xref: /openbmc/qemu/block/qed.c (revision c6bd8c70)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20 
21 static const AIOCBInfo qed_aiocb_info = {
22     .aiocb_size         = sizeof(QEDAIOCB),
23 };
24 
25 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
26                           const char *filename)
27 {
28     const QEDHeader *header = (const QEDHeader *)buf;
29 
30     if (buf_size < sizeof(*header)) {
31         return 0;
32     }
33     if (le32_to_cpu(header->magic) != QED_MAGIC) {
34         return 0;
35     }
36     return 100;
37 }
38 
39 /**
40  * Check whether an image format is raw
41  *
42  * @fmt:    Backing file format, may be NULL
43  */
44 static bool qed_fmt_is_raw(const char *fmt)
45 {
46     return fmt && strcmp(fmt, "raw") == 0;
47 }
48 
49 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
50 {
51     cpu->magic = le32_to_cpu(le->magic);
52     cpu->cluster_size = le32_to_cpu(le->cluster_size);
53     cpu->table_size = le32_to_cpu(le->table_size);
54     cpu->header_size = le32_to_cpu(le->header_size);
55     cpu->features = le64_to_cpu(le->features);
56     cpu->compat_features = le64_to_cpu(le->compat_features);
57     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
58     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
59     cpu->image_size = le64_to_cpu(le->image_size);
60     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
61     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
62 }
63 
64 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
65 {
66     le->magic = cpu_to_le32(cpu->magic);
67     le->cluster_size = cpu_to_le32(cpu->cluster_size);
68     le->table_size = cpu_to_le32(cpu->table_size);
69     le->header_size = cpu_to_le32(cpu->header_size);
70     le->features = cpu_to_le64(cpu->features);
71     le->compat_features = cpu_to_le64(cpu->compat_features);
72     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
73     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
74     le->image_size = cpu_to_le64(cpu->image_size);
75     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
76     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
77 }
78 
79 int qed_write_header_sync(BDRVQEDState *s)
80 {
81     QEDHeader le;
82     int ret;
83 
84     qed_header_cpu_to_le(&s->header, &le);
85     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
86     if (ret != sizeof(le)) {
87         return ret;
88     }
89     return 0;
90 }
91 
92 typedef struct {
93     GenericCB gencb;
94     BDRVQEDState *s;
95     struct iovec iov;
96     QEMUIOVector qiov;
97     int nsectors;
98     uint8_t *buf;
99 } QEDWriteHeaderCB;
100 
101 static void qed_write_header_cb(void *opaque, int ret)
102 {
103     QEDWriteHeaderCB *write_header_cb = opaque;
104 
105     qemu_vfree(write_header_cb->buf);
106     gencb_complete(write_header_cb, ret);
107 }
108 
109 static void qed_write_header_read_cb(void *opaque, int ret)
110 {
111     QEDWriteHeaderCB *write_header_cb = opaque;
112     BDRVQEDState *s = write_header_cb->s;
113 
114     if (ret) {
115         qed_write_header_cb(write_header_cb, ret);
116         return;
117     }
118 
119     /* Update header */
120     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
121 
122     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
123                     write_header_cb->nsectors, qed_write_header_cb,
124                     write_header_cb);
125 }
126 
127 /**
128  * Update header in-place (does not rewrite backing filename or other strings)
129  *
130  * This function only updates known header fields in-place and does not affect
131  * extra data after the QED header.
132  */
133 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
134                              void *opaque)
135 {
136     /* We must write full sectors for O_DIRECT but cannot necessarily generate
137      * the data following the header if an unrecognized compat feature is
138      * active.  Therefore, first read the sectors containing the header, update
139      * them, and write back.
140      */
141 
142     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
143                    BDRV_SECTOR_SIZE;
144     size_t len = nsectors * BDRV_SECTOR_SIZE;
145     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
146                                                     cb, opaque);
147 
148     write_header_cb->s = s;
149     write_header_cb->nsectors = nsectors;
150     write_header_cb->buf = qemu_blockalign(s->bs, len);
151     write_header_cb->iov.iov_base = write_header_cb->buf;
152     write_header_cb->iov.iov_len = len;
153     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
154 
155     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
156                    qed_write_header_read_cb, write_header_cb);
157 }
158 
159 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
160 {
161     uint64_t table_entries;
162     uint64_t l2_size;
163 
164     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
165     l2_size = table_entries * cluster_size;
166 
167     return l2_size * table_entries;
168 }
169 
170 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
171 {
172     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
173         cluster_size > QED_MAX_CLUSTER_SIZE) {
174         return false;
175     }
176     if (cluster_size & (cluster_size - 1)) {
177         return false; /* not power of 2 */
178     }
179     return true;
180 }
181 
182 static bool qed_is_table_size_valid(uint32_t table_size)
183 {
184     if (table_size < QED_MIN_TABLE_SIZE ||
185         table_size > QED_MAX_TABLE_SIZE) {
186         return false;
187     }
188     if (table_size & (table_size - 1)) {
189         return false; /* not power of 2 */
190     }
191     return true;
192 }
193 
194 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
195                                     uint32_t table_size)
196 {
197     if (image_size % BDRV_SECTOR_SIZE != 0) {
198         return false; /* not multiple of sector size */
199     }
200     if (image_size > qed_max_image_size(cluster_size, table_size)) {
201         return false; /* image is too large */
202     }
203     return true;
204 }
205 
206 /**
207  * Read a string of known length from the image file
208  *
209  * @file:       Image file
210  * @offset:     File offset to start of string, in bytes
211  * @n:          String length in bytes
212  * @buf:        Destination buffer
213  * @buflen:     Destination buffer length in bytes
214  * @ret:        0 on success, -errno on failure
215  *
216  * The string is NUL-terminated.
