(s); 1220 if (ret < 0) { 1221 return ret; 1222 } 1223 } 1224 1225 if (!(acb->flags & QED_AIOCB_ZERO)) { 1226 ret = qed_aio_write_cow(acb); 1227 if (ret < 0) { 1228 return ret; 1229 } 1230 } 1231 1232 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1233 } 1234 1235 /** 1236 * Write data cluster in place 1237 * 1238 * @acb: Write request 1239 * @offset: Cluster offset in bytes 1240 * @len: Length in bytes 1241 * 1242 * This path is taken when writing to already allocated clusters. 1243 * 1244 * Called with table_lock held. 1245 */ 1246 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1247 size_t len) 1248 { 1249 BDRVQEDState *s = acb_to_s(acb); 1250 int r; 1251 1252 qemu_co_mutex_unlock(&s->table_lock); 1253 1254 /* Allocate buffer for zero writes */ 1255 if (acb->flags & QED_AIOCB_ZERO) { 1256 struct iovec *iov = acb->qiov->iov; 1257 1258 if (!iov->iov_base) { 1259 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1260 if (iov->iov_base == NULL) { 1261 r = -ENOMEM; 1262 goto out; 1263 } 1264 memset(iov->iov_base, 0, iov->iov_len); 1265 } 1266 } 1267 1268 /* Calculate the I/O vector */ 1269 acb->cur_cluster = offset; 1270 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1271 1272 /* Do the actual write. */ 1273 r = qed_aio_write_main(acb); 1274 out: 1275 qemu_co_mutex_lock(&s->table_lock); 1276 return r; 1277 } 1278 1279 /** 1280 * Write data cluster 1281 * 1282 * @opaque: Write request 1283 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1284 * @offset: Cluster offset in bytes 1285 * @len: Length in bytes 1286 * 1287 * Called with table_lock held. 1288 */ 1289 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1290 uint64_t offset, size_t len) 1291 { 1292 QEDAIOCB *acb = opaque; 1293 1294 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1295 1296 acb->find_cluster_ret = ret; 1297 1298 switch (ret) { 1299 case QED_CLUSTER_FOUND: 1300 return qed_aio_write_inplace(acb, offset, len); 1301 1302 case QED_CLUSTER_L2: 1303 case QED_CLUSTER_L1: 1304 case QED_CLUSTER_ZERO: 1305 return qed_aio_write_alloc(acb, len); 1306 1307 default: 1308 g_assert_not_reached(); 1309 } 1310 } 1311 1312 /** 1313 * Read data cluster 1314 * 1315 * @opaque: Read request 1316 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1317 * @offset: Cluster offset in bytes 1318 * @len: Length in bytes 1319 * 1320 * Called with table_lock held. 1321 */ 1322 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1323 uint64_t offset, size_t len) 1324 { 1325 QEDAIOCB *acb = opaque; 1326 BDRVQEDState *s = acb_to_s(acb); 1327 BlockDriverState *bs = acb->bs; 1328 int r; 1329 1330 qemu_co_mutex_unlock(&s->table_lock); 1331 1332 /* Adjust offset into cluster */ 1333 offset += qed_offset_into_cluster(s, acb->cur_pos); 1334 1335 trace_qed_aio_read_data(s, acb, ret, offset, len); 1336 1337 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1338 1339 /* Handle zero cluster and backing file reads, otherwise read 1340 * data cluster directly. 1341 */ 1342 if (ret == QED_CLUSTER_ZERO) { 1343 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1344 r = 0; 1345 } else if (ret != QED_CLUSTER_FOUND) { 1346 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1347 &acb->backing_qiov); 1348 } else { 1349 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1350 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1351 &acb->cur_qiov, 0); 1352 } 1353 1354 qemu_co_mutex_lock(&s->table_lock); 1355 return r; 1356 } 1357 1358 /** 1359 * Begin next I/O or complete the request 1360 */ 1361 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1362 { 1363 BDRVQEDState *s = acb_to_s(acb); 1364 uint64_t offset; 1365 size_t len; 1366 int ret; 1367 1368 qemu_co_mutex_lock(&s->table_lock); 1369 while (1) { 1370 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1371 1372 if (acb->backing_qiov) { 1373 qemu_iovec_destroy(acb->backing_qiov); 1374 g_free(acb->backing_qiov); 1375 acb->backing_qiov = NULL; 1376 } 1377 1378 acb->qiov_offset += acb->cur_qiov.size; 1379 acb->cur_pos += acb->cur_qiov.size; 1380 qemu_iovec_reset(&acb->cur_qiov); 1381 1382 /* Complete request */ 1383 if (acb->cur_pos >= acb->end_pos) { 1384 ret = 0; 1385 break; 1386 } 1387 1388 /* Find next cluster and start I/O */ 1389 len = acb->end_pos - acb->cur_pos; 1390 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1391 if (ret < 0) { 1392 break; 1393 } 1394 1395 if (acb->flags & QED_AIOCB_WRITE) { 