xref: /openbmc/qemu/block/qed.c (revision bc72ad67)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20 
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23     QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24     bool finished = false;
25 
26     /* Wait for the request to finish */
27     acb->finished = &finished;
28     while (!finished) {
29         qemu_aio_wait();
30     }
31 }
32 
33 static const AIOCBInfo qed_aiocb_info = {
34     .aiocb_size         = sizeof(QEDAIOCB),
35     .cancel             = qed_aio_cancel,
36 };
37 
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39                           const char *filename)
40 {
41     const QEDHeader *header = (const QEDHeader *)buf;
42 
43     if (buf_size < sizeof(*header)) {
44         return 0;
45     }
46     if (le32_to_cpu(header->magic) != QED_MAGIC) {
47         return 0;
48     }
49     return 100;
50 }
51 
52 /**
53  * Check whether an image format is raw
54  *
55  * @fmt:    Backing file format, may be NULL
56  */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59     return fmt && strcmp(fmt, "raw") == 0;
60 }
61 
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64     cpu->magic = le32_to_cpu(le->magic);
65     cpu->cluster_size = le32_to_cpu(le->cluster_size);
66     cpu->table_size = le32_to_cpu(le->table_size);
67     cpu->header_size = le32_to_cpu(le->header_size);
68     cpu->features = le64_to_cpu(le->features);
69     cpu->compat_features = le64_to_cpu(le->compat_features);
70     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72     cpu->image_size = le64_to_cpu(le->image_size);
73     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76 
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79     le->magic = cpu_to_le32(cpu->magic);
80     le->cluster_size = cpu_to_le32(cpu->cluster_size);
81     le->table_size = cpu_to_le32(cpu->table_size);
82     le->header_size = cpu_to_le32(cpu->header_size);
83     le->features = cpu_to_le64(cpu->features);
84     le->compat_features = cpu_to_le64(cpu->compat_features);
85     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87     le->image_size = cpu_to_le64(cpu->image_size);
88     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91 
92 int qed_write_header_sync(BDRVQEDState *s)
93 {
94     QEDHeader le;
95     int ret;
96 
97     qed_header_cpu_to_le(&s->header, &le);
98     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99     if (ret != sizeof(le)) {
100         return ret;
101     }
102     return 0;
103 }
104 
105 typedef struct {
106     GenericCB gencb;
107     BDRVQEDState *s;
108     struct iovec iov;
109     QEMUIOVector qiov;
110     int nsectors;
111     uint8_t *buf;
112 } QEDWriteHeaderCB;
113 
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116     QEDWriteHeaderCB *write_header_cb = opaque;
117 
118     qemu_vfree(write_header_cb->buf);
119     gencb_complete(write_header_cb, ret);
120 }
121 
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124     QEDWriteHeaderCB *write_header_cb = opaque;
125     BDRVQEDState *s = write_header_cb->s;
126 
127     if (ret) {
128         qed_write_header_cb(write_header_cb, ret);
129         return;
130     }
131 
132     /* Update header */
133     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134 
135     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136                     write_header_cb->nsectors, qed_write_header_cb,
137                     write_header_cb);
138 }
139 
140 /**
141  * Update header in-place (does not rewrite backing filename or other strings)
142  *
143  * This function only updates known header fields in-place and does not affect
144  * extra data after the QED header.
145  */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147                              void *opaque)
148 {
149     /* We must write full sectors for O_DIRECT but cannot necessarily generate
150      * the data following the header if an unrecognized compat feature is
151      * active.  Therefore, first read the sectors containing the header, update
152      * them, and write back.
153      */
154 
155     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156                    BDRV_SECTOR_SIZE;
157     size_t len = nsectors * BDRV_SECTOR_SIZE;
158     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159                                                     cb, opaque);
160 
161     write_header_cb->s = s;
162     write_header_cb->nsectors = nsectors;
163     write_header_cb->buf = qemu_blockalign(s->bs, len);
164     write_header_cb->iov.iov_base = write_header_cb->buf;
165     write_header_cb->iov.iov_len = len;
166     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167 
168     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169                    qed_write_header_read_cb, write_header_cb);
170 }
171 
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174     uint64_t table_entries;
175     uint64_t l2_size;
176 
177     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178     l2_size = table_entries * cluster_size;
179 
180     return l2_size * table_entries;
181 }
182 
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186         cluster_size > QED_MAX_CLUSTER_SIZE) {
187         return false;
188     }
189     if (cluster_size & (cluster_size - 1)) {
190         return false; /* not power of 2 */
191     }
192     return true;
193 }
194 
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197     if (table_size < QED_MIN_TABLE_SIZE ||
198         table_size > QED_MAX_TABLE_SIZE) {
199         return false;
200     }
201     if (table_size & (table_size - 1)) {
202         return false; /* not power of 2 */
203     }
204     return true;
205 }
206 
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208                                     uint32_t table_size)
209 {
210     if (image_size % BDRV_SECTOR_SIZE != 0) {
211         return false; /* not multiple of sector size */
212     }
213     if (image_size > qed_max_image_size(cluster_size, table_size)) {
214         return false; /* image is too large */
215     }
216     return true;
217 }
218 
219 /**
220  * Read a string of known length from the image file
221  *
222  * @file:       Image file
223  * @offset:     File offset to start of string, in bytes
224  * @n:          String length in bytes
225  * @buf:        Destination buffer
226  * @buflen:     Destination buffer length in bytes
227  * @ret:        0 on success, -errno on failure
228  *
229  * The string is NUL-terminated.