217  */
218 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
219                            char *buf, size_t buflen)
220 {
221     int ret;
222     if (n >= buflen) {
223         return -EINVAL;
224     }
225     ret = bdrv_pread(file, offset, buf, n);
226     if (ret < 0) {
227         return ret;
228     }
229     buf[n] = '\0';
230     return 0;
231 }
232 
233 /**
234  * Allocate new clusters
235  *
236  * @s:          QED state
237  * @n:          Number of contiguous clusters to allocate
238  * @ret:        Offset of first allocated cluster
239  *
240  * This function only produces the offset where the new clusters should be
241  * written.  It updates BDRVQEDState but does not make any changes to the image
242  * file.
243  */
244 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
245 {
246     uint64_t offset = s->file_size;
247     s->file_size += n * s->header.cluster_size;
248     return offset;
249 }
250 
251 QEDTable *qed_alloc_table(BDRVQEDState *s)
252 {
253     /* Honor O_DIRECT memory alignment requirements */
254     return qemu_blockalign(s->bs,
255                            s->header.cluster_size * s->header.table_size);
256 }
257 
258 /**
259  * Allocate a new zeroed L2 table
260  */
261 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
262 {
263     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
264 
265     l2_table->table = qed_alloc_table(s);
266     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
267 
268     memset(l2_table->table->offsets, 0,
269            s->header.cluster_size * s->header.table_size);
270     return l2_table;
271 }
272 
273 static void qed_aio_next_io(void *opaque, int ret);
274 
275 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
276 {
277     assert(!s->allocating_write_reqs_plugged);
278 
279     s->allocating_write_reqs_plugged = true;
280 }
281 
282 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
283 {
284     QEDAIOCB *acb;
285 
286     assert(s->allocating_write_reqs_plugged);
287 
288     s->allocating_write_reqs_plugged = false;
289 
290     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
291     if (acb) {
292         qed_aio_next_io(acb, 0);
293     }
294 }
295 
296 static void qed_finish_clear_need_check(void *opaque, int ret)
297 {
298     /* Do nothing */
299 }
300 
301 static void qed_flush_after_clear_need_check(void *opaque, int ret)
302 {
303     BDRVQEDState *s = opaque;
304 
305     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
306 
307     /* No need to wait until flush completes */
308     qed_unplug_allocating_write_reqs(s);
309 }
310 
311 static void qed_clear_need_check(void *opaque, int ret)
312 {
313     BDRVQEDState *s = opaque;
314 
315     if (ret) {
316         qed_unplug_allocating_write_reqs(s);
317         return;
318     }
319 
320     s->header.features &= ~QED_F_NEED_CHECK;
321     qed_write_header(s, qed_flush_after_clear_need_check, s);
322 }
323 
324 static void qed_need_check_timer_cb(void *opaque)
325 {
326     BDRVQEDState *s = opaque;
327 
328     /* The timer should only fire when allocating writes have drained */
329     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
330 
331     trace_qed_need_check_timer_cb(s);
332 
333     qed_plug_allocating_write_reqs(s);
334 
335     /* Ensure writes are on disk before clearing flag */
336     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
337 }
338 
339 static void qed_start_need_check_timer(BDRVQEDState *s)
340 {
341     trace_qed_start_need_check_timer(s);
342 
343     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
344      * migration.
345      */
346     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
347                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
348 }
349 
350 /* It's okay to call this multiple times or when no timer is started */
351 static void qed_cancel_need_check_timer(BDRVQEDState *s)
352 {
353     trace_qed_cancel_need_check_timer(s);
354     timer_del(s->need_check_timer);
355 }
356 
357 static void bdrv_qed_rebind(BlockDriverState *bs)
358 {
359     BDRVQEDState *s = bs->opaque;
360     s->bs = bs;
361 }
362 
363 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
364 {
365     BDRVQEDState *s = bs->opaque;
366 
367     qed_cancel_need_check_timer(s);
368     timer_free(s->need_check_timer);
369 }
370 
371 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
372                                         AioContext *new_context)
373 {
374     BDRVQEDState *s = bs->opaque;
375 
376     s->need_check_timer = aio_timer_new(new_context,
377                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
378                                         qed_need_check_timer_cb, s);
379     if (s->header.features & QED_F_NEED_CHECK) {
380         qed_start_need_check_timer(s);
381     }
382 }
383 
384 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
385                          Error **errp)
386 {
387     BDRVQEDState *s = bs->opaque;
388     QEDHeader le_header;
389     int64_t file_size;
390     int ret;
391 
392     s->bs = bs;
393     QSIMPLEQ_INIT(&s->allocating_write_reqs);
394 
395     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
396     if (ret < 0) {
397         return ret;
398     }
399     qed_header_le_to_cpu(&le_header, &s->header);
400 
401     if (s->header.magic != QED_MAGIC) {
402         error_setg(errp, "Image not in QED format");
403         return -EINVAL;
404     }
405     if (s->header.features & ~QED_FEATURE_MASK) {
406         /* image uses unsupported feature bits */
407         char buf[64];
408         snprintf(buf, sizeof(buf), "%" PRIx64,
409             s->header.features & ~QED_FEATURE_MASK);
410         error_setg(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
411                    bdrv_get_device_or_node_name(bs), "QED", buf);
412         return -ENOTSUP;
413     }
414     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
415         return -EINVAL;
416     }
417 
418     /* Round down file size to the last cluster */
419     file_size = bdrv_getlength(bs->file);
420     if (file_size < 0) {
421         return file_size;
422     }
423     s->file_size = qed_start_of_cluster(s, file_size);
424 
425     if (!qed_is_table_size_valid(s->header.table_size)) {
426         return -EINVAL;
427     }
428     if (!qed_is_image_size_valid(s->header.image_size,
429                                  s->header.cluster_size,
430                                  s->header.table_size)) {
431         return -EINVAL;
432     }
433     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
434         return -EINVAL;
435     }
436 
437     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
438                       sizeof(uint64_t);
439     s->l2_shift = ctz32(s->header.cluster_size);
440     s->l2_mask = s->table_nelems - 1;
441     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
442 
443     /* Header size calculation must not overflow uint32_t */
444     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
445         return -EINVAL;
446     }
447 
448     if ((s->header.features & QED_F_BACKING_FILE)) {
449         if ((uint64_t)s->header.backing_filename_offset +
450             s->header.backing_filename_size >
451             s->header.cluster_size * s->header.header_size) {
452             return -EINVAL;
453         }
454 
455         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
456                               s->header.backing_filename_size, bs->backing_file,
457                               sizeof(bs->backing_file));
458         if (ret < 0) {
459             return ret;
460         }
461 
462         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
463             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
464         }
465     }
466 
467     /* Reset unknown autoclear feature bits.  This is a backwards
468      * compatibility mechanism that allows images to be opened by older
469      * programs, which "knock out" unknown feature bits.  When an image is
470      * opened by a newer program again it can detect that the autoclear
471      * feature is no longer valid.