1396 ret = qed_aio_write_data(acb, ret, offset, len); 1397 } else { 1398 ret = qed_aio_read_data(acb, ret, offset, len); 1399 } 1400 1401 if (ret < 0 && ret != -EAGAIN) { 1402 break; 1403 } 1404 } 1405 1406 trace_qed_aio_complete(s, acb, ret); 1407 qed_aio_complete(acb); 1408 qemu_co_mutex_unlock(&s->table_lock); 1409 return ret; 1410 } 1411 1412 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1413 QEMUIOVector *qiov, int nb_sectors, 1414 int flags) 1415 { 1416 QEDAIOCB acb = { 1417 .bs = bs, 1418 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1419 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1420 .qiov = qiov, 1421 .flags = flags, 1422 }; 1423 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1424 1425 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1426 1427 /* Start request */ 1428 return qed_aio_next_io(&acb); 1429 } 1430 1431 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1432 int64_t sector_num, int nb_sectors, 1433 QEMUIOVector *qiov) 1434 { 1435 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1436 } 1437 1438 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1439 int64_t sector_num, int nb_sectors, 1440 QEMUIOVector *qiov) 1441 { 1442 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1443 } 1444 1445 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1446 int64_t offset, 1447 int bytes, 1448 BdrvRequestFlags flags) 1449 { 1450 BDRVQEDState *s = bs->opaque; 1451 QEMUIOVector qiov; 1452 struct iovec iov; 1453 1454 /* Fall back if the request is not aligned */ 1455 if (qed_offset_into_cluster(s, offset) || 1456 qed_offset_into_cluster(s, bytes)) { 1457 return -ENOTSUP; 1458 } 1459 1460 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1461 * then it will be allocated during request processing. 1462 */ 1463 iov.iov_base = NULL; 1464 iov.iov_len = bytes; 1465 1466 qemu_iovec_init_external(&qiov, &iov, 1); 1467 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1468 bytes >> BDRV_SECTOR_BITS, 1469 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1470 } 1471 1472 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, 1473 PreallocMode prealloc, Error **errp) 1474 { 1475 BDRVQEDState *s = bs->opaque; 1476 uint64_t old_image_size; 1477 int ret; 1478 1479 if (prealloc != PREALLOC_MODE_OFF) { 1480 error_setg(errp, "Unsupported preallocation mode '%s'", 1481 PreallocMode_str(prealloc)); 1482 return -ENOTSUP; 1483 } 1484 1485 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1486 s->header.table_size)) { 1487 error_setg(errp, "Invalid image size specified"); 1488 return -EINVAL; 1489 } 1490 1491 if ((uint64_t)offset < s->header.image_size) { 1492 error_setg(errp, "Shrinking images is currently not supported"); 1493 return -ENOTSUP; 1494 } 1495 1496 old_image_size = s->header.image_size; 1497 s->header.image_size = offset; 1498 ret = qed_write_header_sync(s); 1499 if (ret < 0) { 1500 s->header.image_size = old_image_size; 1501 error_setg_errno(errp, -ret, "Failed to update the image size"); 1502 } 1503 return ret; 1504 } 1505 1506 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1507 { 1508 BDRVQEDState *s = bs->opaque; 1509 return s->header.image_size; 1510 } 1511 1512 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1513 { 1514 BDRVQEDState *s = bs->opaque; 1515 1516 memset(bdi, 0, sizeof(*bdi)); 1517 bdi->cluster_size = s->header.cluster_size; 1518 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1519 bdi->unallocated_blocks_are_zero = true; 1520 return 0; 1521 } 1522 1523 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1524 const char *backing_file, 1525 const char *backing_fmt) 1526 { 1527 BDRVQEDState *s = bs->opaque; 1528 QEDHeader new_header, le_header; 1529 void *buffer; 1530 size_t buffer_len, backing_file_len; 1531 int ret; 1532 1533 /* Refuse to set backing filename if unknown compat feature bits are 1534 * active. If the image uses an unknown compat feature then we may not 1535 * know the layout of data following the header structure and cannot safely 1536 * add a new string. 