xref: /openbmc/qemu/block/qed.c (revision ab938ae4)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
23 
24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
25                           const char *filename)
26 {
27     const QEDHeader *header = (const QEDHeader *)buf;
28 
29     if (buf_size < sizeof(*header)) {
30         return 0;
31     }
32     if (le32_to_cpu(header->magic) != QED_MAGIC) {
33         return 0;
34     }
35     return 100;
36 }
37 
38 /**
39  * Check whether an image format is raw
40  *
41  * @fmt:    Backing file format, may be NULL
42  */
43 static bool qed_fmt_is_raw(const char *fmt)
44 {
45     return fmt && strcmp(fmt, "raw") == 0;
46 }
47 
48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
49 {
50     cpu->magic = le32_to_cpu(le->magic);
51     cpu->cluster_size = le32_to_cpu(le->cluster_size);
52     cpu->table_size = le32_to_cpu(le->table_size);
53     cpu->header_size = le32_to_cpu(le->header_size);
54     cpu->features = le64_to_cpu(le->features);
55     cpu->compat_features = le64_to_cpu(le->compat_features);
56     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
57     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
58     cpu->image_size = le64_to_cpu(le->image_size);
59     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
60     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
61 }
62 
63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
64 {
65     le->magic = cpu_to_le32(cpu->magic);
66     le->cluster_size = cpu_to_le32(cpu->cluster_size);
67     le->table_size = cpu_to_le32(cpu->table_size);
68     le->header_size = cpu_to_le32(cpu->header_size);
69     le->features = cpu_to_le64(cpu->features);
70     le->compat_features = cpu_to_le64(cpu->compat_features);
71     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
72     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
73     le->image_size = cpu_to_le64(cpu->image_size);
74     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
75     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
76 }
77 
78 int qed_write_header_sync(BDRVQEDState *s)
79 {
80     QEDHeader le;
81     int ret;
82 
83     qed_header_cpu_to_le(&s->header, &le);
84     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
85     if (ret != sizeof(le)) {
86         return ret;
87     }
88     return 0;
89 }
90 
91 /**
92  * Update header in-place (does not rewrite backing filename or other strings)
93  *
94  * This function only updates known header fields in-place and does not affect
95  * extra data after the QED header.
96  *
97  * No new allocating reqs can start while this function runs.
98  */
99 static int coroutine_fn qed_write_header(BDRVQEDState *s)
100 {
101     /* We must write full sectors for O_DIRECT but cannot necessarily generate
102      * the data following the header if an unrecognized compat feature is
103      * active.  Therefore, first read the sectors containing the header, update
104      * them, and write back.
105      */
106 
107     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
108     size_t len = nsectors * BDRV_SECTOR_SIZE;
109     uint8_t *buf;
110     struct iovec iov;
111     QEMUIOVector qiov;
112     int ret;
113 
114     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
115 
116     buf = qemu_blockalign(s->bs, len);
117     iov = (struct iovec) {
118         .iov_base = buf,
119         .iov_len = len,
120     };
121     qemu_iovec_init_external(&qiov, &iov, 1);
122 
123     ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
124     if (ret < 0) {
125         goto out;
126     }
127 
128     /* Update header */
129     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
130 
131     ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size,  &qiov, 0);
132     if (ret < 0) {
133         goto out;
134     }
135 
136     ret = 0;
137 out:
138     qemu_vfree(buf);
139     return ret;
140 }
141 
142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
143 {
144     uint64_t table_entries;
145     uint64_t l2_size;
146 
147     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
148     l2_size = table_entries * cluster_size;
149 
150     return l2_size * table_entries;
151 }
152 
153 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
154 {
155     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
156         cluster_size > QED_MAX_CLUSTER_SIZE) {
157         return false;
158     }
159     if (cluster_size & (cluster_size - 1)) {
160         return false; /* not power of 2 */
161     }
162     return true;
163 }
164 
165 static bool qed_is_table_size_valid(uint32_t table_size)
166 {
167     if (table_size < QED_MIN_TABLE_SIZE ||
168         table_size > QED_MAX_TABLE_SIZE) {
169         return false;
170     }
171     if (table_size & (table_size - 1)) {
172         return false; /* not power of 2 */
173     }
174     return true;
175 }
176 
177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
178                                     uint32_t table_size)
179 {
180     if (image_size % BDRV_SECTOR_SIZE != 0) {
181         return false; /* not multiple of sector size */
182     }
183     if (image_size > qed_max_image_size(cluster_size, table_size)) {
184         return false; /* image is too large */
185     }
186     return true;
187 }
188 
189 /**
190  * Read a string of known length from the image file
191  *
192  * @file:       Image file
193  * @offset:     File offset to start of string, in bytes
194  * @n:          String length in bytes
195  * @buf:        Destination buffer
196  * @buflen:     Destination buffer length in bytes
197  * @ret:        0 on success, -errno on failure
198  *
199  * The string is NUL-terminated.
200  */
201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
202                            char *buf, size_t buflen)
203 {
204     int ret;
205     if (n >= buflen) {
206         return -EINVAL;
207     }
208     ret = bdrv_pread(file, offset, buf, n);
209     if (ret < 0) {
210         return ret;
211     }
212     buf[n] = '\0';
213     return 0;
214 }
215 
216 /**
217  * Allocate new clusters
218  *
219  * @s:          QED state
220  * @n:          Number of contiguous clusters to allocate
221  * @ret:        Offset of first allocated cluster
222  *
223  * This function only produces the offset where the new clusters should be
224  * written.  It updates BDRVQEDState but does not make any changes to the image
225  * file.
226  *
227  * Called with table_lock held.