230  */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232                            char *buf, size_t buflen)
233 {
234     int ret;
235     if (n >= buflen) {
236         return -EINVAL;
237     }
238     ret = bdrv_pread(file, offset, buf, n);
239     if (ret < 0) {
240         return ret;
241     }
242     buf[n] = '\0';
243     return 0;
244 }
245 
246 /**
247  * Allocate new clusters
248  *
249  * @s:          QED state
250  * @n:          Number of contiguous clusters to allocate
251  * @ret:        Offset of first allocated cluster
252  *
253  * This function only produces the offset where the new clusters should be
254  * written.  It updates BDRVQEDState but does not make any changes to the image
255  * file.
256  */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259     uint64_t offset = s->file_size;
260     s->file_size += n * s->header.cluster_size;
261     return offset;
262 }
263 
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266     /* Honor O_DIRECT memory alignment requirements */
267     return qemu_blockalign(s->bs,
268                            s->header.cluster_size * s->header.table_size);
269 }
270 
271 /**
272  * Allocate a new zeroed L2 table
273  */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277 
278     l2_table->table = qed_alloc_table(s);
279     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280 
281     memset(l2_table->table->offsets, 0,
282            s->header.cluster_size * s->header.table_size);
283     return l2_table;
284 }
285 
286 static void qed_aio_next_io(void *opaque, int ret);
287 
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290     assert(!s->allocating_write_reqs_plugged);
291 
292     s->allocating_write_reqs_plugged = true;
293 }
294 
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297     QEDAIOCB *acb;
298 
299     assert(s->allocating_write_reqs_plugged);
300 
301     s->allocating_write_reqs_plugged = false;
302 
303     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304     if (acb) {
305         qed_aio_next_io(acb, 0);
306     }
307 }
308 
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311     /* Do nothing */
312 }
313 
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316     BDRVQEDState *s = opaque;
317 
318     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319 
320     /* No need to wait until flush completes */
321     qed_unplug_allocating_write_reqs(s);
322 }
323 
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326     BDRVQEDState *s = opaque;
327 
328     if (ret) {
329         qed_unplug_allocating_write_reqs(s);
330         return;
331     }
332 
333     s->header.features &= ~QED_F_NEED_CHECK;
334     qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336 
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339     BDRVQEDState *s = opaque;
340 
341     /* The timer should only fire when allocating writes have drained */
342     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343 
344     trace_qed_need_check_timer_cb(s);
345 
346     qed_plug_allocating_write_reqs(s);
347 
348     /* Ensure writes are on disk before clearing flag */
349     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351 
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354     trace_qed_start_need_check_timer(s);
355 
356     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357      * migration.
358      */
359     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362 
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366     trace_qed_cancel_need_check_timer(s);
367     timer_del(s->need_check_timer);
368 }
369 
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372     BDRVQEDState *s = bs->opaque;
373     s->bs = bs;
374 }
375 
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags)
377 {
378     BDRVQEDState *s = bs->opaque;
379     QEDHeader le_header;
380     int64_t file_size;
381     int ret;
382 
383     s->bs = bs;
384     QSIMPLEQ_INIT(&s->allocating_write_reqs);
385 
386     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
387     if (ret < 0) {
388         return ret;
389     }
390     qed_header_le_to_cpu(&le_header, &s->header);
391 
392     if (s->header.magic != QED_MAGIC) {
393         return -EMEDIUMTYPE;
394     }
395     if (s->header.features & ~QED_FEATURE_MASK) {
396         /* image uses unsupported feature bits */
397         char buf[64];
398         snprintf(buf, sizeof(buf), "%" PRIx64,
399             s->header.features & ~QED_FEATURE_MASK);
400         qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
401             bs->device_name, "QED", buf);
402         return -ENOTSUP;
403     }
404     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
405         return -EINVAL;
406     }
407 
408     /* Round down file size to the last cluster */
409     file_size = bdrv_getlength(bs->file);
410     if (file_size < 0) {
411         return file_size;
412     }
413     s->file_size = qed_start_of_cluster(s, file_size);
414 
415     if (!qed_is_table_size_valid(s->header.table_size)) {
416         return -EINVAL;
417     }
418     if (!qed_is_image_size_valid(s->header.image_size,
419                                  s->header.cluster_size,
420                                  s->header.table_size)) {
421         return -EINVAL;
422     }
423     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
424         return -EINVAL;
425     }
426 
427     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
428                       sizeof(uint64_t);
429     s->l2_shift = ffs(s->header.cluster_size) - 1;
430     s->l2_mask = s->table_nelems - 1;
431     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
432 
433     if ((s->header.features & QED_F_BACKING_FILE)) {
434         if ((uint64_t)s->header.backing_filename_offset +
435             s->header.backing_filename_size >
436             s->header.cluster_size * s->header.header_size) {
437             return -EINVAL;
438         }
439 
440         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
441                               s->header.backing_filename_size, bs->backing_file,
442                               sizeof(bs->backing_file));
443         if (ret < 0) {
444             return ret;
445         }
446 
447         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
448             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
449         }
450     }
451 
452     /* Reset unknown autoclear feature bits.  This is a backwards
453      * compatibility mechanism that allows images to be opened by older
454      * programs, which "knock out" unknown feature bits.  When an image is
455      * opened by a newer program again it can detect that the autoclear
456      * feature is no longer valid.
