1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "trace.h" 24 #include "qed.h" 25 #include "sysemu/block-backend.h" 26 #include "qapi/qmp/qdict.h" 27 #include "qapi/qobject-input-visitor.h" 28 #include "qapi/qapi-visit-block-core.h" 29 30 static QemuOptsList qed_create_opts; 31 32 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 33 const char *filename) 34 { 35 const QEDHeader *header = (const QEDHeader *)buf; 36 37 if (buf_size < sizeof(*header)) { 38 return 0; 39 } 40 if (le32_to_cpu(header->magic) != QED_MAGIC) { 41 return 0; 42 } 43 return 100; 44 } 45 46 /** 47 * Check whether an image format is raw 48 * 49 * @fmt: Backing file format, may be NULL 50 */ 51 static bool qed_fmt_is_raw(const char *fmt) 52 { 53 return fmt && strcmp(fmt, "raw") == 0; 54 } 55 56 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 57 { 58 cpu->magic = le32_to_cpu(le->magic); 59 cpu->cluster_size = le32_to_cpu(le->cluster_size); 60 cpu->table_size = le32_to_cpu(le->table_size); 61 cpu->header_size = le32_to_cpu(le->header_size); 62 cpu->features = le64_to_cpu(le->features); 63 cpu->compat_features = le64_to_cpu(le->compat_features); 64 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 65 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 66 cpu->image_size = le64_to_cpu(le->image_size); 67 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 68 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 69 } 70 71 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 72 { 73 le->magic = cpu_to_le32(cpu->magic); 74 le->cluster_size = cpu_to_le32(cpu->cluster_size); 75 le->table_size = cpu_to_le32(cpu->table_size); 76 le->header_size = cpu_to_le32(cpu->header_size); 77 le->features = cpu_to_le64(cpu->features); 78 le->compat_features = cpu_to_le64(cpu->compat_features); 79 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 80 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 81 le->image_size = cpu_to_le64(cpu->image_size); 82 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 83 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 84 } 85 86 int qed_write_header_sync(BDRVQEDState *s) 87 { 88 QEDHeader le; 89 int ret; 90 91 qed_header_cpu_to_le(&s->header, &le); 92 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 93 if (ret != sizeof(le)) { 94 return ret; 95 } 96 return 0; 97 } 98 99 /** 100 * Update header in-place (does not rewrite backing filename or other strings) 101 * 102 * This function only updates known header fields in-place and does not affect 103 * extra data after the QED header. 104 * 105 * No new allocating reqs can start while this function runs. 106 */ 107 static int coroutine_fn qed_write_header(BDRVQEDState *s) 108 { 109 /* We must write full sectors for O_DIRECT but cannot necessarily generate 110 * the data following the header if an unrecognized compat feature is 111 * active. Therefore, first read the sectors containing the header, update 112 * them, and write back. 113 */ 114 115 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 116 size_t len = nsectors * BDRV_SECTOR_SIZE; 117 uint8_t *buf; 118 int ret; 119 120 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 121 122 buf = qemu_blockalign(s->bs, len); 123 124 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 125 if (ret < 0) { 126 goto out; 127 } 128 129 /* Update header */ 130 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 131 132 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 133 if (ret < 0) { 134 goto out; 135 } 136 137 ret = 0; 138 out: 139 qemu_vfree(buf); 140 return ret; 141 } 142 143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 144 { 145 uint64_t table_entries; 146 uint64_t l2_size; 147 148 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 149 l2_size = table_entries * cluster_size; 150 151 return l2_size * table_entries; 152 } 153 154 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 155 { 156 if (cluster_size < QED_MIN_CLUSTER_SIZE || 157 cluster_size > QED_MAX_CLUSTER_SIZE) { 158 return false; 159 } 160 if (cluster_size & (cluster_size - 1)) { 161 return false; /* not power of 2 */ 162 } 163 return true; 164 } 165 166 static bool qed_is_table_size_valid(uint32_t table_size) 167 { 168 if (table_size < QED_MIN_TABLE_SIZE || 169 table_size > QED_MAX_TABLE_SIZE) { 170 return false; 171 } 172 if (table_size & (table_size - 1)) { 173 return false; /* not power of 2 */ 174 } 175 return true; 176 } 177 178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 179 uint32_t table_size) 180 { 181 if (image_size % BDRV_SECTOR_SIZE != 0) { 182 return false; /* not multiple of sector size */ 183 } 184 if (image_size > qed_max_image_size(cluster_size, table_size)) { 185 return false; /* image is too large */ 186 } 187 return true; 188 } 189 190 /** 191 * Read a string of known length from the image file 192 * 193 * @file: Image file 194 * @offset: File offset to start of string, in bytes 195 * @n: String length in bytes 196 * @buf: Destination buffer 197 * @buflen: Destination buffer length in bytes 198 * @ret: 0 on success, -errno on failure 199 * 200 * The string is NUL-terminated. 