228  */
229 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
230 {
231     uint64_t offset = s->file_size;
232     s->file_size += n * s->header.cluster_size;
233     return offset;
234 }
235 
236 QEDTable *qed_alloc_table(BDRVQEDState *s)
237 {
238     /* Honor O_DIRECT memory alignment requirements */
239     return qemu_blockalign(s->bs,
240                            s->header.cluster_size * s->header.table_size);
241 }
242 
243 /**
244  * Allocate a new zeroed L2 table
245  *
246  * Called with table_lock held.
247  */
248 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
249 {
250     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
251 
252     l2_table->table = qed_alloc_table(s);
253     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
254 
255     memset(l2_table->table->offsets, 0,
256            s->header.cluster_size * s->header.table_size);
257     return l2_table;
258 }
259 
260 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
261 {
262     qemu_co_mutex_lock(&s->table_lock);
263 
264     /* No reentrancy is allowed.  */
265     assert(!s->allocating_write_reqs_plugged);
266     if (s->allocating_acb != NULL) {
267         /* Another allocating write came concurrently.  This cannot happen
268          * from bdrv_qed_co_drain, but it can happen when the timer runs.
269          */
270         qemu_co_mutex_unlock(&s->table_lock);
271         return false;
272     }
273 
274     s->allocating_write_reqs_plugged = true;
275     qemu_co_mutex_unlock(&s->table_lock);
276     return true;
277 }
278 
279 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
280 {
281     qemu_co_mutex_lock(&s->table_lock);
282     assert(s->allocating_write_reqs_plugged);
283     s->allocating_write_reqs_plugged = false;
284     qemu_co_queue_next(&s->allocating_write_reqs);
285     qemu_co_mutex_unlock(&s->table_lock);
286 }
287 
288 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
289 {
290     BDRVQEDState *s = opaque;
291     int ret;
292 
293     trace_qed_need_check_timer_cb(s);
294 
295     if (!qed_plug_allocating_write_reqs(s)) {
296         return;
297     }
298 
299     /* Ensure writes are on disk before clearing flag */
300     ret = bdrv_co_flush(s->bs->file->bs);
301     if (ret < 0) {
302         qed_unplug_allocating_write_reqs(s);
303         return;
304     }
305 
306     s->header.features &= ~QED_F_NEED_CHECK;
307     ret = qed_write_header(s);
308     (void) ret;
309 
310     qed_unplug_allocating_write_reqs(s);
311 
312     ret = bdrv_co_flush(s->bs);
313     (void) ret;
314 }
315 
316 static void qed_need_check_timer_cb(void *opaque)
317 {
318     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
319     qemu_coroutine_enter(co);
320 }
321 
322 static void qed_start_need_check_timer(BDRVQEDState *s)
323 {
324     trace_qed_start_need_check_timer(s);
325 
326     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
327      * migration.
328      */
329     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
330                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
331 }
332 
333 /* It's okay to call this multiple times or when no timer is started */
334 static void qed_cancel_need_check_timer(BDRVQEDState *s)
335 {
336     trace_qed_cancel_need_check_timer(s);
337     timer_del(s->need_check_timer);
338 }
339 
340 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
341 {
342     BDRVQEDState *s = bs->opaque;
343 
344     qed_cancel_need_check_timer(s);
345     timer_free(s->need_check_timer);
346 }
347 
348 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
349                                         AioContext *new_context)
350 {
351     BDRVQEDState *s = bs->opaque;
352 
353     s->need_check_timer = aio_timer_new(new_context,
354                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
355                                         qed_need_check_timer_cb, s);
356     if (s->header.features & QED_F_NEED_CHECK) {
357         qed_start_need_check_timer(s);
358     }
359 }
360 
361 static void coroutine_fn bdrv_qed_co_drain(BlockDriverState *bs)
362 {
363     BDRVQEDState *s = bs->opaque;
364 
365     /* Fire the timer immediately in order to start doing I/O as soon as the
366      * header is flushed.
367      */
368     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
369         qed_cancel_need_check_timer(s);
370         qed_need_check_timer_entry(s);
371     }
372 }
373 
374 static void bdrv_qed_init_state(BlockDriverState *bs)
375 {
376     BDRVQEDState *s = bs->opaque;
377 
378     memset(s, 0, sizeof(BDRVQEDState));
379     s->bs = bs;
380     qemu_co_mutex_init(&s->table_lock);
381     qemu_co_queue_init(&s->allocating_write_reqs);
382 }
383 
384 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
385                             Error **errp)
386 {
387     BDRVQEDState *s = bs->opaque;
388     QEDHeader le_header;
389     int64_t file_size;
390     int ret;
391 
392     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
393     if (ret < 0) {
394         return ret;
395     }
396     qed_header_le_to_cpu(&le_header, &s->header);
397 
398     if (s->header.magic != QED_MAGIC) {
399         error_setg(errp, "Image not in QED format");
400         return -EINVAL;
401     }
402     if (s->header.features & ~QED_FEATURE_MASK) {
403         /* image uses unsupported feature bits */
404         error_setg(errp, "Unsupported QED features: %" PRIx64,
405                    s->header.features & ~QED_FEATURE_MASK);
406         return -ENOTSUP;
407     }
408     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
409         return -EINVAL;
410     }
411 
412     /* Round down file size to the last cluster */
413     file_size = bdrv_getlength(bs->file->bs);
414     if (file_size < 0) {
415         return file_size;
416     }
417     s->file_size = qed_start_of_cluster(s, file_size);
418 
419     if (!qed_is_table_size_valid(s->header.table_size)) {
420         return -EINVAL;
421     }
422     if (!qed_is_image_size_valid(s->header.image_size,
423                                  s->header.cluster_size,
424                                  s->header.table_size)) {
425         return -EINVAL;
426     }
427     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
428         return -EINVAL;
429     }
430 
431     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
432                       sizeof(uint64_t);
433     s->l2_shift = ctz32(s->header.cluster_size);
434     s->l2_mask = s->table_nelems - 1;
435     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
436 
437     /* Header size calculation must not overflow uint32_t */
438     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
439         return -EINVAL;
440     }
441 
442     if ((s->header.features & QED_F_BACKING_FILE)) {
443         if ((uint64_t)s->header.backing_filename_offset +
444             s->header.backing_filename_size >
445             s->header.cluster_size * s->header.header_size) {
446             return -EINVAL;
447         }
448 
449         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
450                               s->header.backing_filename_size, bs->backing_file,
451                               sizeof(bs->backing_file));
452         if (ret < 0) {
453             return ret;
454         }
455 
456         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
457             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
458         }
459     }
460 
461     /* Reset unknown autoclear feature bits.  This is a backwards
462      * compatibility mechanism that allows images to be opened by older
463      * programs, which "knock out" unknown feature bits.  When an image is
464      * opened by a newer program again it can detect that the autoclear
465      * feature is no longer valid.