457      */
458     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
459         !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
460         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
461 
462         ret = qed_write_header_sync(s);
463         if (ret) {
464             return ret;
465         }
466 
467         /* From here on only known autoclear feature bits are valid */
468         bdrv_flush(bs->file);
469     }
470 
471     s->l1_table = qed_alloc_table(s);
472     qed_init_l2_cache(&s->l2_cache);
473 
474     ret = qed_read_l1_table_sync(s);
475     if (ret) {
476         goto out;
477     }
478 
479     /* If image was not closed cleanly, check consistency */
480     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
481         /* Read-only images cannot be fixed.  There is no risk of corruption
482          * since write operations are not possible.  Therefore, allow
483          * potentially inconsistent images to be opened read-only.  This can
484          * aid data recovery from an otherwise inconsistent image.
485          */
486         if (!bdrv_is_read_only(bs->file) &&
487             !(flags & BDRV_O_INCOMING)) {
488             BdrvCheckResult result = {0};
489 
490             ret = qed_check(s, &result, true);
491             if (ret) {
492                 goto out;
493             }
494         }
495     }
496 
497     s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
498                                             qed_need_check_timer_cb, s);
499 
500 out:
501     if (ret) {
502         qed_free_l2_cache(&s->l2_cache);
503         qemu_vfree(s->l1_table);
504     }
505     return ret;
506 }
507 
508 /* We have nothing to do for QED reopen, stubs just return
509  * success */
510 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
511                                    BlockReopenQueue *queue, Error **errp)
512 {
513     return 0;
514 }
515 
516 static void bdrv_qed_close(BlockDriverState *bs)
517 {
518     BDRVQEDState *s = bs->opaque;
519 
520     qed_cancel_need_check_timer(s);
521     timer_free(s->need_check_timer);
522 
523     /* Ensure writes reach stable storage */
524     bdrv_flush(bs->file);
525 
526     /* Clean shutdown, no check required on next open */
527     if (s->header.features & QED_F_NEED_CHECK) {
528         s->header.features &= ~QED_F_NEED_CHECK;
529         qed_write_header_sync(s);
530     }
531 
532     qed_free_l2_cache(&s->l2_cache);
533     qemu_vfree(s->l1_table);
534 }
535 
536 static int qed_create(const char *filename, uint32_t cluster_size,
537                       uint64_t image_size, uint32_t table_size,
538                       const char *backing_file, const char *backing_fmt)
539 {
540     QEDHeader header = {
541         .magic = QED_MAGIC,
542         .cluster_size = cluster_size,
543         .table_size = table_size,
544         .header_size = 1,
545         .features = 0,
546         .compat_features = 0,
547         .l1_table_offset = cluster_size,
548         .image_size = image_size,
549     };
550     QEDHeader le_header;
551     uint8_t *l1_table = NULL;
552     size_t l1_size = header.cluster_size * header.table_size;
553     int ret = 0;
554     BlockDriverState *bs = NULL;
555 
556     ret = bdrv_create_file(filename, NULL);
557     if (ret < 0) {
558         return ret;
559     }
560 
561     ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     /* File must start empty and grow, check truncate is supported */
567     ret = bdrv_truncate(bs, 0);
568     if (ret < 0) {
569         goto out;
570     }
571 
572     if (backing_file) {
573         header.features |= QED_F_BACKING_FILE;
574         header.backing_filename_offset = sizeof(le_header);
575         header.backing_filename_size = strlen(backing_file);
576 
577         if (qed_fmt_is_raw(backing_fmt)) {
578             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
579         }
580     }
581 
582     qed_header_cpu_to_le(&header, &le_header);
583     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
584     if (ret < 0) {
585         goto out;
586     }
587     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
588                       header.backing_filename_size);
589     if (ret < 0) {
590         goto out;
591     }
592 
593     l1_table = g_malloc0(l1_size);
594     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
595     if (ret < 0) {
596         goto out;
597     }
598 
599     ret = 0; /* success */
600 out:
601     g_free(l1_table);
602     bdrv_delete(bs);
603     return ret;
604 }
605 
606 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
607 {
608     uint64_t image_size = 0;
609     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
610     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
611     const char *backing_file = NULL;
612     const char *backing_fmt = NULL;
613 
614     while (options && options->name) {
615         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
616             image_size = options->value.n;
617         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
618             backing_file = options->value.s;
619         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
620             backing_fmt = options->value.s;
621         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
622             if (options->value.n) {
623                 cluster_size = options->value.n;
624             }
625         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
626             if (options->value.n) {
627                 table_size = options->value.n;
628             }
629         }
630         options++;
631     }
632 
633     if (!qed_is_cluster_size_valid(cluster_size)) {
634         fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
635                 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
636         return -EINVAL;
637     }
638     if (!qed_is_table_size_valid(table_size)) {
639         fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
640                 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
641         return -EINVAL;
642     }
643     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
644         fprintf(stderr, "QED image size must be a non-zero multiple of "
645                         "cluster size and less than %" PRIu64 " bytes\n",
646                 qed_max_image_size(cluster_size, table_size));
647         return -EINVAL;
648     }
649 
650     return qed_create(filename, cluster_size, image_size, table_size,
651                       backing_file, backing_fmt);
652 }
653 
654 typedef struct {
655     Coroutine *co;
656     int is_allocated;
657     int *pnum;
658 } QEDIsAllocatedCB;
659 
660 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
661 {
662     QEDIsAllocatedCB *cb = opaque;
663     *cb->pnum = len / BDRV_SECTOR_SIZE;
664     cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
665     if (cb->co) {
666         qemu_coroutine_enter(cb->co, NULL);
667     }
668 }
669 
670 static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
671                                                  int64_t sector_num,
672                                                  int nb_sectors, int *pnum)
673 {
674     BDRVQEDState *s = bs->opaque;
675     uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
676     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
677     QEDIsAllocatedCB cb = {
678         .is_allocated = -1,
679         .pnum = pnum,
680     };
681     QEDRequest request = { .l2_table = NULL };
682 
683     qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
684 
685     /* Now sleep if the callback wasn't invoked immediately */
686     while (cb.is_allocated == -1) {
687         cb.co = qemu_coroutine_self();
688         qemu_coroutine_yield();
689     }
690 
691     qed_unref_l2_cache_entry(request.l2_table);
692 
693     return cb.is_allocated;
694 }
695 
696 static int bdrv_qed_make_empty(BlockDriverState *bs)
697 {
698     return -ENOTSUP;
699 }
700 
701 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
702 {
703     return acb->common.bs->opaque;
704 }
705 
706 /**
707  * Read from the backing file or zero-fill if no backing file
708  *
709  * @s:          QED state
710  * @pos:        Byte position in device
711  * @qiov:       Destination I/O vector
712  * @cb:         Completion function
713  * @opaque:     User data for completion function
714  *
715  * This function reads qiov->size bytes starting at pos from the backing file.