201 */ 202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 203 char *buf, size_t buflen) 204 { 205 int ret; 206 if (n >= buflen) { 207 return -EINVAL; 208 } 209 ret = bdrv_pread(file, offset, buf, n); 210 if (ret < 0) { 211 return ret; 212 } 213 buf[n] = '\0'; 214 return 0; 215 } 216 217 /** 218 * Allocate new clusters 219 * 220 * @s: QED state 221 * @n: Number of contiguous clusters to allocate 222 * @ret: Offset of first allocated cluster 223 * 224 * This function only produces the offset where the new clusters should be 225 * written. It updates BDRVQEDState but does not make any changes to the image 226 * file. 227 * 228 * Called with table_lock held. 229 */ 230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 231 { 232 uint64_t offset = s->file_size; 233 s->file_size += n * s->header.cluster_size; 234 return offset; 235 } 236 237 QEDTable *qed_alloc_table(BDRVQEDState *s) 238 { 239 /* Honor O_DIRECT memory alignment requirements */ 240 return qemu_blockalign(s->bs, 241 s->header.cluster_size * s->header.table_size); 242 } 243 244 /** 245 * Allocate a new zeroed L2 table 246 * 247 * Called with table_lock held. 248 */ 249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 250 { 251 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 252 253 l2_table->table = qed_alloc_table(s); 254 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 255 256 memset(l2_table->table->offsets, 0, 257 s->header.cluster_size * s->header.table_size); 258 return l2_table; 259 } 260 261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 262 { 263 qemu_co_mutex_lock(&s->table_lock); 264 265 /* No reentrancy is allowed. */ 266 assert(!s->allocating_write_reqs_plugged); 267 if (s->allocating_acb != NULL) { 268 /* Another allocating write came concurrently. This cannot happen 269 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 270 */ 271 qemu_co_mutex_unlock(&s->table_lock); 272 return false; 273 } 274 275 s->allocating_write_reqs_plugged = true; 276 qemu_co_mutex_unlock(&s->table_lock); 277 return true; 278 } 279 280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 281 { 282 qemu_co_mutex_lock(&s->table_lock); 283 assert(s->allocating_write_reqs_plugged); 284 s->allocating_write_reqs_plugged = false; 285 qemu_co_queue_next(&s->allocating_write_reqs); 286 qemu_co_mutex_unlock(&s->table_lock); 287 } 288 289 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 290 { 291 BDRVQEDState *s = opaque; 292 int ret; 293 294 trace_qed_need_check_timer_cb(s); 295 296 if (!qed_plug_allocating_write_reqs(s)) { 297 return; 298 } 299 300 /* Ensure writes are on disk before clearing flag */ 301 ret = bdrv_co_flush(s->bs->file->bs); 302 if (ret < 0) { 303 qed_unplug_allocating_write_reqs(s); 304 return; 305 } 306 307 s->header.features &= ~QED_F_NEED_CHECK; 308 ret = qed_write_header(s); 309 (void) ret; 310 311 qed_unplug_allocating_write_reqs(s); 312 313 ret = bdrv_co_flush(s->bs); 314 (void) ret; 315 } 316 317 static void qed_need_check_timer_cb(void *opaque) 318 { 319 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 320 qemu_coroutine_enter(co); 321 } 322 323 static void qed_start_need_check_timer(BDRVQEDState *s) 324 { 325 trace_qed_start_need_check_timer(s); 326 327 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 328 * migration. 329 */ 330 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 331 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 332 } 333 334 /* It's okay to call this multiple times or when no timer is started */ 335 static void qed_cancel_need_check_timer(BDRVQEDState *s) 336 { 337 trace_qed_cancel_need_check_timer(s); 338 timer_del(s->need_check_timer); 339 } 340 341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 342 { 343 BDRVQEDState *s = bs->opaque; 344 345 qed_cancel_need_check_timer(s); 346 timer_free(s->need_check_timer); 347 } 348 349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 350 AioContext *new_context) 351 { 352 BDRVQEDState *s = bs->opaque; 353 354 s->need_check_timer = aio_timer_new(new_context, 355 QEMU_CLOCK_VIRTUAL, SCALE_NS, 356 qed_need_check_timer_cb, s); 357 if (s->header.features & QED_F_NEED_CHECK) { 358 qed_start_need_check_timer(s); 359 } 360 } 361 362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 363 { 364 BDRVQEDState *s = bs->opaque; 365 366 /* Fire the timer immediately in order to start doing I/O as soon as the 367 * header is flushed. 368 */ 369 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 370 qed_cancel_need_check_timer(s); 371 qed_need_check_timer_entry(s); 372 } 373 } 374 375 static void bdrv_qed_init_state(BlockDriverState *bs) 376 { 377 BDRVQEDState *s = bs->opaque; 378 379 memset(s, 0, sizeof(BDRVQEDState)); 380 s->bs = bs; 381 qemu_co_mutex_init(&s->table_lock); 382 qemu_co_queue_init(&s->allocating_write_reqs); 383 } 384 385 /* Called with table_lock held. */ 386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 387 int flags, Error **errp) 388 { 389 BDRVQEDState *s = bs->opaque; 390 QEDHeader le_header; 391 int64_t file_size; 392 int ret; 393 394 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 395 if (ret < 0) { 396 error_setg(errp, "Failed to read QED header"); 397 return ret; 398 } 399 qed_header_le_to_cpu(&le_header, &s->header); 400 401 if (s->header.magic != QED_MAGIC) { 402 error_setg(errp, "Image not in QED format"); 403 return -EINVAL; 404 } 405 if (s->header.features & ~QED_FEATURE_MASK) { 406 /* image uses unsupported feature bits */ 407 error_setg(errp, "Unsupported QED features: %" PRIx64, 408 s->header.features & ~QED_FEATURE_MASK); 409 return -ENOTSUP; 410 } 411 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 412 error_setg(errp, "QED cluster size is invalid"); 413 return -EINVAL; 414 } 415 416 /* Round down file size to the last cluster */ 417 file_size = bdrv_getlength(bs->file->bs); 418 if (file_size < 0) { 419 error_setg(errp, "Failed to get file length"); 420 return file_size; 421 } 422 s->file_size = qed_start_of_cluster(s, file_size); 423 424 if (!qed_is_table_size_valid(s->header.table_size)) { 425 error_setg(errp, "QED table size is invalid"); 426 return -EINVAL; 427 } 428 if (!qed_is_image_size_valid(s->header.image_size, 429 s->header.cluster_size, 430 s->header.table_size)) { 431 error_setg(errp, "QED