466      */
467     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
468         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
469         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
470 
471         ret = qed_write_header_sync(s);
472         if (ret) {
473             return ret;
474         }
475 
476         /* From here on only known autoclear feature bits are valid */
477         bdrv_flush(bs->file->bs);
478     }
479 
480     s->l1_table = qed_alloc_table(s);
481     qed_init_l2_cache(&s->l2_cache);
482 
483     ret = qed_read_l1_table_sync(s);
484     if (ret) {
485         goto out;
486     }
487 
488     /* If image was not closed cleanly, check consistency */
489     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
490         /* Read-only images cannot be fixed.  There is no risk of corruption
491          * since write operations are not possible.  Therefore, allow
492          * potentially inconsistent images to be opened read-only.  This can
493          * aid data recovery from an otherwise inconsistent image.
494          */
495         if (!bdrv_is_read_only(bs->file->bs) &&
496             !(flags & BDRV_O_INACTIVE)) {
497             BdrvCheckResult result = {0};
498 
499             ret = qed_check(s, &result, true);
500             if (ret) {
501                 goto out;
502             }
503         }
504     }
505 
506     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
507 
508 out:
509     if (ret) {
510         qed_free_l2_cache(&s->l2_cache);
511         qemu_vfree(s->l1_table);
512     }
513     return ret;
514 }
515 
516 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
517                          Error **errp)
518 {
519     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
520                                false, errp);
521     if (!bs->file) {
522         return -EINVAL;
523     }
524 
525     bdrv_qed_init_state(bs);
526     return bdrv_qed_do_open(bs, options, flags, errp);
527 }
528 
529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
530 {
531     BDRVQEDState *s = bs->opaque;
532 
533     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
534 }
535 
536 /* We have nothing to do for QED reopen, stubs just return
537  * success */
538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
539                                    BlockReopenQueue *queue, Error **errp)
540 {
541     return 0;
542 }
543 
544 static void bdrv_qed_close(BlockDriverState *bs)
545 {
546     BDRVQEDState *s = bs->opaque;
547 
548     bdrv_qed_detach_aio_context(bs);
549 
550     /* Ensure writes reach stable storage */
551     bdrv_flush(bs->file->bs);
552 
553     /* Clean shutdown, no check required on next open */
554     if (s->header.features & QED_F_NEED_CHECK) {
555         s->header.features &= ~QED_F_NEED_CHECK;
556         qed_write_header_sync(s);
557     }
558 
559     qed_free_l2_cache(&s->l2_cache);
560     qemu_vfree(s->l1_table);
561 }
562 
563 static int qed_create(const char *filename, uint32_t cluster_size,
564                       uint64_t image_size, uint32_t table_size,
565                       const char *backing_file, const char *backing_fmt,
566                       QemuOpts *opts, Error **errp)
567 {
568     QEDHeader header = {
569         .magic = QED_MAGIC,
570         .cluster_size = cluster_size,
571         .table_size = table_size,
572         .header_size = 1,
573         .features = 0,
574         .compat_features = 0,
575         .l1_table_offset = cluster_size,
576         .image_size = image_size,
577     };
578     QEDHeader le_header;
579     uint8_t *l1_table = NULL;
580     size_t l1_size = header.cluster_size * header.table_size;
581     Error *local_err = NULL;
582     int ret = 0;
583     BlockBackend *blk;
584 
585     ret = bdrv_create_file(filename, opts, &local_err);
586     if (ret < 0) {
587         error_propagate(errp, local_err);
588         return ret;
589     }
590 
591     blk = blk_new_open(filename, NULL, NULL,
592                        BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
593                        &local_err);
594     if (blk == NULL) {
595         error_propagate(errp, local_err);
596         return -EIO;
597     }
598 
599     blk_set_allow_write_beyond_eof(blk, true);
600 
601     /* File must start empty and grow, check truncate is supported */
602     ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
603     if (ret < 0) {
604         goto out;
605     }
606 
607     if (backing_file) {
608         header.features |= QED_F_BACKING_FILE;
609         header.backing_filename_offset = sizeof(le_header);
610         header.backing_filename_size = strlen(backing_file);
611 
612         if (qed_fmt_is_raw(backing_fmt)) {
613             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
614         }
615     }
616 
617     qed_header_cpu_to_le(&header, &le_header);
618     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
619     if (ret < 0) {
620         goto out;
621     }
622     ret = blk_pwrite(blk, sizeof(le_header), backing_file,
623                      header.backing_filename_size, 0);
624     if (ret < 0) {
625         goto out;
626     }
627 
628     l1_table = g_malloc0(l1_size);
629     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
630     if (ret < 0) {
631         goto out;
632     }
633 
634     ret = 0; /* success */
635 out:
636     g_free(l1_table);
637     blk_unref(blk);
638     return ret;
639 }
640 
641 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
642 {
643     uint64_t image_size = 0;
644     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
645     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
646     char *backing_file = NULL;
647     char *backing_fmt = NULL;
648     int ret;
649 
650     image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
651                           BDRV_SECTOR_SIZE);
652     backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
653     backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
654     cluster_size = qemu_opt_get_size_del(opts,
655                                          BLOCK_OPT_CLUSTER_SIZE,
656                                          QED_DEFAULT_CLUSTER_SIZE);
657     table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
658                                        QED_DEFAULT_TABLE_SIZE);
659 
660     if (!qed_is_cluster_size_valid(cluster_size)) {
661         error_setg(errp, "QED cluster size must be within range [%u, %u] "
662                          "and power of 2",
663                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
664         ret = -EINVAL;
665         goto finish;
666     }
667     if (!qed_is_table_size_valid(table_size)) {
668         error_setg(errp, "QED table size must be within range [%u, %u] "
669                          "and power of 2",
670                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