472      */
473     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
474         !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
475         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
476 
477         ret = qed_write_header_sync(s);
478         if (ret) {
479             return ret;
480         }
481 
482         /* From here on only known autoclear feature bits are valid */
483         bdrv_flush(bs->file);
484     }
485 
486     s->l1_table = qed_alloc_table(s);
487     qed_init_l2_cache(&s->l2_cache);
488 
489     ret = qed_read_l1_table_sync(s);
490     if (ret) {
491         goto out;
492     }
493 
494     /* If image was not closed cleanly, check consistency */
495     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
496         /* Read-only images cannot be fixed.  There is no risk of corruption
497          * since write operations are not possible.  Therefore, allow
498          * potentially inconsistent images to be opened read-only.  This can
499          * aid data recovery from an otherwise inconsistent image.
500          */
501         if (!bdrv_is_read_only(bs->file) &&
502             !(flags & BDRV_O_INCOMING)) {
503             BdrvCheckResult result = {0};
504 
505             ret = qed_check(s, &result, true);
506             if (ret) {
507                 goto out;
508             }
509         }
510     }
511 
512     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
513 
514 out:
515     if (ret) {
516         qed_free_l2_cache(&s->l2_cache);
517         qemu_vfree(s->l1_table);
518     }
519     return ret;
520 }
521 
522 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
523 {
524     BDRVQEDState *s = bs->opaque;
525 
526     bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
527 }
528 
529 /* We have nothing to do for QED reopen, stubs just return
530  * success */
531 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
532                                    BlockReopenQueue *queue, Error **errp)
533 {
534     return 0;
535 }
536 
537 static void bdrv_qed_close(BlockDriverState *bs)
538 {
539     BDRVQEDState *s = bs->opaque;
540 
541     bdrv_qed_detach_aio_context(bs);
542 
543     /* Ensure writes reach stable storage */
544     bdrv_flush(bs->file);
545 
546     /* Clean shutdown, no check required on next open */
547     if (s->header.features & QED_F_NEED_CHECK) {
548         s->header.features &= ~QED_F_NEED_CHECK;
549         qed_write_header_sync(s);
550     }
551 
552     qed_free_l2_cache(&s->l2_cache);
553     qemu_vfree(s->l1_table);
554 }
555 
556 static int qed_create(const char *filename, uint32_t cluster_size,
557                       uint64_t image_size, uint32_t table_size,
558                       const char *backing_file, const char *backing_fmt,
559                       QemuOpts *opts, Error **errp)
560 {
561     QEDHeader header = {
562         .magic = QED_MAGIC,
563         .cluster_size = cluster_size,
564         .table_size = table_size,
565         .header_size = 1,
566         .features = 0,
567         .compat_features = 0,
568         .l1_table_offset = cluster_size,
569         .image_size = image_size,
570     };
571     QEDHeader le_header;
572     uint8_t *l1_table = NULL;
573     size_t l1_size = header.cluster_size * header.table_size;
574     Error *local_err = NULL;
575     int ret = 0;
576     BlockDriverState *bs;
577 
578     ret = bdrv_create_file(filename, opts, &local_err);
579     if (ret < 0) {
580         error_propagate(errp, local_err);
581         return ret;
582     }
583 
584     bs = NULL;
585     ret = bdrv_open(&bs, filename, NULL, NULL,
586                     BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL, NULL,
587                     &local_err);
588     if (ret < 0) {
589         error_propagate(errp, local_err);
590         return ret;
591     }
592 
593     /* File must start empty and grow, check truncate is supported */
594     ret = bdrv_truncate(bs, 0);
595     if (ret < 0) {
596         goto out;
597     }
598 
599     if (backing_file) {
600         header.features |= QED_F_BACKING_FILE;
601         header.backing_filename_offset = sizeof(le_header);
602         header.backing_filename_size = strlen(backing_file);
603 
604         if (qed_fmt_is_raw(backing_fmt)) {
605             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
606         }
607     }
608 
609     qed_header_cpu_to_le(&header, &le_header);
610     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
611     if (ret < 0) {
612         goto out;
613     }
614     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
615                       header.backing_filename_size);
616     if (ret < 0) {
617         goto out;
618     }
619 
620     l1_table = g_malloc0(l1_size);
621     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
622     if (ret < 0) {
623         goto out;
624     }
625 
626     ret = 0; /* success */
627 out:
628     g_free(l1_table);
629     bdrv_unref(bs);
630     return ret;
631 }
632 
633 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
634 {
635     uint64_t image_size = 0;
636     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
637     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
638     char *backing_file = NULL;
639     char *backing_fmt = NULL;
640     int ret;
641 
642     image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
643                           BDRV_SECTOR_SIZE);
644     backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
645     backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
646     cluster_size = qemu_opt_get_size_del(opts,
647                                          BLOCK_OPT_CLUSTER_SIZE,
648                                          QED_DEFAULT_CLUSTER_SIZE);
649     table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
650                                        QED_DEFAULT_TABLE_SIZE);
651 
652     if (!qed_is_cluster_size_valid(cluster_size)) {
653         error_setg(errp, "QED cluster size must be within range [%u, %u] "
654                          "and power of 2",
655                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
656         ret = -EINVAL;
657         goto finish;
658     }
659     if (!qed_is_table_size_valid(table_size)) {
660         error_setg(errp, "QED table size must be within range [%u, %u] "
661                          "and power of 2",
662                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
663         ret = -EINVAL;
664         goto finish;
665     }
666     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
667         error_setg(errp, "QED image size must be a non-zero multiple of "
668                          "cluster size and less than %" PRIu64 " bytes",
669                    qed_max_image_size(cluster_size, table_size));
670         ret = -EINVAL;
671         goto finish;
672     }
673 
674     ret = qed_create(filename, cluster_size, image_size, table_size,
675                      backing_file, backing_fmt, opts, errp);
676 
677 finish:
678     g_free(backing_file);
679     g_free(backing_fmt);