716  * If there is no backing file then zeroes are read.
717  */
718 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
719                                   QEMUIOVector *qiov,
720                                   BlockDriverCompletionFunc *cb, void *opaque)
721 {
722     uint64_t backing_length = 0;
723     size_t size;
724 
725     /* If there is a backing file, get its length.  Treat the absence of a
726      * backing file like a zero length backing file.
727      */
728     if (s->bs->backing_hd) {
729         int64_t l = bdrv_getlength(s->bs->backing_hd);
730         if (l < 0) {
731             cb(opaque, l);
732             return;
733         }
734         backing_length = l;
735     }
736 
737     /* Zero all sectors if reading beyond the end of the backing file */
738     if (pos >= backing_length ||
739         pos + qiov->size > backing_length) {
740         qemu_iovec_memset(qiov, 0, 0, qiov->size);
741     }
742 
743     /* Complete now if there are no backing file sectors to read */
744     if (pos >= backing_length) {
745         cb(opaque, 0);
746         return;
747     }
748 
749     /* If the read straddles the end of the backing file, shorten it */
750     size = MIN((uint64_t)backing_length - pos, qiov->size);
751 
752     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
753     bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
754                    qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
755 }
756 
757 typedef struct {
758     GenericCB gencb;
759     BDRVQEDState *s;
760     QEMUIOVector qiov;
761     struct iovec iov;
762     uint64_t offset;
763 } CopyFromBackingFileCB;
764 
765 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
766 {
767     CopyFromBackingFileCB *copy_cb = opaque;
768     qemu_vfree(copy_cb->iov.iov_base);
769     gencb_complete(&copy_cb->gencb, ret);
770 }
771 
772 static void qed_copy_from_backing_file_write(void *opaque, int ret)
773 {
774     CopyFromBackingFileCB *copy_cb = opaque;
775     BDRVQEDState *s = copy_cb->s;
776 
777     if (ret) {
778         qed_copy_from_backing_file_cb(copy_cb, ret);
779         return;
780     }
781 
782     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
783     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
784                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
785                     qed_copy_from_backing_file_cb, copy_cb);
786 }
787 
788 /**
789  * Copy data from backing file into the image
790  *
791  * @s:          QED state
792  * @pos:        Byte position in device
793  * @len:        Number of bytes
794  * @offset:     Byte offset in image file
795  * @cb:         Completion function
796  * @opaque:     User data for completion function
797  */
798 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
799                                        uint64_t len, uint64_t offset,
800                                        BlockDriverCompletionFunc *cb,
801                                        void *opaque)
802 {
803     CopyFromBackingFileCB *copy_cb;
804 
805     /* Skip copy entirely if there is no work to do */
806     if (len == 0) {
807         cb(opaque, 0);
808         return;
809     }
810 
811     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
812     copy_cb->s = s;
813     copy_cb->offset = offset;
814     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
815     copy_cb->iov.iov_len = len;
816     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
817 
818     qed_read_backing_file(s, pos, &copy_cb->qiov,
819                           qed_copy_from_backing_file_write, copy_cb);
820 }
821 
822 /**
823  * Link one or more contiguous clusters into a table
824  *
825  * @s:              QED state
826  * @table:          L2 table
827  * @index:          First cluster index
828  * @n:              Number of contiguous clusters
829  * @cluster:        First cluster offset
830  *
831  * The cluster offset may be an allocated byte offset in the image file, the
832  * zero cluster marker, or the unallocated cluster marker.