671         ret = -EINVAL;
672         goto finish;
673     }
674     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
675         error_setg(errp, "QED image size must be a non-zero multiple of "
676                          "cluster size and less than %" PRIu64 " bytes",
677                    qed_max_image_size(cluster_size, table_size));
678         ret = -EINVAL;
679         goto finish;
680     }
681 
682     ret = qed_create(filename, cluster_size, image_size, table_size,
683                      backing_file, backing_fmt, opts, errp);
684 
685 finish:
686     g_free(backing_file);
687     g_free(backing_fmt);
688     return ret;
689 }
690 
691 typedef struct {
692     BlockDriverState *bs;
693     Coroutine *co;
694     uint64_t pos;
695     int64_t status;
696     int *pnum;
697     BlockDriverState **file;
698 } QEDIsAllocatedCB;
699 
700 /* Called with table_lock held.  */
701 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
702 {
703     QEDIsAllocatedCB *cb = opaque;
704     BDRVQEDState *s = cb->bs->opaque;
705     *cb->pnum = len / BDRV_SECTOR_SIZE;
706     switch (ret) {
707     case QED_CLUSTER_FOUND:
708         offset |= qed_offset_into_cluster(s, cb->pos);
709         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
710         *cb->file = cb->bs->file->bs;
711         break;
712     case QED_CLUSTER_ZERO:
713         cb->status = BDRV_BLOCK_ZERO;
714         break;
715     case QED_CLUSTER_L2:
716     case QED_CLUSTER_L1:
717         cb->status = 0;
718         break;
719     default:
720         assert(ret < 0);
721         cb->status = ret;
722         break;
723     }
724 
725     if (cb->co) {
726         aio_co_wake(cb->co);
727     }
728 }
729 
730 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
731                                                  int64_t sector_num,
732                                                  int nb_sectors, int *pnum,
733                                                  BlockDriverState **file)
734 {
735     BDRVQEDState *s = bs->opaque;
736     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
737     QEDIsAllocatedCB cb = {
738         .bs = bs,
739         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
740         .status = BDRV_BLOCK_OFFSET_MASK,
741         .pnum = pnum,
742         .file = file,
743     };
744     QEDRequest request = { .l2_table = NULL };
745     uint64_t offset;
746     int ret;
747 
748     qemu_co_mutex_lock(&s->table_lock);
749     ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
750     qed_is_allocated_cb(&cb, ret, offset, len);
751 
752     /* The callback was invoked immediately */
753     assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
754 
755     qed_unref_l2_cache_entry(request.l2_table);
756     qemu_co_mutex_unlock(&s->table_lock);
757 
758     return cb.status;
759 }
760 
761 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
762 {
763     return acb->bs->opaque;
764 }
765 
766 /**
767  * Read from the backing file or zero-fill if no backing file
768  *
769  * @s:              QED state
770  * @pos:            Byte position in device
771  * @qiov:           Destination I/O vector
772  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
773  * @cb:             Completion function
774  * @opaque:         User data for completion function
775  *
776  * This function reads qiov->size bytes starting at pos from the backing file.
777  * If there is no backing file then zeroes are read.
778  */
779 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
780                                               QEMUIOVector *qiov,
781                                               QEMUIOVector **backing_qiov)
782 {
783     uint64_t backing_length = 0;
784     size_t size;
785     int ret;
786 
787     /* If there is a backing file, get its length.  Treat the absence of a
788      * backing file like a zero length backing file.
789      */
790     if (s->bs->backing) {
791         int64_t l = bdrv_getlength(s->bs->backing->bs);
792         if (l < 0) {
793             return l;
794         }
795         backing_length = l;
796     }
797 
798     /* Zero all sectors if reading beyond the end of the backing file */
799     if (pos >= backing_length ||
800         pos + qiov->size > backing_length) {
801         qemu_iovec_memset(qiov, 0, 0, qiov->size);
802     }
803 
804     /* Complete now if there are no backing file sectors to read */
805     if (pos >= backing_length) {
806         return 0;
807     }
808 
809     /* If the read straddles the end of the backing file, shorten it */
810     size = MIN((uint64_t)backing_length - pos, qiov->size);
811 
812     assert(*backing_qiov == NULL);
813     *backing_qiov = g_new(QEMUIOVector, 1);
814     qemu_iovec_init(*backing_qiov, qiov->niov);
815     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
816 
817     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
818     ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
819     if (ret < 0) {
820         return ret;
821     }
822     return 0;
823 }
824 
825 /**
826  * Copy data from backing file into the image
827  *
828  * @s:          QED state
829  * @pos:        Byte position in device
830  * @len:        Number of bytes
831  * @offset:     Byte offset in image file
832  */
833 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
834                                                    uint64_t pos, uint64_t len,
835                                                    uint64_t offset)
836 {
837     QEMUIOVector qiov;
838     QEMUIOVector *backing_qiov = NULL;
839     struct iovec iov;
840     int ret;
841 
842     /* Skip copy entirely if there is no work to do */
843     if (len == 0) {
844         return 0;
845     }
846 
847     iov = (struct iovec) {
848         .iov_base = qemu_blockalign(s->bs, len),
849         .iov_len = len,
850     };
851     qemu_iovec_init_external(&qiov, &iov, 1);
852 
853     ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
854 
855     if (backing_qiov) {
856         qemu_iovec_destroy(backing_qiov);
857         g_free(backing_qiov);
858         backing_qiov = NULL;
859     }
860 
861     if (ret) {
862         goto out;
863     }
864 
865     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
866     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
867     if (ret < 0) {
868         goto out;
869     }
870     ret = 0;
871 out:
872     qemu_vfree(iov.iov_base);
873     return ret;
874 }
875 
876 /**
877  * Link one or more contiguous clusters into a table
878  *
879  * @s:              QED state
880  * @table:          L2 table
881  * @index:          First cluster index
882  * @n:              Number of contiguous clusters
883  * @cluster:        First cluster offset
884  *
885  * The cluster offset may be an allocated byte offset in the image file, the
886  * zero cluster marker, or the unallocated cluster marker.