680     return ret;
681 }
682 
683 typedef struct {
684     BlockDriverState *bs;
685     Coroutine *co;
686     uint64_t pos;
687     int64_t status;
688     int *pnum;
689 } QEDIsAllocatedCB;
690 
691 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
692 {
693     QEDIsAllocatedCB *cb = opaque;
694     BDRVQEDState *s = cb->bs->opaque;
695     *cb->pnum = len / BDRV_SECTOR_SIZE;
696     switch (ret) {
697     case QED_CLUSTER_FOUND:
698         offset |= qed_offset_into_cluster(s, cb->pos);
699         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
700         break;
701     case QED_CLUSTER_ZERO:
702         cb->status = BDRV_BLOCK_ZERO;
703         break;
704     case QED_CLUSTER_L2:
705     case QED_CLUSTER_L1:
706         cb->status = 0;
707         break;
708     default:
709         assert(ret < 0);
710         cb->status = ret;
711         break;
712     }
713 
714     if (cb->co) {
715         qemu_coroutine_enter(cb->co, NULL);
716     }
717 }
718 
719 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
720                                                  int64_t sector_num,
721                                                  int nb_sectors, int *pnum)
722 {
723     BDRVQEDState *s = bs->opaque;
724     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
725     QEDIsAllocatedCB cb = {
726         .bs = bs,
727         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
728         .status = BDRV_BLOCK_OFFSET_MASK,
729         .pnum = pnum,
730     };
731     QEDRequest request = { .l2_table = NULL };
732 
733     qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
734 
735     /* Now sleep if the callback wasn't invoked immediately */
736     while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
737         cb.co = qemu_coroutine_self();
738         qemu_coroutine_yield();
739     }
740 
741     qed_unref_l2_cache_entry(request.l2_table);
742 
743     return cb.status;
744 }
745 
746 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
747 {
748     return acb->common.bs->opaque;
749 }
750 
751 /**
752  * Read from the backing file or zero-fill if no backing file
753  *
754  * @s:              QED state
755  * @pos:            Byte position in device
756  * @qiov:           Destination I/O vector
757  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
758  * @cb:             Completion function
759  * @opaque:         User data for completion function
760  *
761  * This function reads qiov->size bytes starting at pos from the backing file.
762  * If there is no backing file then zeroes are read.
763  */
764 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
765                                   QEMUIOVector *qiov,
766                                   QEMUIOVector **backing_qiov,
767                                   BlockCompletionFunc *cb, void *opaque)
768 {
769     uint64_t backing_length = 0;
770     size_t size;
771 
772     /* If there is a backing file, get its length.  Treat the absence of a
773      * backing file like a zero length backing file.
774      */
775     if (s->bs->backing_hd) {
776         int64_t l = bdrv_getlength(s->bs->backing_hd);
777         if (l < 0) {
778             cb(opaque, l);
779             return;
780         }
781         backing_length = l;
782     }
783 
784     /* Zero all sectors if reading beyond the end of the backing file */
785     if (pos >= backing_length ||
786         pos + qiov->size > backing_length) {
787         qemu_iovec_memset(qiov, 0, 0, qiov->size);
788     }
789 
790     /* Complete now if there are no backing file sectors to read */
791     if (pos >= backing_length) {
792         cb(opaque, 0);
793         return;
794     }
795 
796     /* If the read straddles the end of the backing file, shorten it */
797     size = MIN((uint64_t)backing_length - pos, qiov->size);
798 
799     assert(*backing_qiov == NULL);
800     *backing_qiov = g_new(QEMUIOVector, 1);
801     qemu_iovec_init(*backing_qiov, qiov->niov);
802     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
803 
804     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
805     bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
806                    *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
807 }
808 
809 typedef struct {
810     GenericCB gencb;
811     BDRVQEDState *s;
812     QEMUIOVector qiov;
813     QEMUIOVector *backing_qiov;
814     struct iovec iov;
815     uint64_t offset;
816 } CopyFromBackingFileCB;
817 
818 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
819 {
820     CopyFromBackingFileCB *copy_cb = opaque;
821     qemu_vfree(copy_cb->iov.iov_base);
822     gencb_complete(&copy_cb->gencb, ret);
823 }
824 
825 static void qed_copy_from_backing_file_write(void *opaque, int ret)
826 {
827     CopyFromBackingFileCB *copy_cb = opaque;
828     BDRVQEDState *s = copy_cb->s;
829 
830     if (copy_cb->backing_qiov) {
831         qemu_iovec_destroy(copy_cb->backing_qiov);
832         g_free(copy_cb->backing_qiov);
833         copy_cb->backing_qiov = NULL;
834     }
835 
836     if (ret) {
837         qed_copy_from_backing_file_cb(copy_cb, ret);
838         return;
839     }
840 
841     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
842     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
843                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
844                     qed_copy_from_backing_file_cb, copy_cb);
845 }
846 
847 /**
848  * Copy data from backing file into the image
849  *
850  * @s:          QED state
851  * @pos:        Byte position in device
852  * @len:        Number of bytes
853  * @offset:     Byte offset in image file
854  * @cb:         Completion function
855  * @opaque:     User data for completion function
856  */
857 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
858                                        uint64_t len, uint64_t offset,
859                                        BlockCompletionFunc *cb,
860                                        void *opaque)
861 {
862     CopyFromBackingFileCB *copy_cb;
863 
864     /* Skip copy entirely if there is no work to do */
865     if (len == 0) {
866         cb(opaque, 0);
867         return;
868     }
869 
870     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
871     copy_cb->s = s;
872     copy_cb->offset = offset;
873     copy_cb->backing_qiov = NULL;
874     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
875     copy_cb->iov.iov_len = len;
876     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
877 
878     qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
879                           qed_copy_from_backing_file_write, copy_cb);
880 }
881 
882 /**
883  * Link one or more contiguous clusters into a table
884  *
885  * @s:              QED state
886  * @table:          L2 table
887  * @index:          First cluster index
888  * @n:              Number of contiguous clusters
889  * @cluster:        First cluster offset
890  *
891  * The cluster offset may be an allocated byte offset in the image file, the
892  * zero cluster marker, or the unallocated cluster marker.