image size is invalid"); 432 return -EINVAL; 433 } 434 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 435 error_setg(errp, "QED table offset is invalid"); 436 return -EINVAL; 437 } 438 439 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 440 sizeof(uint64_t); 441 s->l2_shift = ctz32(s->header.cluster_size); 442 s->l2_mask = s->table_nelems - 1; 443 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 444 445 /* Header size calculation must not overflow uint32_t */ 446 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 447 error_setg(errp, "QED header size is too large"); 448 return -EINVAL; 449 } 450 451 if ((s->header.features & QED_F_BACKING_FILE)) { 452 if ((uint64_t)s->header.backing_filename_offset + 453 s->header.backing_filename_size > 454 s->header.cluster_size * s->header.header_size) { 455 error_setg(errp, "QED backing filename offset is invalid"); 456 return -EINVAL; 457 } 458 459 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 460 s->header.backing_filename_size, 461 bs->auto_backing_file, 462 sizeof(bs->auto_backing_file)); 463 if (ret < 0) { 464 error_setg(errp, "Failed to read backing filename"); 465 return ret; 466 } 467 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 468 bs->auto_backing_file); 469 470 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 471 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 472 } 473 } 474 475 /* Reset unknown autoclear feature bits. This is a backwards 476 * compatibility mechanism that allows images to be opened by older 477 * programs, which "knock out" unknown feature bits. When an image is 478 * opened by a newer program again it can detect that the autoclear 479 * feature is no longer valid. 480 */ 481 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 482 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 483 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 484 485 ret = qed_write_header_sync(s); 486 if (ret) { 487 error_setg(errp, "Failed to update header"); 488 return ret; 489 } 490 491 /* From here on only known autoclear feature bits are valid */ 492 bdrv_flush(bs->file->bs); 493 } 494 495 s->l1_table = qed_alloc_table(s); 496 qed_init_l2_cache(&s->l2_cache); 497 498 ret = qed_read_l1_table_sync(s); 499 if (ret) { 500 error_setg(errp, "Failed to read L1 table"); 501 goto out; 502 } 503 504 /* If image was not closed cleanly, check consistency */ 505 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 506 /* Read-only images cannot be fixed. There is no risk of corruption 507 * since write operations are not possible. Therefore, allow 508 * potentially inconsistent images to be opened read-only. This can 509 * aid data recovery from an otherwise inconsistent image. 510 */ 511 if (!bdrv_is_read_only(bs->file->bs) && 512 !(flags & BDRV_O_INACTIVE)) { 513 BdrvCheckResult result = {0}; 514 515 ret = qed_check(s, &result, true); 516 if (ret) { 517 error_setg(errp, "Image corrupted"); 518 goto out; 519 } 520 } 521 } 522 523 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 524 525 out: 526 if (ret) { 527 qed_free_l2_cache(&s->l2_cache); 528 qemu_vfree(s->l1_table); 529 } 530 return ret; 531 } 532 533 typedef struct QEDOpenCo { 534 BlockDriverState *bs; 535 QDict *options; 536 int flags; 537 Error **errp; 538 int ret; 539 } QEDOpenCo; 540 541 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 542 { 543 QEDOpenCo *qoc = opaque; 544 BDRVQEDState *s = qoc->bs->opaque; 545 546 qemu_co_mutex_lock(&s->table_lock); 547 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 548 qemu_co_mutex_unlock(&s->table_lock); 549 } 550 551 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 552 Error **errp) 553 { 554 QEDOpenCo qoc = { 555 .bs = bs, 556 .options = options, 557 .flags = flags, 558 .errp = errp, 559 .ret = -EINPROGRESS 560 }; 561 562 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds, 563 BDRV_CHILD_IMAGE, false, errp); 564 if (!bs->file) { 565 return -EINVAL; 566 } 567 568 bdrv_qed_init_state(bs); 569 if (qemu_in_coroutine()) { 570 bdrv_qed_open_entry(&qoc); 571 } else { 572 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 573 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 574 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 575 } 576 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 577 return qoc.ret; 578 } 579 580 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 581 { 582 BDRVQEDState *s = bs->opaque; 583 584 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 585 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size); 586 } 587 588 /* We have nothing to do for QED reopen, stubs just return 589 * success */ 590 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 591 BlockReopenQueue *queue, Error **errp) 592 { 593 return 0; 594 } 595 596 static void bdrv_qed_close(BlockDriverState *bs) 597 { 598 BDRVQEDState *s = bs->opaque; 599 600 bdrv_qed_detach_aio_context(bs); 601 602 /* Ensure writes reach stable storage */ 603 bdrv_flush(bs->file->bs); 604 605 /* Clean shutdown, no check required on next open */ 606 if (s->header.features & QED_F_NEED_CHECK) { 607 s->header.features &= ~QED_F_NEED_CHECK; 608 qed_write_header_sync(s); 609 } 610 611 qed_free_l2_cache(&s->l2_cache); 612 qemu_vfree(s->l1_table); 613 } 614 615 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 616 Error **errp) 617 { 618 BlockdevCreateOptionsQed *qed_opts; 619 BlockBackend *blk = NULL; 620 BlockDriverState *bs = NULL; 621 622 QEDHeader header; 623 QEDHeader le_header; 624 uint8_t *l1_table = NULL; 625 size_t l1_size; 626 int ret = 0; 627 628 assert(opts->driver == BLOCKDEV_DRIVER_QED); 629 qed_opts = &opts->u.qed; 630 631 /* Validate options and