887  *
888  * Called with table_lock held.
889  */
890 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
891                                              int index, unsigned int n,
892                                              uint64_t cluster)
893 {
894     int i;
895     for (i = index; i < index + n; i++) {
896         table->offsets[i] = cluster;
897         if (!qed_offset_is_unalloc_cluster(cluster) &&
898             !qed_offset_is_zero_cluster(cluster)) {
899             cluster += s->header.cluster_size;
900         }
901     }
902 }
903 
904 /* Called with table_lock held.  */
905 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
906 {
907     BDRVQEDState *s = acb_to_s(acb);
908 
909     /* Free resources */
910     qemu_iovec_destroy(&acb->cur_qiov);
911     qed_unref_l2_cache_entry(acb->request.l2_table);
912 
913     /* Free the buffer we may have allocated for zero writes */
914     if (acb->flags & QED_AIOCB_ZERO) {
915         qemu_vfree(acb->qiov->iov[0].iov_base);
916         acb->qiov->iov[0].iov_base = NULL;
917     }
918 
919     /* Start next allocating write request waiting behind this one.  Note that
920      * requests enqueue themselves when they first hit an unallocated cluster
921      * but they wait until the entire request is finished before waking up the
922      * next request in the queue.  This ensures that we don't cycle through
923      * requests multiple times but rather finish one at a time completely.
924      */
925     if (acb == s->allocating_acb) {
926         s->allocating_acb = NULL;
927         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
928             qemu_co_queue_next(&s->allocating_write_reqs);
929         } else if (s->header.features & QED_F_NEED_CHECK) {
930             qed_start_need_check_timer(s);
931         }
932     }
933 }
934 
935 /**
936  * Update L1 table with new L2 table offset and write it out
937  *
938  * Called with table_lock held.
939  */
940 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
941 {
942     BDRVQEDState *s = acb_to_s(acb);
943     CachedL2Table *l2_table = acb->request.l2_table;
944     uint64_t l2_offset = l2_table->offset;
945     int index, ret;
946 
947     index = qed_l1_index(s, acb->cur_pos);
948     s->l1_table->offsets[index] = l2_table->offset;
949 
950     ret = qed_write_l1_table(s, index, 1);
951 
952     /* Commit the current L2 table to the cache */
953     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
954 
955     /* This is guaranteed to succeed because we just committed the entry to the
956      * cache.
957      */
958     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
959     assert(acb->request.l2_table != NULL);
960 
961     return ret;
962 }
963 
964 
965 /**
966  * Update L2 table with new cluster offsets and write them out
967  *
968  * Called with table_lock held.
969  */
970 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
971 {
972     BDRVQEDState *s = acb_to_s(acb);
973     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
974     int index, ret;
975 
976     if (need_alloc) {
977         qed_unref_l2_cache_entry(acb->request.l2_table);
978         acb->request.l2_table = qed_new_l2_table(s);
979     }
980 
981     index = qed_l2_index(s, acb->cur_pos);
982     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
983                          offset);
984 
985     if (need_alloc) {
986         /* Write out the whole new L2 table */
987         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
988         if (ret) {
989             return ret;
990         }
991         return qed_aio_write_l1_update(acb);
992     } else {
993         /* Write out only the updated part of the L2 table */
994         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
995                                  false);
996         if (ret) {
997             return ret;
998         }
999     }
1000     return 0;
1001 }
1002 
1003 /**
1004  * Write data to the image file
1005  *
1006  * Called with table_lock *not* held.
1007  */
1008 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1009 {
1010     BDRVQEDState *s = acb_to_s(acb);
1011     uint64_t offset = acb->cur_cluster +
1012                       qed_offset_into_cluster(s, acb->cur_pos);
1013 
1014     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1015 
1016     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1017     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1018                            &acb->cur_qiov, 0);
1019 }
1020 
1021 /**
1022  * Populate untouched regions of new data cluster
1023  *
1024  * Called with table_lock held.