893  */
894 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
895                                 unsigned int n, uint64_t cluster)
896 {
897     int i;
898     for (i = index; i < index + n; i++) {
899         table->offsets[i] = cluster;
900         if (!qed_offset_is_unalloc_cluster(cluster) &&
901             !qed_offset_is_zero_cluster(cluster)) {
902             cluster += s->header.cluster_size;
903         }
904     }
905 }
906 
907 static void qed_aio_complete_bh(void *opaque)
908 {
909     QEDAIOCB *acb = opaque;
910     BlockCompletionFunc *cb = acb->common.cb;
911     void *user_opaque = acb->common.opaque;
912     int ret = acb->bh_ret;
913 
914     qemu_bh_delete(acb->bh);
915     qemu_aio_unref(acb);
916 
917     /* Invoke callback */
918     cb(user_opaque, ret);
919 }
920 
921 static void qed_aio_complete(QEDAIOCB *acb, int ret)
922 {
923     BDRVQEDState *s = acb_to_s(acb);
924 
925     trace_qed_aio_complete(s, acb, ret);
926 
927     /* Free resources */
928     qemu_iovec_destroy(&acb->cur_qiov);
929     qed_unref_l2_cache_entry(acb->request.l2_table);
930 
931     /* Free the buffer we may have allocated for zero writes */
932     if (acb->flags & QED_AIOCB_ZERO) {
933         qemu_vfree(acb->qiov->iov[0].iov_base);
934         acb->qiov->iov[0].iov_base = NULL;
935     }
936 
937     /* Arrange for a bh to invoke the completion function */
938     acb->bh_ret = ret;
939     acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs),
940                          qed_aio_complete_bh, acb);
941     qemu_bh_schedule(acb->bh);
942 
943     /* Start next allocating write request waiting behind this one.  Note that
944      * requests enqueue themselves when they first hit an unallocated cluster
945      * but they wait until the entire request is finished before waking up the
946      * next request in the queue.  This ensures that we don't cycle through
947      * requests multiple times but rather finish one at a time completely.
948      */
949     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
950         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
951         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
952         if (acb) {
953             qed_aio_next_io(acb, 0);
954         } else if (s->header.features & QED_F_NEED_CHECK) {
955             qed_start_need_check_timer(s);
956         }
957     }
958 }
959 
960 /**
961  * Commit the current L2 table to the cache
962  */
963 static void qed_commit_l2_update(void *opaque, int ret)
964 {
965     QEDAIOCB *acb = opaque;
966     BDRVQEDState *s = acb_to_s(acb);
967     CachedL2Table *l2_table = acb->request.l2_table;
968     uint64_t l2_offset = l2_table->offset;
969 
970     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
971 
972     /* This is guaranteed to succeed because we just committed the entry to the
973      * cache.
974      */
975     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
976     assert(acb->request.l2_table != NULL);
977 
978     qed_aio_next_io(opaque, ret);
979 }
980 
981 /**
982  * Update L1 table with new L2 table offset and write it out
983  */
984 static void qed_aio_write_l1_update(void *opaque, int ret)
985 {
986     QEDAIOCB *acb = opaque;
987     BDRVQEDState *s = acb_to_s(acb);
988     int index;
989 
990     if (ret) {
991         qed_aio_complete(acb, ret);
992         return;
993     }
994 
995     index = qed_l1_index(s, acb->cur_pos);
996     s->l1_table->offsets[index] = acb->request.l2_table->offset;
997 
998     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
999 }
1000 
1001 /**
1002  * Update L2 table with new cluster offsets and write them out
1003  */
1004 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1005 {
1006     BDRVQEDState *s = acb_to_s(acb);
1007     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1008     int index;
1009 
1010     if (ret) {
1011         goto err;
1012     }
1013 
1014     if (need_alloc) {
1015         qed_unref_l2_cache_entry(acb->request.l2_table);
1016         acb->request.l2_table = qed_new_l2_table(s);
1017     }
1018 
1019     index = qed_l2_index(s, acb->cur_pos);
1020     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1021                          offset);
1022 
1023     if (need_alloc) {
1024         /* Write out the whole new L2 table */
1025         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1026                             qed_aio_write_l1_update, acb);
1027     } else {
1028         /* Write out only the updated part of the L2 table */
1029         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1030                             qed_aio_next_io, acb);
1031     }
1032     return;
1033 
1034 err:
1035     qed_aio_complete(acb, ret);
1036 }
1037 
1038 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1039 {
1040     QEDAIOCB *acb = opaque;
1041     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1042 }
1043 
1044 /**
1045  * Flush new data clusters before updating the L2 table
1046  *
1047  * This flush is necessary when a backing file is in use.  A crash during an
1048  * allocating write could result in empty clusters in the image.  If the write
1049  * only touched a subregion of the cluster, then backing image sectors have
1050  * been lost in the untouched region.  The solution is to flush after writing a
1051  * new data cluster and before updating the L2 table.