set default values */ 632 if (!qed_opts->has_cluster_size) { 633 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 634 } 635 if (!qed_opts->has_table_size) { 636 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 637 } 638 639 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 640 error_setg(errp, "QED cluster size must be within range [%u, %u] " 641 "and power of 2", 642 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 643 return -EINVAL; 644 } 645 if (!qed_is_table_size_valid(qed_opts->table_size)) { 646 error_setg(errp, "QED table size must be within range [%u, %u] " 647 "and power of 2", 648 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 649 return -EINVAL; 650 } 651 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 652 qed_opts->table_size)) 653 { 654 error_setg(errp, "QED image size must be a non-zero multiple of " 655 "cluster size and less than %" PRIu64 " bytes", 656 qed_max_image_size(qed_opts->cluster_size, 657 qed_opts->table_size)); 658 return -EINVAL; 659 } 660 661 /* Create BlockBackend to write to the image */ 662 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 663 if (bs == NULL) { 664 return -EIO; 665 } 666 667 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 668 errp); 669 if (!blk) { 670 ret = -EPERM; 671 goto out; 672 } 673 blk_set_allow_write_beyond_eof(blk, true); 674 675 /* Prepare image format */ 676 header = (QEDHeader) { 677 .magic = QED_MAGIC, 678 .cluster_size = qed_opts->cluster_size, 679 .table_size = qed_opts->table_size, 680 .header_size = 1, 681 .features = 0, 682 .compat_features = 0, 683 .l1_table_offset = qed_opts->cluster_size, 684 .image_size = qed_opts->size, 685 }; 686 687 l1_size = header.cluster_size * header.table_size; 688 689 /* 690 * The QED format associates file length with allocation status, 691 * so a new file (which is empty) must have a length of 0. 692 */ 693 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 694 if (ret < 0) { 695 goto out; 696 } 697 698 if (qed_opts->has_backing_file) { 699 header.features |= QED_F_BACKING_FILE; 700 header.backing_filename_offset = sizeof(le_header); 701 header.backing_filename_size = strlen(qed_opts->backing_file); 702 703 if (qed_opts->has_backing_fmt) { 704 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 705 if (qed_fmt_is_raw(backing_fmt)) { 706 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 707 } 708 } 709 } 710 711 qed_header_cpu_to_le(&header, &le_header); 712 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 713 if (ret < 0) { 714 goto out; 715 } 716 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 717 header.backing_filename_size, 0); 718 if (ret < 0) { 719 goto out; 720 } 721 722 l1_table = g_malloc0(l1_size); 723 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 724 if (ret < 0) { 725 goto out; 726 } 727 728 ret = 0; /* success */ 729 out: 730 g_free(l1_table); 731 blk_unref(blk); 732 bdrv_unref(bs); 733 return ret; 734 } 735 736 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv, 737 const char *filename, 738 QemuOpts *opts, 739 Error **errp) 740 { 741 BlockdevCreateOptions *create_options = NULL; 742 QDict *qdict; 743 Visitor *v; 744 BlockDriverState *bs = NULL; 745 int ret; 746 747 static const QDictRenames opt_renames[] = { 748 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 749 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 750 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 751 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 752 { NULL, NULL }, 753 }; 754 755 /* Parse options and convert legacy syntax */ 756 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 757 758 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 759 ret = -EINVAL; 760 goto fail; 761 } 762 763 /* Create and open the file (protocol layer) */ 764 ret = bdrv_create_file(filename, opts, errp); 765 if (ret < 0) { 766 goto fail; 767 } 768 769 bs = bdrv_open(filename, NULL, NULL, 770 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 771 if (bs == NULL) { 772 ret = -EIO; 773 goto fail; 774 } 775 776 /* Now get the QAPI type BlockdevCreateOptions */ 777 qdict_put_str(qdict, "driver", "qed"); 778 qdict_put_str(qdict, "file", bs->node_name); 779 780 v = qobject_input_visitor_new_flat_confused(qdict, errp); 781 if (!v) { 782 ret = -EINVAL; 783 goto fail; 784 } 785 786 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 787 visit_free(v); 788 if (!create_options) { 789 ret = -EINVAL; 790 goto fail; 791 } 792 793 /* Silently round up size */ 794 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 795 create_options->u.qed.size = 796 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 797 798 /* Create the qed image (format layer) */ 799 ret = bdrv_qed_co_create(create_options, errp); 800 801 fail: 802 qobject_unref(qdict); 803 bdrv_unref(bs); 804 qapi_free_BlockdevCreateOptions(create_options); 805 return ret; 806 } 807 808 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 809 bool want_zero, 810 int64_t pos, int64_t bytes, 811 int64_t *pnum, int64_t *map, 812 BlockDriverState **file) 813 { 814 BDRVQEDState *s = bs->opaque; 815 size_t len = MIN(bytes, SIZE_MAX); 816 int status; 817 QEDRequest request = { .l2_table = NULL }; 818 uint64_t offset; 819 int ret; 820 821 qemu_co_mutex_lock(&s->table_lock); 822 ret = qed_find_cluster(s, &request, pos, &len, &offset); 823 824 *pnum = len; 825 switch (ret) { 826 case QED_CLUSTER_FOUND: 827 *map = offset | qed_offset_into_cluster(s, pos); 828 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 829 *file = bs->file->bs; 830 break; 831 case QED_CLUSTER_ZERO: 832 status = BDRV_BLOCK_ZERO; 833 break; 834 case QED_CLUSTER_L2: 835 case QED_CLUSTER_L1: 836 