833  */
834 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
835                                 unsigned int n, uint64_t cluster)
836 {
837     int i;
838     for (i = index; i < index + n; i++) {
839         table->offsets[i] = cluster;
840         if (!qed_offset_is_unalloc_cluster(cluster) &&
841             !qed_offset_is_zero_cluster(cluster)) {
842             cluster += s->header.cluster_size;
843         }
844     }
845 }
846 
847 static void qed_aio_complete_bh(void *opaque)
848 {
849     QEDAIOCB *acb = opaque;
850     BlockDriverCompletionFunc *cb = acb->common.cb;
851     void *user_opaque = acb->common.opaque;
852     int ret = acb->bh_ret;
853     bool *finished = acb->finished;
854 
855     qemu_bh_delete(acb->bh);
856     qemu_aio_release(acb);
857 
858     /* Invoke callback */
859     cb(user_opaque, ret);
860 
861     /* Signal cancel completion */
862     if (finished) {
863         *finished = true;
864     }
865 }
866 
867 static void qed_aio_complete(QEDAIOCB *acb, int ret)
868 {
869     BDRVQEDState *s = acb_to_s(acb);
870 
871     trace_qed_aio_complete(s, acb, ret);
872 
873     /* Free resources */
874     qemu_iovec_destroy(&acb->cur_qiov);
875     qed_unref_l2_cache_entry(acb->request.l2_table);
876 
877     /* Free the buffer we may have allocated for zero writes */
878     if (acb->flags & QED_AIOCB_ZERO) {
879         qemu_vfree(acb->qiov->iov[0].iov_base);
880         acb->qiov->iov[0].iov_base = NULL;
881     }
882 
883     /* Arrange for a bh to invoke the completion function */
884     acb->bh_ret = ret;
885     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
886     qemu_bh_schedule(acb->bh);
887 
888     /* Start next allocating write request waiting behind this one.  Note that
889      * requests enqueue themselves when they first hit an unallocated cluster
890      * but they wait until the entire request is finished before waking up the
891      * next request in the queue.  This ensures that we don't cycle through
892      * requests multiple times but rather finish one at a time completely.
893      */
894     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
895         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
896         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
897         if (acb) {
898             qed_aio_next_io(acb, 0);
899         } else if (s->header.features & QED_F_NEED_CHECK) {
900             qed_start_need_check_timer(s);
901         }
902     }
903 }
904 
905 /**
906  * Commit the current L2 table to the cache
907  */
908 static void qed_commit_l2_update(void *opaque, int ret)
909 {
910     QEDAIOCB *acb = opaque;
911     BDRVQEDState *s = acb_to_s(acb);
912     CachedL2Table *l2_table = acb->request.l2_table;
913     uint64_t l2_offset = l2_table->offset;
914 
915     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
916 
917     /* This is guaranteed to succeed because we just committed the entry to the
918      * cache.
919      */
920     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
921     assert(acb->request.l2_table != NULL);
922 
923     qed_aio_next_io(opaque, ret);
924 }
925 
926 /**
927  * Update L1 table with new L2 table offset and write it out
928  */
929 static void qed_aio_write_l1_update(void *opaque, int ret)
930 {
931     QEDAIOCB *acb = opaque;
932     BDRVQEDState *s = acb_to_s(acb);
933     int index;
934 
935     if (ret) {
936         qed_aio_complete(acb, ret);
937         return;
938     }
939 
940     index = qed_l1_index(s, acb->cur_pos);
941     s->l1_table->offsets[index] = acb->request.l2_table->offset;
942 
943     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
944 }
945 
946 /**
947  * Update L2 table with new cluster offsets and write them out
948  */
949 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
950 {
951     BDRVQEDState *s = acb_to_s(acb);
952     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
953     int index;
954 
955     if (ret) {
956         goto err;
957     }
958 
959     if (need_alloc) {
960         qed_unref_l2_cache_entry(acb->request.l2_table);
961         acb->request.l2_table = qed_new_l2_table(s);
962     }
963 
964     index = qed_l2_index(s, acb->cur_pos);
965     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
966                          offset);
967 
968     if (need_alloc) {
969         /* Write out the whole new L2 table */
970         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
971                             qed_aio_write_l1_update, acb);
972     } else {
973         /* Write out only the updated part of the L2 table */
974         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
975                             qed_aio_next_io, acb);
976     }
977     return;
978 
979 err:
980     qed_aio_complete(acb, ret);
981 }
982 
983 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
984 {
985     QEDAIOCB *acb = opaque;
986     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
987 }
988 
989 /**
990  * Flush new data clusters before updating the L2 table
991  *
992  * This flush is necessary when a backing file is in use.  A crash during an
993  * allocating write could result in empty clusters in the image.  If the write
994  * only touched a subregion of the cluster, then backing image sectors have
995  * been lost in the untouched region.  The solution is to flush after writing a
996  * new data cluster and before updating the L2 table.