1052  */
1053 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1054 {
1055     QEDAIOCB *acb = opaque;
1056     BDRVQEDState *s = acb_to_s(acb);
1057 
1058     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1059         qed_aio_complete(acb, -EIO);
1060     }
1061 }
1062 
1063 /**
1064  * Write data to the image file
1065  */
1066 static void qed_aio_write_main(void *opaque, int ret)
1067 {
1068     QEDAIOCB *acb = opaque;
1069     BDRVQEDState *s = acb_to_s(acb);
1070     uint64_t offset = acb->cur_cluster +
1071                       qed_offset_into_cluster(s, acb->cur_pos);
1072     BlockCompletionFunc *next_fn;
1073 
1074     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1075 
1076     if (ret) {
1077         qed_aio_complete(acb, ret);
1078         return;
1079     }
1080 
1081     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1082         next_fn = qed_aio_next_io;
1083     } else {
1084         if (s->bs->backing_hd) {
1085             next_fn = qed_aio_write_flush_before_l2_update;
1086         } else {
1087             next_fn = qed_aio_write_l2_update_cb;
1088         }
1089     }
1090 
1091     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1092     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1093                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1094                     next_fn, acb);
1095 }
1096 
1097 /**
1098  * Populate back untouched region of new data cluster
1099  */
1100 static void qed_aio_write_postfill(void *opaque, int ret)
1101 {
1102     QEDAIOCB *acb = opaque;
1103     BDRVQEDState *s = acb_to_s(acb);
1104     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1105     uint64_t len =
1106         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1107     uint64_t offset = acb->cur_cluster +
1108                       qed_offset_into_cluster(s, acb->cur_pos) +
1109                       acb->cur_qiov.size;
1110 
1111     if (ret) {
1112         qed_aio_complete(acb, ret);
1113         return;
1114     }
1115 
1116     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1117     qed_copy_from_backing_file(s, start, len, offset,
1118                                 qed_aio_write_main, acb);
1119 }
1120 
1121 /**
1122  * Populate front untouched region of new data cluster
1123  */
1124 static void qed_aio_write_prefill(void *opaque, int ret)
1125 {
1126     QEDAIOCB *acb = opaque;
1127     BDRVQEDState *s = acb_to_s(acb);
1128     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1129     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1130 
1131     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1132     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1133                                 qed_aio_write_postfill, acb);
1134 }
1135 
1136 /**
1137  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1138  */
1139 static bool qed_should_set_need_check(BDRVQEDState *s)
1140 {
1141     /* The flush before L2 update path ensures consistency */
1142     if (s->bs->backing_hd) {
1143         return false;
1144     }
1145 
1146     return !(s->header.features & QED_F_NEED_CHECK);
1147 }
1148 
1149 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1150 {
1151     QEDAIOCB *acb = opaque;
1152 
1153     if (ret) {
1154         qed_aio_complete(acb, ret);
1155         return;
1156     }
1157 
1158     qed_aio_write_l2_update(acb, 0, 1);
1159 }
1160 
1161 /**
1162  * Write new data cluster
1163  *
1164  * @acb:        Write request
1165  * @len:        Length in bytes
1166  *
1167  * This path is taken when writing to previously unallocated clusters.
1168  */
1169 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1170 {
1171     BDRVQEDState *s = acb_to_s(acb);
1172     BlockCompletionFunc *cb;
1173 
1174     /* Cancel timer when the first allocating request comes in */
1175     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1176         qed_cancel_need_check_timer(s);
1177     }
1178 
1179     /* Freeze this request if another allocating write is in progress */
1180     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1181         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1182     }
1183     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1184         s->allocating_write_reqs_plugged) {
1185         return; /* wait for existing request to finish */
1186     }
1187 
1188     acb->cur_nclusters = qed_bytes_to_clusters(s,
1189             qed_offset_into_cluster(s, acb->cur_pos) + len);
1190     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1191 
1192     if (acb->flags & QED_AIOCB_ZERO) {
1193         /* Skip ahead if the clusters are already zero */
1194         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1195             qed_aio_next_io(acb, 0);
1196             return;
1197         }
1198 
1199         cb = qed_aio_write_zero_cluster;
1200     } else {
1201         cb = qed_aio_write_prefill;
1202         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1203     }
1204 
1205     if (qed_should_set_need_check(s)) {
1206         s->header.features |= QED_F_NEED_CHECK;
1207         qed_write_header(s, cb, acb);
1208     } else {
1209         cb(acb, 0);
1210     }
1211 }
1212 
1213 /**
1214  * Write data cluster in place
1215  *
1216  * @acb:        Write request
1217  * @offset:     Cluster offset in bytes
1218  * @len:        Length in bytes
1219  *
1220  * This path is taken when writing to already allocated clusters.
1221  */
1222 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1223 {
1224     /* Allocate buffer for zero writes */
1225     if (acb->flags & QED_AIOCB_ZERO) {
1226         struct iovec *iov = acb->qiov->iov;
1227 
1228         if (!iov->iov_base) {
1229             iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1230             if (iov->iov_base == NULL) {
1231                 qed_aio_complete(acb, -ENOMEM);
1232                 return;
1233             }
1234             memset(iov->iov_base, 0, iov->iov_len);
1235         }
1236     }
1237 
1238     /* Calculate the I/O vector */
1239     acb->cur_cluster = offset;
1240     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1241 
1242     /* Do the actual write */
1243     qed_aio_write_main(acb, 0);
1244 }
1245 
1246 /**
1247  * Write data cluster
1248  *
1249  * @opaque:     Write request
1250  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1251  *              or -errno
1252  * @offset:     Cluster offset in bytes
1253  * @len:        Length in bytes
1254  *
1255  * Callback from qed_find_cluster().
1256  */
1257 static void qed_aio_write_data(void *opaque, int ret,
1258                                uint64_t offset, size_t len)
1259 {
1260     QEDAIOCB *acb = opaque;
1261 
1262     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1263 
1264     acb->find_cluster_ret = ret;
1265 
1266     switch (ret) {
1267     case QED_CLUSTER_FOUND:
1268         qed_aio_write_inplace(acb, offset, len);
1269         break;
1270 
1271     case QED_CLUSTER_L2:
1272     case QED_CLUSTER_L1:
1273     case QED_CLUSTER_ZERO:
1274         qed_aio_write_alloc(acb, len);
1275         break;
1276 
1277     default:
1278         qed_aio_complete(acb, ret);
1279         break;
1280     }
1281 }
1282 
1283 /**
1284  * Read data cluster
1285  *
1286  * @opaque:     Read request
1287  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1288  *              or -errno
1289  * @offset:     Cluster offset in bytes
1290  * @len:        Length in bytes
1291  *
1292  * Callback from qed_find_cluster().