1025  */
1026 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1027 {
1028     BDRVQEDState *s = acb_to_s(acb);
1029     uint64_t start, len, offset;
1030     int ret;
1031 
1032     qemu_co_mutex_unlock(&s->table_lock);
1033 
1034     /* Populate front untouched region of new data cluster */
1035     start = qed_start_of_cluster(s, acb->cur_pos);
1036     len = qed_offset_into_cluster(s, acb->cur_pos);
1037 
1038     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1039     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1040     if (ret < 0) {
1041         goto out;
1042     }
1043 
1044     /* Populate back untouched region of new data cluster */
1045     start = acb->cur_pos + acb->cur_qiov.size;
1046     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1047     offset = acb->cur_cluster +
1048              qed_offset_into_cluster(s, acb->cur_pos) +
1049              acb->cur_qiov.size;
1050 
1051     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1052     ret = qed_copy_from_backing_file(s, start, len, offset);
1053     if (ret < 0) {
1054         goto out;
1055     }
1056 
1057     ret = qed_aio_write_main(acb);
1058     if (ret < 0) {
1059         goto out;
1060     }
1061 
1062     if (s->bs->backing) {
1063         /*
1064          * Flush new data clusters before updating the L2 table
1065          *
1066          * This flush is necessary when a backing file is in use.  A crash
1067          * during an allocating write could result in empty clusters in the
1068          * image.  If the write only touched a subregion of the cluster,
1069          * then backing image sectors have been lost in the untouched
1070          * region.  The solution is to flush after writing a new data
1071          * cluster and before updating the L2 table.
1072          */
1073         ret = bdrv_co_flush(s->bs->file->bs);
1074     }
1075 
1076 out:
1077     qemu_co_mutex_lock(&s->table_lock);
1078     return ret;
1079 }
1080 
1081 /**
1082  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1083  */
1084 static bool qed_should_set_need_check(BDRVQEDState *s)
1085 {
1086     /* The flush before L2 update path ensures consistency */
1087     if (s->bs->backing) {
1088         return false;
1089     }
1090 
1091     return !(s->header.features & QED_F_NEED_CHECK);
1092 }
1093 
1094 /**
1095  * Write new data cluster
1096  *
1097  * @acb:        Write request
1098  * @len:        Length in bytes
1099  *
1100  * This path is taken when writing to previously unallocated clusters.
1101  *
1102  * Called with table_lock held.
1103  */
1104 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1105 {
1106     BDRVQEDState *s = acb_to_s(acb);
1107     int ret;
1108 
1109     /* Cancel timer when the first allocating request comes in */
1110     if (s->allocating_acb == NULL) {
1111         qed_cancel_need_check_timer(s);
1112     }
1113 
1114     /* Freeze this request if another allocating write is in progress */
1115     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1116         if (s->allocating_acb != NULL) {
1117             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1118             assert(s->allocating_acb == NULL);
1119         }
1120         s->allocating_acb = acb;
1121         return -EAGAIN; /* start over with looking up table entries */
1122     }
1123 
1124     acb->cur_nclusters = qed_bytes_to_clusters(s,
1125             qed_offset_into_cluster(s, acb->cur_pos) + len);
1126     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1127 
1128     if (acb->flags & QED_AIOCB_ZERO) {
1129         /* Skip ahead if the clusters are already zero */
1130         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1131             return 0;
1132         }
1133         acb->cur_cluster = 1;
1134     } else {
1135         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1136     }
1137 
1138     if (qed_should_set_need_check(s)) {
1139         s->header.features |= QED_F_NEED_CHECK;
1140         ret = qed_write_header(s);
1141         if (ret < 0) {
1142             return ret;
1143         }
1144     }
1145 
1146     if (!(acb->flags & QED_AIOCB_ZERO)) {
1147         ret = qed_aio_write_cow(acb);
1148         if (ret < 0) {
1149             return ret;
1150         }
1151     }
1152 
1153     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1154 }
1155 
1156 /**
1157  * Write data cluster in place
1158  *
1159  * @acb:        Write request
1160  * @offset:     Cluster offset in bytes
1161  * @len:        Length in bytes
1162  *
1163  * This path is taken when writing to already allocated clusters.
1164  *
1165  * Called with table_lock held.
1166  */
1167 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1168                                               size_t len)
1169 {
1170     BDRVQEDState *s = acb_to_s(acb);
1171     int r;
1172 
1173     qemu_co_mutex_unlock(&s->table_lock);
1174 
1175     /* Allocate buffer for zero writes */
1176     if (acb->flags & QED_AIOCB_ZERO) {
1177         struct iovec *iov = acb->qiov->iov;
1178 
1179         if (!iov->iov_base) {
1180             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1181             if (iov->iov_base == NULL) {
1182                 r = -ENOMEM;
1183                 goto out;
1184             }
1185             memset(iov->iov_base, 0, iov->iov_len);
1186         }
1187     }
1188 
1189     /* Calculate the I/O vector */
1190     acb->cur_cluster = offset;
1191     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1192 
1193     /* Do the actual write.  */
1194     r = qed_aio_write_main(acb);
1195 out:
1196     qemu_co_mutex_lock(&s->table_lock);
1197     return r;
1198 }
1199 
1200 /**
1201  * Write data cluster
1202  *
1203  * @opaque:     Write request
1204  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1205  * @offset:     Cluster offset in bytes
1206  * @len:        Length in bytes
1207  *
1208  * Called with table_lock held.
1209  */
1210 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1211                                            uint64_t offset, size_t len)
1212 {
1213     QEDAIOCB *acb = opaque;
1214 
1215     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1216 
1217     acb->find_cluster_ret = ret;
1218 
1219     switch (ret) {
1220     case QED_CLUSTER_FOUND:
1221         return qed_aio_write_inplace(acb, offset, len);
1222 
1223     case QED_CLUSTER_L2:
1224     case QED_CLUSTER_L1:
1225     case QED_CLUSTER_ZERO:
1226         return qed_aio_write_alloc(acb, len);
1227 
1228     default:
1229         g_assert_not_reached();
1230     }
1231 }
1232 
1233 /**
1234  * Read data cluster
1235  *
1236  * @opaque:     Read request
1237  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1238  * @offset:     Cluster offset in bytes
1239  * @len:        Length in bytes
1240  *
1241  * Called with table_lock held.