status = 0; 837 break; 838 default: 839 assert(ret < 0); 840 status = ret; 841 break; 842 } 843 844 qed_unref_l2_cache_entry(request.l2_table); 845 qemu_co_mutex_unlock(&s->table_lock); 846 847 return status; 848 } 849 850 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 851 { 852 return acb->bs->opaque; 853 } 854 855 /** 856 * Read from the backing file or zero-fill if no backing file 857 * 858 * @s: QED state 859 * @pos: Byte position in device 860 * @qiov: Destination I/O vector 861 * 862 * This function reads qiov->size bytes starting at pos from the backing file. 863 * If there is no backing file then zeroes are read. 864 */ 865 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 866 QEMUIOVector *qiov) 867 { 868 if (s->bs->backing) { 869 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 870 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 871 } 872 qemu_iovec_memset(qiov, 0, 0, qiov->size); 873 return 0; 874 } 875 876 /** 877 * Copy data from backing file into the image 878 * 879 * @s: QED state 880 * @pos: Byte position in device 881 * @len: Number of bytes 882 * @offset: Byte offset in image file 883 */ 884 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 885 uint64_t pos, uint64_t len, 886 uint64_t offset) 887 { 888 QEMUIOVector qiov; 889 int ret; 890 891 /* Skip copy entirely if there is no work to do */ 892 if (len == 0) { 893 return 0; 894 } 895 896 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 897 898 ret = qed_read_backing_file(s, pos, &qiov); 899 900 if (ret) { 901 goto out; 902 } 903 904 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 905 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 906 if (ret < 0) { 907 goto out; 908 } 909 ret = 0; 910 out: 911 qemu_vfree(qemu_iovec_buf(&qiov)); 912 return ret; 913 } 914 915 /** 916 * Link one or more contiguous clusters into a table 917 * 918 * @s: QED state 919 * @table: L2 table 920 * @index: First cluster index 921 * @n: Number of contiguous clusters 922 * @cluster: First cluster offset 923 * 924 * The cluster offset may be an allocated byte offset in the image file, the 925 * zero cluster marker, or the unallocated cluster marker. 926 * 927 * Called with table_lock held. 928 */ 929 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 930 int index, unsigned int n, 931 uint64_t cluster) 932 { 933 int i; 934 for (i = index; i < index + n; i++) { 935 table->offsets[i] = cluster; 936 if (!qed_offset_is_unalloc_cluster(cluster) && 937 !qed_offset_is_zero_cluster(cluster)) { 938 cluster += s->header.cluster_size; 939 } 940 } 941 } 942 943 /* Called with table_lock held. */ 944 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 945 { 946 BDRVQEDState *s = acb_to_s(acb); 947 948 /* Free resources */ 949 qemu_iovec_destroy(&acb->cur_qiov); 950 qed_unref_l2_cache_entry(acb->request.l2_table); 951 952 /* Free the buffer we may have allocated for zero writes */ 953 if (acb->flags & QED_AIOCB_ZERO) { 954 qemu_vfree(acb->qiov->iov[0].iov_base); 955 acb->qiov->iov[0].iov_base = NULL; 956 } 957 958 /* Start next allocating write request waiting behind this one. Note that 959 * requests enqueue themselves when they first hit an unallocated cluster 960 * but they wait until the entire request is finished before waking up the 961 * next request in the queue. This ensures that we don't cycle through 962 * requests multiple times but rather finish one at a time completely. 963 */ 964 if (acb == s->allocating_acb) { 965 s->allocating_acb = NULL; 966 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 967 qemu_co_queue_next(&s->allocating_write_reqs); 968 } else if (s->header.features & QED_F_NEED_CHECK) { 969 qed_start_need_check_timer(s); 970 } 971 } 972 } 973 974 /** 975 * Update L1 table with new L2 table offset and write it out 976 * 977 * Called with table_lock held. 978 */ 979 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 980 { 981 BDRVQEDState *s = acb_to_s(acb); 982 CachedL2Table *l2_table = acb->request.l2_table; 983 uint64_t l2_offset = l2_table->offset; 984 int index, ret; 985 986 index = qed_l1_index(s, acb->cur_pos); 987 s->l1_table->offsets[index] = l2_table->offset; 988 989 ret = qed_write_l1_table(s, index, 1); 990 991 /* Commit the current L2 table to the cache */ 992 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 993 994 /* This is guaranteed to succeed because we just committed the entry to the 995 * cache. 996 */ 997 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 998 assert(acb->request.l2_table != NULL); 999 1000 return ret; 1001 } 1002 1003 1004 /** 1005 * Update L2 table with new cluster offsets and write them out 1006 * 1007 * Called with table_lock held. 1008 */ 1009 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1010 { 1011 BDRVQEDState *s = acb_to_s(acb); 1012 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1013 int index, ret; 1014 1015 if (need_alloc) { 1016 qed_unref_l2_cache_entry(acb->request.l2_table); 1017 acb->request.l2_table = qed_new_l2_table(s); 1018 } 1019 1020 index = qed_l2_index(s, acb->cur_pos); 1021 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1022 offset); 1023 1024 if (need_alloc) { 1025 /* Write out the whole new L2 table */ 1026 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1027 if (ret) { 1028 return ret; 1029 } 1030 return qed_aio_write_l1_update(acb); 1031 } else { 1032 /* Write out only the updated part of the L2 table */ 1033 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1034 false); 1035 if (ret) { 1036 return ret; 1037 } 1038 } 1039 return 0; 1040 } 1041 1042 /** 1043 * Write data to the image file 1044 * 1045 * Called with table_lock *not* held. 1046 */ 1047 