1293  */
1294 static void qed_aio_read_data(void *opaque, int ret,
1295                               uint64_t offset, size_t len)
1296 {
1297     QEDAIOCB *acb = opaque;
1298     BDRVQEDState *s = acb_to_s(acb);
1299     BlockDriverState *bs = acb->common.bs;
1300 
1301     /* Adjust offset into cluster */
1302     offset += qed_offset_into_cluster(s, acb->cur_pos);
1303 
1304     trace_qed_aio_read_data(s, acb, ret, offset, len);
1305 
1306     if (ret < 0) {
1307         goto err;
1308     }
1309 
1310     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1311 
1312     /* Handle zero cluster and backing file reads */
1313     if (ret == QED_CLUSTER_ZERO) {
1314         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1315         qed_aio_next_io(acb, 0);
1316         return;
1317     } else if (ret != QED_CLUSTER_FOUND) {
1318         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1319                               &acb->backing_qiov, qed_aio_next_io, acb);
1320         return;
1321     }
1322 
1323     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1324     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1325                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1326                    qed_aio_next_io, acb);
1327     return;
1328 
1329 err:
1330     qed_aio_complete(acb, ret);
1331 }
1332 
1333 /**
1334  * Begin next I/O or complete the request
1335  */
1336 static void qed_aio_next_io(void *opaque, int ret)
1337 {
1338     QEDAIOCB *acb = opaque;
1339     BDRVQEDState *s = acb_to_s(acb);
1340     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1341                                 qed_aio_write_data : qed_aio_read_data;
1342 
1343     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1344 
1345     if (acb->backing_qiov) {
1346         qemu_iovec_destroy(acb->backing_qiov);
1347         g_free(acb->backing_qiov);
1348         acb->backing_qiov = NULL;
1349     }
1350 
1351     /* Handle I/O error */
1352     if (ret) {
1353         qed_aio_complete(acb, ret);
1354         return;
1355     }
1356 
1357     acb->qiov_offset += acb->cur_qiov.size;
1358     acb->cur_pos += acb->cur_qiov.size;
1359     qemu_iovec_reset(&acb->cur_qiov);
1360 
1361     /* Complete request */
1362     if (acb->cur_pos >= acb->end_pos) {
1363         qed_aio_complete(acb, 0);
1364         return;
1365     }
1366 
1367     /* Find next cluster and start I/O */
1368     qed_find_cluster(s, &acb->request,
1369                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1370                       io_fn, acb);
1371 }
1372 
1373 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1374                                  int64_t sector_num,
1375                                  QEMUIOVector *qiov, int nb_sectors,
1376                                  BlockCompletionFunc *cb,
1377                                  void *opaque, int flags)
1378 {
1379     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1380 
1381     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1382                         opaque, flags);
1383 
1384     acb->flags = flags;
1385     acb->qiov = qiov;
1386     acb->qiov_offset = 0;
1387     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1388     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1389     acb->backing_qiov = NULL;
1390     acb->request.l2_table = NULL;
1391     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1392 
1393     /* Start request */
1394     qed_aio_next_io(acb, 0);
1395     return &acb->common;
1396 }
1397 
1398 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1399                                       int64_t sector_num,
1400                                       QEMUIOVector *qiov, int nb_sectors,
1401                                       BlockCompletionFunc *cb,
1402                                       void *opaque)
1403 {
1404     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1405 }
1406 
1407 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1408                                        int64_t sector_num,
1409                                        QEMUIOVector *qiov, int nb_sectors,
1410                                        BlockCompletionFunc *cb,
1411                                        void *opaque)
1412 {
1413     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1414                          opaque, QED_AIOCB_WRITE);
1415 }
1416 
1417 typedef struct {
1418     Coroutine *co;
1419     int ret;
1420     bool done;
1421 } QEDWriteZeroesCB;
1422 
1423 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1424 {
1425     QEDWriteZeroesCB *cb = opaque;
1426 
1427     cb->done = true;
1428     cb->ret = ret;
1429     if (cb->co) {
1430         qemu_coroutine_enter(cb->co, NULL);
1431     }
1432 }
1433 
1434 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1435                                                  int64_t sector_num,
1436                                                  int nb_sectors,
1437                                                  BdrvRequestFlags flags)
1438 {
1439     BlockAIOCB *blockacb;
1440     BDRVQEDState *s = bs->opaque;
1441     QEDWriteZeroesCB cb = { .done = false };
1442     QEMUIOVector qiov;
1443     struct iovec iov;
1444 
1445     /* Refuse if there are untouched backing file sectors */
1446     if (bs->backing_hd) {
1447         if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1448             return -ENOTSUP;
1449         }
1450         if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1451             return -ENOTSUP;
1452         }
1453     }
1454 
1455     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1456      * then it will be allocated during request processing.
1457      */
1458     iov.iov_base = NULL,
1459     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1460 
1461     qemu_iovec_init_external(&qiov, &iov, 1);
1462     blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1463                              qed_co_write_zeroes_cb, &cb,
1464                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1465     if (!blockacb) {
1466         return -EIO;
1467     }
1468     if (!cb.done) {
1469         cb.co = qemu_coroutine_self();
1470         qemu_coroutine_yield();
1471     }
1472     assert(cb.done);
1473     return cb.ret;
1474 }
1475 
1476 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1477 {
1478     BDRVQEDState *s = bs->opaque;
1479     uint64_t old_image_size;
1480     int ret;
1481 
1482     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1483                                  s->header.table_size)) {
1484         return -EINVAL;
1485     }
1486 
1487     /* Shrinking is currently not supported */
1488     if ((uint64_t)offset < s->header.image_size) {
1489         return -ENOTSUP;
1490     }
1491 
1492     old_image_size = s->header.image_size;
1493     s->header.image_size = offset;
1494     ret = qed_write_header_sync(s);
1495     if (ret < 0) {
1496         s->header.image_size = old_image_size;
1497     }
1498     return ret;
1499 }
1500 
1501 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1502 {
1503     BDRVQEDState *s = bs->opaque;
1504     return s->header.image_size;
1505 }
1506 
1507 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1508 {
1509     BDRVQEDState *s = bs->opaque;
1510 
1511     memset(bdi, 0, sizeof(*bdi));
1512     bdi->cluster_size = s->header.cluster_size;
1513     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1514     bdi->unallocated_blocks_are_zero = true;
1515     bdi->can_write_zeroes_with_unmap = true;
1516     return 0;
1517 }
1518 
1519 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1520                                         const char *backing_file,
1521                                         const char *backing_fmt)
1522 {
1523     BDRVQEDState *s = bs->opaque;
1524     QEDHeader new_header, le_header;
1525     void *buffer;
1526     size_t buffer_len, backing_file_len;
1527     int ret;
1528 
1529     /* Refuse to set backing filename if unknown compat feature bits are
1530      * active.  If the image uses an unknown compat feature then we may not
1531      * know the layout of data following the header structure and cannot safely
1532      * add a new string.