997  */
998 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
999 {
1000     QEDAIOCB *acb = opaque;
1001     BDRVQEDState *s = acb_to_s(acb);
1002 
1003     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1004         qed_aio_complete(acb, -EIO);
1005     }
1006 }
1007 
1008 /**
1009  * Write data to the image file
1010  */
1011 static void qed_aio_write_main(void *opaque, int ret)
1012 {
1013     QEDAIOCB *acb = opaque;
1014     BDRVQEDState *s = acb_to_s(acb);
1015     uint64_t offset = acb->cur_cluster +
1016                       qed_offset_into_cluster(s, acb->cur_pos);
1017     BlockDriverCompletionFunc *next_fn;
1018 
1019     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1020 
1021     if (ret) {
1022         qed_aio_complete(acb, ret);
1023         return;
1024     }
1025 
1026     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1027         next_fn = qed_aio_next_io;
1028     } else {
1029         if (s->bs->backing_hd) {
1030             next_fn = qed_aio_write_flush_before_l2_update;
1031         } else {
1032             next_fn = qed_aio_write_l2_update_cb;
1033         }
1034     }
1035 
1036     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1037     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1038                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1039                     next_fn, acb);
1040 }
1041 
1042 /**
1043  * Populate back untouched region of new data cluster
1044  */
1045 static void qed_aio_write_postfill(void *opaque, int ret)
1046 {
1047     QEDAIOCB *acb = opaque;
1048     BDRVQEDState *s = acb_to_s(acb);
1049     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1050     uint64_t len =
1051         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1052     uint64_t offset = acb->cur_cluster +
1053                       qed_offset_into_cluster(s, acb->cur_pos) +
1054                       acb->cur_qiov.size;
1055 
1056     if (ret) {
1057         qed_aio_complete(acb, ret);
1058         return;
1059     }
1060 
1061     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1062     qed_copy_from_backing_file(s, start, len, offset,
1063                                 qed_aio_write_main, acb);
1064 }
1065 
1066 /**
1067  * Populate front untouched region of new data cluster
1068  */
1069 static void qed_aio_write_prefill(void *opaque, int ret)
1070 {
1071     QEDAIOCB *acb = opaque;
1072     BDRVQEDState *s = acb_to_s(acb);
1073     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1074     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1075 
1076     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1077     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1078                                 qed_aio_write_postfill, acb);
1079 }
1080 
1081 /**
1082  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1083  */
1084 static bool qed_should_set_need_check(BDRVQEDState *s)
1085 {
1086     /* The flush before L2 update path ensures consistency */
1087     if (s->bs->backing_hd) {
1088         return false;
1089     }
1090 
1091     return !(s->header.features & QED_F_NEED_CHECK);
1092 }
1093 
1094 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1095 {
1096     QEDAIOCB *acb = opaque;
1097 
1098     if (ret) {
1099         qed_aio_complete(acb, ret);
1100         return;
1101     }
1102 
1103     qed_aio_write_l2_update(acb, 0, 1);
1104 }
1105 
1106 /**
1107  * Write new data cluster
1108  *
1109  * @acb:        Write request
1110  * @len:        Length in bytes
1111  *
1112  * This path is taken when writing to previously unallocated clusters.
1113  */
1114 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1115 {
1116     BDRVQEDState *s = acb_to_s(acb);
1117     BlockDriverCompletionFunc *cb;
1118 
1119     /* Cancel timer when the first allocating request comes in */
1120     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1121         qed_cancel_need_check_timer(s);
1122     }
1123 
1124     /* Freeze this request if another allocating write is in progress */
1125     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1126         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1127     }
1128     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1129         s->allocating_write_reqs_plugged) {
1130         return; /* wait for existing request to finish */
1131     }
1132 
1133     acb->cur_nclusters = qed_bytes_to_clusters(s,
1134             qed_offset_into_cluster(s, acb->cur_pos) + len);
1135     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1136 
1137     if (acb->flags & QED_AIOCB_ZERO) {
1138         /* Skip ahead if the clusters are already zero */
1139         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1140             qed_aio_next_io(acb, 0);
1141             return;
1142         }
1143 
1144         cb = qed_aio_write_zero_cluster;
1145     } else {
1146         cb = qed_aio_write_prefill;
1147         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1148     }
1149 
1150     if (qed_should_set_need_check(s)) {
1151         s->header.features |= QED_F_NEED_CHECK;
1152         qed_write_header(s, cb, acb);
1153     } else {
1154         cb(acb, 0);
1155     }
1156 }
1157 
1158 /**
1159  * Write data cluster in place
1160  *
1161  * @acb:        Write request
1162  * @offset:     Cluster offset in bytes
1163  * @len:        Length in bytes
1164  *
1165  * This path is taken when writing to already allocated clusters.
1166  */
1167 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1168 {
1169     /* Allocate buffer for zero writes */
1170     if (acb->flags & QED_AIOCB_ZERO) {
1171         struct iovec *iov = acb->qiov->iov;
1172 
1173         if (!iov->iov_base) {
1174             iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1175             memset(iov->iov_base, 0, iov->iov_len);
1176         }
1177     }
1178 
1179     /* Calculate the I/O vector */
1180     acb->cur_cluster = offset;
1181     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1182 
1183     /* Do the actual write */
1184     qed_aio_write_main(acb, 0);
1185 }
1186 
1187 /**
1188  * Write data cluster
1189  *
1190  * @opaque:     Write request
1191  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1192  *              or -errno
1193  * @offset:     Cluster offset in bytes
1194  * @len:        Length in bytes
1195  *
1196  * Callback from qed_find_cluster().
1197  */
1198 static void qed_aio_write_data(void *opaque, int ret,
1199                                uint64_t offset, size_t len)
1200 {
1201     QEDAIOCB *acb = opaque;
1202 
1203     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1204 
1205     acb->find_cluster_ret = ret;
1206 
1207     switch (ret) {
1208     case QED_CLUSTER_FOUND:
1209         qed_aio_write_inplace(acb, offset, len);
1210         break;
1211 
1212     case QED_CLUSTER_L2:
1213     case QED_CLUSTER_L1:
1214     case QED_CLUSTER_ZERO:
1215         qed_aio_write_alloc(acb, len);
1216         break;
1217 
1218     default:
1219         qed_aio_complete(acb, ret);
1220         break;
1221     }
1222 }
1223 
1224 /**
1225  * Read data cluster
1226  *
1227  * @opaque:     Read request
1228  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1229  *              or -errno
1230  * @offset:     Cluster offset in bytes
1231  * @len:        Length in bytes
1232  *
1233  * Callback from qed_find_cluster().