1242  */
1243 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1244                                           uint64_t offset, size_t len)
1245 {
1246     QEDAIOCB *acb = opaque;
1247     BDRVQEDState *s = acb_to_s(acb);
1248     BlockDriverState *bs = acb->bs;
1249     int r;
1250 
1251     qemu_co_mutex_unlock(&s->table_lock);
1252 
1253     /* Adjust offset into cluster */
1254     offset += qed_offset_into_cluster(s, acb->cur_pos);
1255 
1256     trace_qed_aio_read_data(s, acb, ret, offset, len);
1257 
1258     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1259 
1260     /* Handle zero cluster and backing file reads, otherwise read
1261      * data cluster directly.
1262      */
1263     if (ret == QED_CLUSTER_ZERO) {
1264         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1265         r = 0;
1266     } else if (ret != QED_CLUSTER_FOUND) {
1267         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1268                                   &acb->backing_qiov);
1269     } else {
1270         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1271         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1272                            &acb->cur_qiov, 0);
1273     }
1274 
1275     qemu_co_mutex_lock(&s->table_lock);
1276     return r;
1277 }
1278 
1279 /**
1280  * Begin next I/O or complete the request
1281  */
1282 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1283 {
1284     BDRVQEDState *s = acb_to_s(acb);
1285     uint64_t offset;
1286     size_t len;
1287     int ret;
1288 
1289     qemu_co_mutex_lock(&s->table_lock);
1290     while (1) {
1291         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1292 
1293         if (acb->backing_qiov) {
1294             qemu_iovec_destroy(acb->backing_qiov);
1295             g_free(acb->backing_qiov);
1296             acb->backing_qiov = NULL;
1297         }
1298 
1299         acb->qiov_offset += acb->cur_qiov.size;
1300         acb->cur_pos += acb->cur_qiov.size;
1301         qemu_iovec_reset(&acb->cur_qiov);
1302 
1303         /* Complete request */
1304         if (acb->cur_pos >= acb->end_pos) {
1305             ret = 0;
1306             break;
1307         }
1308 
1309         /* Find next cluster and start I/O */
1310         len = acb->end_pos - acb->cur_pos;
1311         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1312         if (ret < 0) {
1313             break;
1314         }
1315 
1316         if (acb->flags & QED_AIOCB_WRITE) {
1317             ret = qed_aio_write_data(acb, ret, offset, len);
1318         } else {
1319             ret = qed_aio_read_data(acb, ret, offset, len);
1320         }
1321 
1322         if (ret < 0 && ret != -EAGAIN) {
1323             break;
1324         }
1325     }
1326 
1327     trace_qed_aio_complete(s, acb, ret);
1328     qed_aio_complete(acb);
1329     qemu_co_mutex_unlock(&s->table_lock);
1330     return ret;
1331 }
1332 
1333 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1334                                        QEMUIOVector *qiov, int nb_sectors,
1335                                        int flags)
1336 {
1337     QEDAIOCB acb = {
1338         .bs         = bs,
1339         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1340         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1341         .qiov       = qiov,
1342         .flags      = flags,
1343     };
1344     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1345 
1346     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1347 
1348     /* Start request */
1349     return qed_aio_next_io(&acb);
1350 }
1351 
1352 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1353                                           int64_t sector_num, int nb_sectors,
1354                                           QEMUIOVector *qiov)
1355 {
1356     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1357 }
1358 
1359 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1360                                            int64_t sector_num, int nb_sectors,
1361                                            QEMUIOVector *qiov)
1362 {
1363     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1364 }
1365 
1366 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1367                                                   int64_t offset,
1368                                                   int bytes,
1369                                                   BdrvRequestFlags flags)
1370 {
1371     BDRVQEDState *s = bs->opaque;
1372     QEMUIOVector qiov;
1373     struct iovec iov;
1374 
1375     /* Fall back if the request is not aligned */
1376     if (qed_offset_into_cluster(s, offset) ||
1377         qed_offset_into_cluster(s, bytes)) {
1378         return -ENOTSUP;
1379     }
1380 
1381     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1382      * then it will be allocated during request processing.
1383      */
1384     iov.iov_base = NULL;
1385     iov.iov_len = bytes;
1386 
1387     qemu_iovec_init_external(&qiov, &iov, 1);
1388     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1389                           bytes >> BDRV_SECTOR_BITS,
1390                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1391 }
1392 
1393 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset,
1394                              PreallocMode prealloc, Error **errp)
1395 {
1396     BDRVQEDState *s = bs->opaque;
1397     uint64_t old_image_size;
1398     int ret;
1399 
1400     if (prealloc != PREALLOC_MODE_OFF) {
1401         error_setg(errp, "Unsupported preallocation mode '%s'",
1402                    PreallocMode_str(prealloc));
1403         return -ENOTSUP;
1404     }
1405 
1406     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1407                                  s->header.table_size)) {
1408         error_setg(errp, "Invalid image size specified");
1409         return -EINVAL;
1410     }
1411 
1412     if ((uint64_t)offset < s->header.image_size) {
1413         error_setg(errp, "Shrinking images is currently not supported");
1414         return -ENOTSUP;
1415     }
1416 
1417     old_image_size = s->header.image_size;
1418     s->header.image_size = offset;
1419     ret = qed_write_header_sync(s);
1420     if (ret < 0) {
1421         s->header.image_size = old_image_size;
1422         error_setg_errno(errp, -ret, "Failed to update the image size");
1423     }
1424     return ret;
1425 }
1426 
1427 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1428 {
1429     BDRVQEDState *s = bs->opaque;
1430     return s->header.image_size;
1431 }
1432 
1433 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1434 {
1435     BDRVQEDState *s = bs->opaque;
1436 
1437     memset(bdi, 0, sizeof(*bdi));
1438     bdi->cluster_size = s->header.cluster_size;
1439     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1440     bdi->unallocated_blocks_are_zero = true;
1441     bdi->can_write_zeroes_with_unmap = true;
1442     return 0;
1443 }
1444 
1445 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1446                                         const char *backing_file,
1447                                         const char *backing_fmt)
1448 {
1449     BDRVQEDState *s = bs->opaque;
1450     QEDHeader new_header, le_header;
1451     void *buffer;
1452     size_t buffer_len, backing_file_len;
1453     int ret;
1454 
1455     /* Refuse to set backing filename if unknown compat feature bits are
1456      * active.  If the image uses an unknown compat feature then we may not
1457      * know the layout of data following the header structure and cannot safely
1458      * add a new string.