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1048 { 1049 BDRVQEDState *s = acb_to_s(acb); 1050 uint64_t offset = acb->cur_cluster + 1051 qed_offset_into_cluster(s, acb->cur_pos); 1052 1053 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1054 1055 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1056 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1057 &acb->cur_qiov, 0); 1058 } 1059 1060 /** 1061 * Populate untouched regions of new data cluster 1062 * 1063 * Called with table_lock held. 1064 */ 1065 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1066 { 1067 BDRVQEDState *s = acb_to_s(acb); 1068 uint64_t start, len, offset; 1069 int ret; 1070 1071 qemu_co_mutex_unlock(&s->table_lock); 1072 1073 /* Populate front untouched region of new data cluster */ 1074 start = qed_start_of_cluster(s, acb->cur_pos); 1075 len = qed_offset_into_cluster(s, acb->cur_pos); 1076 1077 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1078 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1079 if (ret < 0) { 1080 goto out; 1081 } 1082 1083 /* Populate back untouched region of new data cluster */ 1084 start = acb->cur_pos + acb->cur_qiov.size; 1085 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1086 offset = acb->cur_cluster + 1087 qed_offset_into_cluster(s, acb->cur_pos) + 1088 acb->cur_qiov.size; 1089 1090 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1091 ret = qed_copy_from_backing_file(s, start, len, offset); 1092 if (ret < 0) { 1093 goto out; 1094 } 1095 1096 ret = qed_aio_write_main(acb); 1097 if (ret < 0) { 1098 goto out; 1099 } 1100 1101 if (s->bs->backing) { 1102 /* 1103 * Flush new data clusters before updating the L2 table 1104 * 1105 * This flush is necessary when a backing file is in use. A crash 1106 * during an allocating write could result in empty clusters in the 1107 * image. If the write only touched a subregion of the cluster, 1108 * then backing image sectors have been lost in the untouched 1109 * region. The solution is to flush after writing a new data 1110 * cluster and before updating the L2 table. 1111 */ 1112 ret = bdrv_co_flush(s->bs->file->bs); 1113 } 1114 1115 out: 1116 qemu_co_mutex_lock(&s->table_lock); 1117 return ret; 1118 } 1119 1120 /** 1121 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1122 */ 1123 static bool qed_should_set_need_check(BDRVQEDState *s) 1124 { 1125 /* The flush before L2 update path ensures consistency */ 1126 if (s->bs->backing) { 1127 return false; 1128 } 1129 1130 return !(s->header.features & QED_F_NEED_CHECK); 1131 } 1132 1133 /** 1134 * Write new data cluster 1135 * 1136 * @acb: Write request 1137 * @len: Length in bytes 1138 * 1139 * This path is taken when writing to previously unallocated clusters. 1140 * 1141 * Called with table_lock held. 1142 */ 1143 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1144 { 1145 BDRVQEDState *s = acb_to_s(acb); 1146 int ret; 1147 1148 /* Cancel timer when the first allocating request comes in */ 1149 if (s->allocating_acb == NULL) { 1150 qed_cancel_need_check_timer(s); 1151 } 1152 1153 /* Freeze this request if another allocating write is in progress */ 1154 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1155 if (s->allocating_acb != NULL) { 1156 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1157 assert(s->allocating_acb == NULL); 1158 } 1159 s->allocating_acb = acb; 1160 return -EAGAIN; /* start over with looking up table entries */ 1161 } 1162 1163 acb->cur_nclusters = qed_bytes_to_clusters(s, 1164 qed_offset_into_cluster(s, acb->cur_pos) + len); 1165 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1166 1167 if (acb->flags & QED_AIOCB_ZERO) { 1168 /* Skip ahead if the clusters are already zero */ 1169 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1170 return 0; 1171 } 1172 acb->cur_cluster = 1; 1173 } else { 1174 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1175 } 1176 1177 if (qed_should_set_need_check(s)) { 1178 s->header.features |= QED_F_NEED_CHECK; 1179 ret = qed_write_header(s); 1180 if (ret < 0) { 1181 return ret; 1182 } 1183 } 1184 1185 if (!(acb->flags & QED_AIOCB_ZERO)) { 1186 ret = qed_aio_write_cow(acb); 1187 if (ret < 0) { 1188 return ret; 1189 } 1190 } 1191 1192 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1193 } 1194 1195 /** 1196 * Write data cluster in place 1197 * 1198 * @acb: Write request 1199 * @offset: Cluster offset in bytes 1200 * @len: Length in bytes 1201 * 1202 * This path is taken when writing to already allocated clusters. 1203 * 1204 * Called with table_lock held. 1205 */ 1206 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1207 size_t len) 1208 { 1209 BDRVQEDState *s = acb_to_s(acb); 1210 int r; 1211 1212 qemu_co_mutex_unlock(&s->table_lock); 1213 1214 /* Allocate buffer for zero writes */ 1215 if (acb->flags & QED_AIOCB_ZERO) { 1216 struct iovec *iov = acb->qiov->iov; 1217 1218 if (!iov->iov_base) { 1219 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1220 if (iov->iov_base == NULL) { 1221 r = -ENOMEM; 1222 goto out; 1223 } 1224 memset(iov->iov_base, 0, iov->iov_len); 1225 } 1226 } 1227 1228 /* Calculate the I/O vector */ 1229 acb->cur_cluster = offset; 1230 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1231 1232 /* Do the actual write. */ 1233 r = qed_aio_write_main(acb); 1234 out: 1235 qemu_co_mutex_lock(&s->table_lock); 1236 return r; 1237 } 1238 1239 /** 1240 * Write data cluster 1241 * 1242 * @opaque: Write request 1243 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1244 * @offset: Cluster offset in bytes 1245 * @len: Length in bytes 1246 * 1247 * Called with table_lock held. 1248 */ 1249 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1250 