1533      */
1534     if (backing_file && (s->header.compat_features &
1535                          ~QED_COMPAT_FEATURE_MASK)) {
1536         return -ENOTSUP;
1537     }
1538 
1539     memcpy(&new_header, &s->header, sizeof(new_header));
1540 
1541     new_header.features &= ~(QED_F_BACKING_FILE |
1542                              QED_F_BACKING_FORMAT_NO_PROBE);
1543 
1544     /* Adjust feature flags */
1545     if (backing_file) {
1546         new_header.features |= QED_F_BACKING_FILE;
1547 
1548         if (qed_fmt_is_raw(backing_fmt)) {
1549             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1550         }
1551     }
1552 
1553     /* Calculate new header size */
1554     backing_file_len = 0;
1555 
1556     if (backing_file) {
1557         backing_file_len = strlen(backing_file);
1558     }
1559 
1560     buffer_len = sizeof(new_header);
1561     new_header.backing_filename_offset = buffer_len;
1562     new_header.backing_filename_size = backing_file_len;
1563     buffer_len += backing_file_len;
1564 
1565     /* Make sure we can rewrite header without failing */
1566     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1567         return -ENOSPC;
1568     }
1569 
1570     /* Prepare new header */
1571     buffer = g_malloc(buffer_len);
1572 
1573     qed_header_cpu_to_le(&new_header, &le_header);
1574     memcpy(buffer, &le_header, sizeof(le_header));
1575     buffer_len = sizeof(le_header);
1576 
1577     if (backing_file) {
1578         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1579         buffer_len += backing_file_len;
1580     }
1581 
1582     /* Write new header */
1583     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1584     g_free(buffer);
1585     if (ret == 0) {
1586         memcpy(&s->header, &new_header, sizeof(new_header));
1587     }
1588     return ret;
1589 }
1590 
1591 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1592 {
1593     BDRVQEDState *s = bs->opaque;
1594     Error *local_err = NULL;
1595     int ret;
1596 
1597     bdrv_qed_close(bs);
1598 
1599     bdrv_invalidate_cache(bs->file, &local_err);
1600     if (local_err) {
1601         error_propagate(errp, local_err);
1602         return;
1603     }
1604 
1605     memset(s, 0, sizeof(BDRVQEDState));
1606     ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1607     if (local_err) {
1608         error_setg(errp, "Could not reopen qed layer: %s",
1609                    error_get_pretty(local_err));
1610         error_free(local_err);
1611         return;
1612     } else if (ret < 0) {
1613         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1614         return;
1615     }
1616 }
1617 
1618 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1619                           BdrvCheckMode fix)
1620 {
1621     BDRVQEDState *s = bs->opaque;
1622 
1623     return qed_check(s, result, !!fix);
1624 }
1625 
1626 static QemuOptsList qed_create_opts = {
1627     .name = "qed-create-opts",
1628     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1629     .desc = {
1630         {
1631             .name = BLOCK_OPT_SIZE,
1632             .type = QEMU_OPT_SIZE,
1633             .help = "Virtual disk size"
1634         },
1635         {
1636             .name = BLOCK_OPT_BACKING_FILE,
1637             .type = QEMU_OPT_STRING,
1638             .help = "File name of a base image"
1639         },
1640         {
1641             .name = BLOCK_OPT_BACKING_FMT,
1642             .type = QEMU_OPT_STRING,
1643             .help = "Image format of the base image"
1644         },
1645         {
1646             .name = BLOCK_OPT_CLUSTER_SIZE,
1647             .type = QEMU_OPT_SIZE,
1648             .help = "Cluster size (in bytes)",
1649             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1650         },
1651         {
1652             .name = BLOCK_OPT_TABLE_SIZE,
1653             .type = QEMU_OPT_SIZE,
1654             .help = "L1/L2 table size (in clusters)"
1655         },
1656         { /* end of list */ }
1657     }
1658 };
1659 
1660 static BlockDriver bdrv_qed = {
1661     .format_name              = "qed",
1662     .instance_size            = sizeof(BDRVQEDState),
1663     .create_opts              = &qed_create_opts,
1664     .supports_backing         = true,
1665 
1666     .bdrv_probe               = bdrv_qed_probe,
1667     .bdrv_rebind              = bdrv_qed_rebind,
1668     .bdrv_open                = bdrv_qed_open,
1669     .bdrv_close               = bdrv_qed_close,
1670     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1671     .bdrv_create              = bdrv_qed_create,
1672     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1673     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1674     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1675     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1676     .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1677     .bdrv_truncate            = bdrv_qed_truncate,
1678     .bdrv_getlength           = bdrv_qed_getlength,
1679     .bdrv_get_info            = bdrv_qed_get_info,
1680     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1681     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1682     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1683     .bdrv_check               = bdrv_qed_check,
1684     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1685     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1686 };
1687 
1688 static void bdrv_qed_init(void)
1689 {
1690     bdrv_register(&bdrv_qed);
1691 }
1692 
1693 block_init(bdrv_qed_init);
1694