1537 */ 1538 if (backing_file && (s->header.compat_features & 1539 ~QED_COMPAT_FEATURE_MASK)) { 1540 return -ENOTSUP; 1541 } 1542 1543 memcpy(&new_header, &s->header, sizeof(new_header)); 1544 1545 new_header.features &= ~(QED_F_BACKING_FILE | 1546 QED_F_BACKING_FORMAT_NO_PROBE); 1547 1548 /* Adjust feature flags */ 1549 if (backing_file) { 1550 new_header.features |= QED_F_BACKING_FILE; 1551 1552 if (qed_fmt_is_raw(backing_fmt)) { 1553 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1554 } 1555 } 1556 1557 /* Calculate new header size */ 1558 backing_file_len = 0; 1559 1560 if (backing_file) { 1561 backing_file_len = strlen(backing_file); 1562 } 1563 1564 buffer_len = sizeof(new_header); 1565 new_header.backing_filename_offset = buffer_len; 1566 new_header.backing_filename_size = backing_file_len; 1567 buffer_len += backing_file_len; 1568 1569 /* Make sure we can rewrite header without failing */ 1570 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1571 return -ENOSPC; 1572 } 1573 1574 /* Prepare new header */ 1575 buffer = g_malloc(buffer_len); 1576 1577 qed_header_cpu_to_le(&new_header, &le_header); 1578 memcpy(buffer, &le_header, sizeof(le_header)); 1579 buffer_len = sizeof(le_header); 1580 1581 if (backing_file) { 1582 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1583 buffer_len += backing_file_len; 1584 } 1585 1586 /* Write new header */ 1587 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1588 g_free(buffer); 1589 if (ret == 0) { 1590 memcpy(&s->header, &new_header, sizeof(new_header)); 1591 } 1592 return ret; 1593 } 1594 1595 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1596 Error **errp) 1597 { 1598 BDRVQEDState *s = bs->opaque; 1599 Error *local_err = NULL; 1600 int ret; 1601 1602 bdrv_qed_close(bs); 1603 1604 bdrv_qed_init_state(bs); 1605 qemu_co_mutex_lock(&s->table_lock); 1606 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1607 qemu_co_mutex_unlock(&s->table_lock); 1608 if (local_err) { 1609 error_propagate(errp, local_err); 1610 error_prepend(errp, "Could not reopen qed layer: "); 1611 return; 1612 } else if (ret < 0) { 1613 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1614 return; 1615 } 1616 } 1617 1618 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result, 1619 BdrvCheckMode fix) 1620 { 1621 BDRVQEDState *s = bs->opaque; 1622 int ret; 1623 1624 qemu_co_mutex_lock(&s->table_lock); 1625 ret = qed_check(s, result, !!fix); 1626 qemu_co_mutex_unlock(&s->table_lock); 1627 1628 return ret; 1629 } 1630 1631 static QemuOptsList qed_create_opts = { 1632 .name = "qed-create-opts", 1633 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1634 .desc = { 1635 { 1636 .name = BLOCK_OPT_SIZE, 1637 .type = QEMU_OPT_SIZE, 1638 .help = "Virtual disk size" 1639 }, 1640 { 1641 .name = BLOCK_OPT_BACKING_FILE, 1642 .type = QEMU_OPT_STRING, 1643 .help = "File name of a base image" 1644 }, 1645 { 1646 .name = BLOCK_OPT_BACKING_FMT, 1647 .type = QEMU_OPT_STRING, 1648 .help = "Image format of the base image" 1649 }, 1650 { 1651 .name = BLOCK_OPT_CLUSTER_SIZE, 1652 .type = QEMU_OPT_SIZE, 1653 .help = "Cluster size (in bytes)", 1654 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1655 }, 1656 { 1657 .name = BLOCK_OPT_TABLE_SIZE, 1658 .type = QEMU_OPT_SIZE, 1659 .help = "L1/L2 table size (in clusters)" 1660 }, 1661 { /* end of list */ } 1662 } 1663 }; 1664 1665 static BlockDriver bdrv_qed = { 1666 .format_name = "qed", 1667 .instance_size = sizeof(BDRVQEDState), 1668 .create_opts = &qed_create_opts, 1669 .supports_backing = true, 1670 1671 .bdrv_probe = bdrv_qed_probe, 1672 .bdrv_open = bdrv_qed_open, 1673 .bdrv_close = bdrv_qed_close, 1674 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1675 .bdrv_child_perm = bdrv_format_default_perms, 1676 .bdrv_co_create = bdrv_qed_co_create, 1677 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1678 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1679 .bdrv_co_block_status = bdrv_qed_co_block_status, 1680 .bdrv_co_readv = bdrv_qed_co_readv, 1681 .bdrv_co_writev = bdrv_qed_co_writev, 1682 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1683 .bdrv_truncate = bdrv_qed_truncate, 1684 .bdrv_getlength = bdrv_qed_getlength, 1685 .bdrv_get_info = bdrv_qed_get_info, 1686 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1687 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1688 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1689 .bdrv_co_check = bdrv_qed_co_check, 1690 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1691 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1692 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1693 }; 1694 1695 static void bdrv_qed_init(void) 1696 { 1697 bdrv_register(&bdrv_qed); 1698 } 1699 1700 block_init(bdrv_qed_init); 1701