1459      */
1460     if (backing_file && (s->header.compat_features &
1461                          ~QED_COMPAT_FEATURE_MASK)) {
1462         return -ENOTSUP;
1463     }
1464 
1465     memcpy(&new_header, &s->header, sizeof(new_header));
1466 
1467     new_header.features &= ~(QED_F_BACKING_FILE |
1468                              QED_F_BACKING_FORMAT_NO_PROBE);
1469 
1470     /* Adjust feature flags */
1471     if (backing_file) {
1472         new_header.features |= QED_F_BACKING_FILE;
1473 
1474         if (qed_fmt_is_raw(backing_fmt)) {
1475             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1476         }
1477     }
1478 
1479     /* Calculate new header size */
1480     backing_file_len = 0;
1481 
1482     if (backing_file) {
1483         backing_file_len = strlen(backing_file);
1484     }
1485 
1486     buffer_len = sizeof(new_header);
1487     new_header.backing_filename_offset = buffer_len;
1488     new_header.backing_filename_size = backing_file_len;
1489     buffer_len += backing_file_len;
1490 
1491     /* Make sure we can rewrite header without failing */
1492     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1493         return -ENOSPC;
1494     }
1495 
1496     /* Prepare new header */
1497     buffer = g_malloc(buffer_len);
1498 
1499     qed_header_cpu_to_le(&new_header, &le_header);
1500     memcpy(buffer, &le_header, sizeof(le_header));
1501     buffer_len = sizeof(le_header);
1502 
1503     if (backing_file) {
1504         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1505         buffer_len += backing_file_len;
1506     }
1507 
1508     /* Write new header */
1509     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1510     g_free(buffer);
1511     if (ret == 0) {
1512         memcpy(&s->header, &new_header, sizeof(new_header));
1513     }
1514     return ret;
1515 }
1516 
1517 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1518 {
1519     BDRVQEDState *s = bs->opaque;
1520     Error *local_err = NULL;
1521     int ret;
1522 
1523     bdrv_qed_close(bs);
1524 
1525     bdrv_qed_init_state(bs);
1526     if (qemu_in_coroutine()) {
1527         qemu_co_mutex_lock(&s->table_lock);
1528     }
1529     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1530     if (qemu_in_coroutine()) {
1531         qemu_co_mutex_unlock(&s->table_lock);
1532     }
1533     if (local_err) {
1534         error_propagate(errp, local_err);
1535         error_prepend(errp, "Could not reopen qed layer: ");
1536         return;
1537     } else if (ret < 0) {
1538         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1539         return;
1540     }
1541 }
1542 
1543 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1544                           BdrvCheckMode fix)
1545 {
1546     BDRVQEDState *s = bs->opaque;
1547 
1548     return qed_check(s, result, !!fix);
1549 }
1550 
1551 static QemuOptsList qed_create_opts = {
1552     .name = "qed-create-opts",
1553     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1554     .desc = {
1555         {
1556             .name = BLOCK_OPT_SIZE,
1557             .type = QEMU_OPT_SIZE,
1558             .help = "Virtual disk size"
1559         },
1560         {
1561             .name = BLOCK_OPT_BACKING_FILE,
1562             .type = QEMU_OPT_STRING,
1563             .help = "File name of a base image"
1564         },
1565         {
1566             .name = BLOCK_OPT_BACKING_FMT,
1567             .type = QEMU_OPT_STRING,
1568             .help = "Image format of the base image"
1569         },
1570         {
1571             .name = BLOCK_OPT_CLUSTER_SIZE,
1572             .type = QEMU_OPT_SIZE,
1573             .help = "Cluster size (in bytes)",
1574             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1575         },
1576         {
1577             .name = BLOCK_OPT_TABLE_SIZE,
1578             .type = QEMU_OPT_SIZE,
1579             .help = "L1/L2 table size (in clusters)"
1580         },
1581         { /* end of list */ }
1582     }
1583 };
1584 
1585 static BlockDriver bdrv_qed = {
1586     .format_name              = "qed",
1587     .instance_size            = sizeof(BDRVQEDState),
1588     .create_opts              = &qed_create_opts,
1589     .supports_backing         = true,
1590 
1591     .bdrv_probe               = bdrv_qed_probe,
1592     .bdrv_open                = bdrv_qed_open,
1593     .bdrv_close               = bdrv_qed_close,
1594     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1595     .bdrv_child_perm          = bdrv_format_default_perms,
1596     .bdrv_create              = bdrv_qed_create,
1597     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1598     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1599     .bdrv_co_readv            = bdrv_qed_co_readv,
1600     .bdrv_co_writev           = bdrv_qed_co_writev,
1601     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1602     .bdrv_truncate            = bdrv_qed_truncate,
1603     .bdrv_getlength           = bdrv_qed_getlength,
1604     .bdrv_get_info            = bdrv_qed_get_info,
1605     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1606     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1607     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1608     .bdrv_check               = bdrv_qed_check,
1609     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1610     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1611     .bdrv_co_drain            = bdrv_qed_co_drain,
1612 };
1613 
1614 static void bdrv_qed_init(void)
1615 {
1616     bdrv_register(&bdrv_qed);
1617 }
1618 
1619 block_init(bdrv_qed_init);
1620