uint64_t offset, size_t len) 1251 { 1252 QEDAIOCB *acb = opaque; 1253 1254 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1255 1256 acb->find_cluster_ret = ret; 1257 1258 switch (ret) { 1259 case QED_CLUSTER_FOUND: 1260 return qed_aio_write_inplace(acb, offset, len); 1261 1262 case QED_CLUSTER_L2: 1263 case QED_CLUSTER_L1: 1264 case QED_CLUSTER_ZERO: 1265 return qed_aio_write_alloc(acb, len); 1266 1267 default: 1268 g_assert_not_reached(); 1269 } 1270 } 1271 1272 /** 1273 * Read data cluster 1274 * 1275 * @opaque: Read request 1276 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1277 * @offset: Cluster offset in bytes 1278 * @len: Length in bytes 1279 * 1280 * Called with table_lock held. 1281 */ 1282 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1283 uint64_t offset, size_t len) 1284 { 1285 QEDAIOCB *acb = opaque; 1286 BDRVQEDState *s = acb_to_s(acb); 1287 BlockDriverState *bs = acb->bs; 1288 int r; 1289 1290 qemu_co_mutex_unlock(&s->table_lock); 1291 1292 /* Adjust offset into cluster */ 1293 offset += qed_offset_into_cluster(s, acb->cur_pos); 1294 1295 trace_qed_aio_read_data(s, acb, ret, offset, len); 1296 1297 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1298 1299 /* Handle zero cluster and backing file reads, otherwise read 1300 * data cluster directly. 1301 */ 1302 if (ret == QED_CLUSTER_ZERO) { 1303 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1304 r = 0; 1305 } else if (ret != QED_CLUSTER_FOUND) { 1306 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1307 } else { 1308 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1309 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1310 &acb->cur_qiov, 0); 1311 } 1312 1313 qemu_co_mutex_lock(&s->table_lock); 1314 return r; 1315 } 1316 1317 /** 1318 * Begin next I/O or complete the request 1319 */ 1320 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1321 { 1322 BDRVQEDState *s = acb_to_s(acb); 1323 uint64_t offset; 1324 size_t len; 1325 int ret; 1326 1327 qemu_co_mutex_lock(&s->table_lock); 1328 while (1) { 1329 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1330 1331 acb->qiov_offset += acb->cur_qiov.size; 1332 acb->cur_pos += acb->cur_qiov.size; 1333 qemu_iovec_reset(&acb->cur_qiov); 1334 1335 /* Complete request */ 1336 if (acb->cur_pos >= acb->end_pos) { 1337 ret = 0; 1338 break; 1339 } 1340 1341 /* Find next cluster and start I/O */ 1342 len = acb->end_pos - acb->cur_pos; 1343 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1344 if (ret < 0) { 1345 break; 1346 } 1347 1348 if (acb->flags & QED_AIOCB_WRITE) { 1349 ret = qed_aio_write_data(acb, ret, offset, len); 1350 } else { 1351 ret = qed_aio_read_data(acb, ret, offset, len); 1352 } 1353 1354 if (ret < 0 && ret != -EAGAIN) { 1355 break; 1356 } 1357 } 1358 1359 trace_qed_aio_complete(s, acb, ret); 1360 qed_aio_complete(acb); 1361 qemu_co_mutex_unlock(&s->table_lock); 1362 return ret; 1363 } 1364 1365 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1366 QEMUIOVector *qiov, int nb_sectors, 1367 int flags) 1368 { 1369 QEDAIOCB acb = { 1370 .bs = bs, 1371 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1372 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1373 .qiov = qiov, 1374 .flags = flags, 1375 }; 1376 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1377 1378 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1379 1380 /* Start request */ 1381 return qed_aio_next_io(&acb); 1382 } 1383 1384 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1385 int64_t sector_num, int nb_sectors, 1386 QEMUIOVector *qiov) 1387 { 1388 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1389 } 1390 1391 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1392 int64_t sector_num, int nb_sectors, 1393 QEMUIOVector *qiov, int flags) 1394 { 1395 assert(!flags); 1396 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1397 } 1398 1399 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1400 int64_t offset, 1401 int64_t bytes, 1402 BdrvRequestFlags flags) 1403 { 1404 BDRVQEDState *s = bs->opaque; 1405 1406 /* 1407 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1408 * then it will be allocated during request processing. 1409 */ 1410 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1411 1412 /* 1413 * QED is not prepared for 63bit write-zero requests, so rely on 1414 * max_pwrite_zeroes. 1415 */ 1416 assert(bytes <= INT_MAX); 1417 1418 /* Fall back if the request is not aligned */ 1419 if (qed_offset_into_cluster(s, offset) || 1420 qed_offset_into_cluster(s, bytes)) { 1421 return -ENOTSUP; 1422 } 1423 1424 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1425 bytes >> BDRV_SECTOR_BITS, 1426 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1427 } 1428 1429 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1430 int64_t offset, 1431 bool exact, 1432 PreallocMode prealloc, 1433 BdrvRequestFlags flags, 1434 Error **errp) 1435 { 1436 BDRVQEDState *s = bs->opaque; 1437 uint64_t old_image_size; 1438 int ret; 1439 1440 if (prealloc != PREALLOC_MODE_OFF) { 1441 error_setg(errp, "Unsupported preallocation mode '%s'", 1442 PreallocMode_str(prealloc)); 1443 return -ENOTSUP; 1444 } 1445 1446 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1447 s->header.table_size)) { 1448 error_setg(errp, "Invalid image size specified"); 1449 return -EINVAL; 1450 } 1451 1452 if ((uint64_t)offset < s->header.image_size) { 1453 error_setg(errp, "Shrinking images is currently not supported"); 1454 return -ENOTSUP; 1455 } 1456 1457 old_image_size = s->header.image_size; 1458 s->header.image_size = offset; 1459 ret = qed_write_header_sync(s); 1460 if (ret < 0) { 1461 s->header.image_size = old_image_size; 1462 