1234  */
1235 static void qed_aio_read_data(void *opaque, int ret,
1236                               uint64_t offset, size_t len)
1237 {
1238     QEDAIOCB *acb = opaque;
1239     BDRVQEDState *s = acb_to_s(acb);
1240     BlockDriverState *bs = acb->common.bs;
1241 
1242     /* Adjust offset into cluster */
1243     offset += qed_offset_into_cluster(s, acb->cur_pos);
1244 
1245     trace_qed_aio_read_data(s, acb, ret, offset, len);
1246 
1247     if (ret < 0) {
1248         goto err;
1249     }
1250 
1251     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1252 
1253     /* Handle zero cluster and backing file reads */
1254     if (ret == QED_CLUSTER_ZERO) {
1255         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1256         qed_aio_next_io(acb, 0);
1257         return;
1258     } else if (ret != QED_CLUSTER_FOUND) {
1259         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1260                               qed_aio_next_io, acb);
1261         return;
1262     }
1263 
1264     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1265     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1266                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1267                    qed_aio_next_io, acb);
1268     return;
1269 
1270 err:
1271     qed_aio_complete(acb, ret);
1272 }
1273 
1274 /**
1275  * Begin next I/O or complete the request
1276  */
1277 static void qed_aio_next_io(void *opaque, int ret)
1278 {
1279     QEDAIOCB *acb = opaque;
1280     BDRVQEDState *s = acb_to_s(acb);
1281     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1282                                 qed_aio_write_data : qed_aio_read_data;
1283 
1284     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1285 
1286     /* Handle I/O error */
1287     if (ret) {
1288         qed_aio_complete(acb, ret);
1289         return;
1290     }
1291 
1292     acb->qiov_offset += acb->cur_qiov.size;
1293     acb->cur_pos += acb->cur_qiov.size;
1294     qemu_iovec_reset(&acb->cur_qiov);
1295 
1296     /* Complete request */
1297     if (acb->cur_pos >= acb->end_pos) {
1298         qed_aio_complete(acb, 0);
1299         return;
1300     }
1301 
1302     /* Find next cluster and start I/O */
1303     qed_find_cluster(s, &acb->request,
1304                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1305                       io_fn, acb);
1306 }
1307 
1308 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1309                                        int64_t sector_num,
1310                                        QEMUIOVector *qiov, int nb_sectors,
1311                                        BlockDriverCompletionFunc *cb,
1312                                        void *opaque, int flags)
1313 {
1314     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1315 
1316     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1317                         opaque, flags);
1318 
1319     acb->flags = flags;
1320     acb->finished = NULL;
1321     acb->qiov = qiov;
1322     acb->qiov_offset = 0;
1323     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1324     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1325     acb->request.l2_table = NULL;
1326     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1327 
1328     /* Start request */
1329     qed_aio_next_io(acb, 0);
1330     return &acb->common;
1331 }
1332 
1333 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1334                                             int64_t sector_num,
1335                                             QEMUIOVector *qiov, int nb_sectors,
1336                                             BlockDriverCompletionFunc *cb,
1337                                             void *opaque)
1338 {
1339     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1340 }
1341 
1342 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1343                                              int64_t sector_num,
1344                                              QEMUIOVector *qiov, int nb_sectors,
1345                                              BlockDriverCompletionFunc *cb,
1346                                              void *opaque)
1347 {
1348     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1349                          opaque, QED_AIOCB_WRITE);
1350 }
1351 
1352 typedef struct {
1353     Coroutine *co;
1354     int ret;
1355     bool done;
1356 } QEDWriteZeroesCB;
1357 
1358 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1359 {
1360     QEDWriteZeroesCB *cb = opaque;
1361 
1362     cb->done = true;
1363     cb->ret = ret;
1364     if (cb->co) {
1365         qemu_coroutine_enter(cb->co, NULL);
1366     }
1367 }
1368 
1369 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1370                                                  int64_t sector_num,
1371                                                  int nb_sectors)
1372 {
1373     BlockDriverAIOCB *blockacb;
1374     BDRVQEDState *s = bs->opaque;
1375     QEDWriteZeroesCB cb = { .done = false };
1376     QEMUIOVector qiov;
1377     struct iovec iov;
1378 
1379     /* Refuse if there are untouched backing file sectors */
1380     if (bs->backing_hd) {
1381         if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1382             return -ENOTSUP;
1383         }
1384         if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1385             return -ENOTSUP;
1386         }
1387     }
1388 
1389     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1390      * then it will be allocated during request processing.
1391      */
1392     iov.iov_base = NULL,
1393     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1394 
1395     qemu_iovec_init_external(&qiov, &iov, 1);
1396     blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1397                              qed_co_write_zeroes_cb, &cb,
1398                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1399     if (!blockacb) {
1400         return -EIO;
1401     }
1402     if (!cb.done) {
1403         cb.co = qemu_coroutine_self();
1404         qemu_coroutine_yield();
1405     }
1406     assert(cb.done);
1407     return cb.ret;
1408 }
1409 
1410 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1411 {
1412     BDRVQEDState *s = bs->opaque;
1413     uint64_t old_image_size;
1414     int ret;
1415 
1416     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1417                                  s->header.table_size)) {
1418         return -EINVAL;
1419     }
1420 
1421     /* Shrinking is currently not supported */
1422     if ((uint64_t)offset < s->header.image_size) {
1423         return -ENOTSUP;
1424     }
1425 
1426     old_image_size = s->header.image_size;
1427     s->header.image_size = offset;
1428     ret = qed_write_header_sync(s);
1429     if (ret < 0) {
1430         s->header.image_size = old_image_size;
1431     }
1432     return ret;
1433 }
1434 
1435 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1436 {
1437     BDRVQEDState *s = bs->opaque;
1438     return s->header.image_size;
1439 }
1440 
1441 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1442 {
1443     BDRVQEDState *s = bs->opaque;
1444 
1445     memset(bdi, 0, sizeof(*bdi));
1446     bdi->cluster_size = s->header.cluster_size;
1447     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1448     return 0;
1449 }
1450 
1451 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1452                                         const char *backing_file,
1453                                         const char *backing_fmt)
1454 {
1455     BDRVQEDState *s = bs->opaque;
1456     QEDHeader new_header, le_header;
1457     void *buffer;
1458     size_t buffer_len, backing_file_len;
1459     int ret;
1460 
1461     /* Refuse to set backing filename if unknown compat feature bits are
1462      * active.  If the image uses an unknown compat feature then we may not
1463      * know the layout of data following the header structure and cannot safely
1464      * add a new string.
1465      */
1466     if (backing_file && (s->header.compat_features &
1467                          ~QED_COMPAT_FEATURE_MASK)) {
1468         return -ENOTSUP;
1469     }
1470 
1471     memcpy(&new_header, &s->header, sizeof(new_header));
1472 
1473     new_header.features &= ~(QED_F_BACKING_FILE |
1474                              QED_F_BACKING_FORMAT_NO_PROBE);
1475 
1476     /* Adjust feature flags */
1477     if (backing_file) {
1478         new_header.features |= QED_F_BACKING_FILE;
1479 
1480         if (qed_fmt_is_raw(backing_fmt)) {
1481             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1482         }
1483     }
1484 
1485     /* Calculate new header size */
1486     backing_file_len = 0;
1487 
1488     if (backing_file) {
1489         backing_file_len = strlen(backing_file);
1490     }
1491 
1492     buffer_len = sizeof(new_header);
1493     new_header.backing_filename_offset = buffer_len;
1494     new_header.backing_filename_size = backing_file_len;
1495     buffer_len += backing_file_len;
1496 
1497     /* Make sure we can rewrite header without failing */
1498     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1499         return -ENOSPC;
1500     }
1501 
1502     /* Prepare new header */
1503     buffer = g_malloc(buffer_len);
1504 
1505     qed_header_cpu_to_le(&new_header, &le_header);
1506     memcpy(buffer, &le_header, sizeof(le_header));
1507     buffer_len = sizeof(le_header);
1508 
1509     if (backing_file) {
1510         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1511         buffer_len += backing_file_len;
1512     }
1513 
1514     /* Write new header */
1515     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1516     g_free(buffer);
1517     if (ret == 0) {
1518         memcpy(&s->header, &new_header, sizeof(new_header));
1519     }
1520     return ret;
1521 }
1522 
1523 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1524 {
1525     BDRVQEDState *s = bs->opaque;
1526 
1527     bdrv_qed_close(bs);
1528     memset(s, 0, sizeof(BDRVQEDState));
1529     bdrv_qed_open(bs, NULL, bs->open_flags);
1530 }
1531 
1532 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1533                           BdrvCheckMode fix)
1534 {
1535     BDRVQEDState *s = bs->opaque;
1536 
1537     return qed_check(s, result, !!fix);
1538 }
1539 
1540 static QEMUOptionParameter qed_create_options[] = {
1541     {
1542         .name = BLOCK_OPT_SIZE,
1543         .type = OPT_SIZE,
1544         .help = "Virtual disk size (in bytes)"
1545     }, {
1546         .name = BLOCK_OPT_BACKING_FILE,
1547         .type = OPT_STRING,
1548         .help = "File name of a base image"
1549     }, {
1550         .name = BLOCK_OPT_BACKING_FMT,
1551         .type = OPT_STRING,
1552         .help = "Image format of the base image"
1553     }, {
1554         .name = BLOCK_OPT_CLUSTER_SIZE,
1555         .type = OPT_SIZE,
1556         .help = "Cluster size (in bytes)",
1557         .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1558     }, {
1559         .name = BLOCK_OPT_TABLE_SIZE,
1560         .type = OPT_SIZE,
1561         .help = "L1/L2 table size (in clusters)"
1562     },
1563     { /* end of list */ }
1564 };
1565 
1566 static BlockDriver bdrv_qed = {
1567     .format_name              = "qed",
1568     .instance_size            = sizeof(BDRVQEDState),
1569     .create_options           = qed_create_options,
1570 
1571     .bdrv_probe               = bdrv_qed_probe,
1572     .bdrv_rebind              = bdrv_qed_rebind,
1573     .bdrv_open                = bdrv_qed_open,
1574     .bdrv_close               = bdrv_qed_close,
1575     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1576     .bdrv_create              = bdrv_qed_create,
1577     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1578     .bdrv_co_is_allocated     = bdrv_qed_co_is_allocated,
1579     .bdrv_make_empty          = bdrv_qed_make_empty,
1580     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1581     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1582     .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1583     .bdrv_truncate            = bdrv_qed_truncate,
1584     .bdrv_getlength           = bdrv_qed_getlength,
1585     .bdrv_get_info            = bdrv_qed_get_info,
1586     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1587     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1588     .bdrv_check               = bdrv_qed_check,
1589 };
1590 
1591 static void bdrv_qed_init(void)
1592 {
1593     bdrv_register(&bdrv_qed);
1594 }
1595 
1596 block_init(bdrv_qed_init);
1597