error_setg_errno(errp, -ret, "Failed to update the image size"); 1463 } 1464 return ret; 1465 } 1466 1467 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1468 { 1469 BDRVQEDState *s = bs->opaque; 1470 return s->header.image_size; 1471 } 1472 1473 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1474 { 1475 BDRVQEDState *s = bs->opaque; 1476 1477 memset(bdi, 0, sizeof(*bdi)); 1478 bdi->cluster_size = s->header.cluster_size; 1479 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1480 return 0; 1481 } 1482 1483 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1484 const char *backing_file, 1485 const char *backing_fmt) 1486 { 1487 BDRVQEDState *s = bs->opaque; 1488 QEDHeader new_header, le_header; 1489 void *buffer; 1490 size_t buffer_len, backing_file_len; 1491 int ret; 1492 1493 /* Refuse to set backing filename if unknown compat feature bits are 1494 * active. If the image uses an unknown compat feature then we may not 1495 * know the layout of data following the header structure and cannot safely 1496 * add a new string. 1497 */ 1498 if (backing_file && (s->header.compat_features & 1499 ~QED_COMPAT_FEATURE_MASK)) { 1500 return -ENOTSUP; 1501 } 1502 1503 memcpy(&new_header, &s->header, sizeof(new_header)); 1504 1505 new_header.features &= ~(QED_F_BACKING_FILE | 1506 QED_F_BACKING_FORMAT_NO_PROBE); 1507 1508 /* Adjust feature flags */ 1509 if (backing_file) { 1510 new_header.features |= QED_F_BACKING_FILE; 1511 1512 if (qed_fmt_is_raw(backing_fmt)) { 1513 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1514 } 1515 } 1516 1517 /* Calculate new header size */ 1518 backing_file_len = 0; 1519 1520 if (backing_file) { 1521 backing_file_len = strlen(backing_file); 1522 } 1523 1524 buffer_len = sizeof(new_header); 1525 new_header.backing_filename_offset = buffer_len; 1526 new_header.backing_filename_size = backing_file_len; 1527 buffer_len += backing_file_len; 1528 1529 /* Make sure we can rewrite header without failing */ 1530 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1531 return -ENOSPC; 1532 } 1533 1534 /* Prepare new header */ 1535 buffer = g_malloc(buffer_len); 1536 1537 qed_header_cpu_to_le(&new_header, &le_header); 1538 memcpy(buffer, &le_header, sizeof(le_header)); 1539 buffer_len = sizeof(le_header); 1540 1541 if (backing_file) { 1542 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1543 buffer_len += backing_file_len; 1544 } 1545 1546 /* Write new header */ 1547 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1548 g_free(buffer); 1549 if (ret == 0) { 1550 memcpy(&s->header, &new_header, sizeof(new_header)); 1551 } 1552 return ret; 1553 } 1554 1555 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1556 Error **errp) 1557 { 1558 BDRVQEDState *s = bs->opaque; 1559 int ret; 1560 1561 bdrv_qed_close(bs); 1562 1563 bdrv_qed_init_state(bs); 1564 qemu_co_mutex_lock(&s->table_lock); 1565 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1566 qemu_co_mutex_unlock(&s->table_lock); 1567 if (ret < 0) { 1568 error_prepend(errp, "Could not reopen qed layer: "); 1569 } 1570 } 1571 1572 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs, 1573 BdrvCheckResult *result, 1574 BdrvCheckMode fix) 1575 { 1576 BDRVQEDState *s = bs->opaque; 1577 int ret; 1578 1579 qemu_co_mutex_lock(&s->table_lock); 1580 ret = qed_check(s, result, !!fix); 1581 qemu_co_mutex_unlock(&s->table_lock); 1582 1583 return ret; 1584 } 1585 1586 static QemuOptsList qed_create_opts = { 1587 .name = "qed-create-opts", 1588 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1589 .desc = { 1590 { 1591 .name = BLOCK_OPT_SIZE, 1592 .type = QEMU_OPT_SIZE, 1593 .help = "Virtual disk size" 1594 }, 1595 { 1596 .name = BLOCK_OPT_BACKING_FILE, 1597 .type = QEMU_OPT_STRING, 1598 .help = "File name of a base image" 1599 }, 1600 { 1601 .name = BLOCK_OPT_BACKING_FMT, 1602 .type = QEMU_OPT_STRING, 1603 .help = "Image format of the base image" 1604 }, 1605 { 1606 .name = BLOCK_OPT_CLUSTER_SIZE, 1607 .type = QEMU_OPT_SIZE, 1608 .help = "Cluster size (in bytes)", 1609 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1610 }, 1611 { 1612 .name = BLOCK_OPT_TABLE_SIZE, 1613 .type = QEMU_OPT_SIZE, 1614 .help = "L1/L2 table size (in clusters)" 1615 }, 1616 { /* end of list */ } 1617 } 1618 }; 1619 1620 static BlockDriver bdrv_qed = { 1621 .format_name = "qed", 1622 .instance_size = sizeof(BDRVQEDState), 1623 .create_opts = &qed_create_opts, 1624 .is_format = true, 1625 .supports_backing = true, 1626 1627 .bdrv_probe = bdrv_qed_probe, 1628 .bdrv_open = bdrv_qed_open, 1629 .bdrv_close = bdrv_qed_close, 1630 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1631 .bdrv_child_perm = bdrv_default_perms, 1632 .bdrv_co_create = bdrv_qed_co_create, 1633 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1634 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1635 .bdrv_co_block_status = bdrv_qed_co_block_status, 1636 .bdrv_co_readv = bdrv_qed_co_readv, 1637 .bdrv_co_writev = bdrv_qed_co_writev, 1638 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1639 .bdrv_co_truncate = bdrv_qed_co_truncate, 1640 .bdrv_getlength = bdrv_qed_getlength, 1641 .bdrv_get_info = bdrv_qed_get_info, 1642 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1643 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1644 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1645 .bdrv_co_check = bdrv_qed_co_check, 1646 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1647 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1648 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1649 }; 1650 1651 static void bdrv_qed_init(void) 1652 { 1653 bdrv_register(&bdrv_qed); 1654 } 1655 1656 block_init(bdrv_qed_init); 1657