1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "qemu/memalign.h" 24 #include "trace.h" 25 #include "qed.h" 26 #include "sysemu/block-backend.h" 27 #include "qapi/qmp/qdict.h" 28 #include "qapi/qobject-input-visitor.h" 29 #include "qapi/qapi-visit-block-core.h" 30 31 static QemuOptsList qed_create_opts; 32 33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 34 const char *filename) 35 { 36 const QEDHeader *header = (const QEDHeader *)buf; 37 38 if (buf_size < sizeof(*header)) { 39 return 0; 40 } 41 if (le32_to_cpu(header->magic) != QED_MAGIC) { 42 return 0; 43 } 44 return 100; 45 } 46 47 /** 48 * Check whether an image format is raw 49 * 50 * @fmt: Backing file format, may be NULL 51 */ 52 static bool qed_fmt_is_raw(const char *fmt) 53 { 54 return fmt && strcmp(fmt, "raw") == 0; 55 } 56 57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 58 { 59 cpu->magic = le32_to_cpu(le->magic); 60 cpu->cluster_size = le32_to_cpu(le->cluster_size); 61 cpu->table_size = le32_to_cpu(le->table_size); 62 cpu->header_size = le32_to_cpu(le->header_size); 63 cpu->features = le64_to_cpu(le->features); 64 cpu->compat_features = le64_to_cpu(le->compat_features); 65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 67 cpu->image_size = le64_to_cpu(le->image_size); 68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 70 } 71 72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 73 { 74 le->magic = cpu_to_le32(cpu->magic); 75 le->cluster_size = cpu_to_le32(cpu->cluster_size); 76 le->table_size = cpu_to_le32(cpu->table_size); 77 le->header_size = cpu_to_le32(cpu->header_size); 78 le->features = cpu_to_le64(cpu->features); 79 le->compat_features = cpu_to_le64(cpu->compat_features); 80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 82 le->image_size = cpu_to_le64(cpu->image_size); 83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 85 } 86 87 int qed_write_header_sync(BDRVQEDState *s) 88 { 89 QEDHeader le; 90 int ret; 91 92 qed_header_cpu_to_le(&s->header, &le); 93 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 94 if (ret != sizeof(le)) { 95 return ret; 96 } 97 return 0; 98 } 99 100 /** 101 * Update header in-place (does not rewrite backing filename or other strings) 102 * 103 * This function only updates known header fields in-place and does not affect 104 * extra data after the QED header. 105 * 106 * No new allocating reqs can start while this function runs. 107 */ 108 static int coroutine_fn qed_write_header(BDRVQEDState *s) 109 { 110 /* We must write full sectors for O_DIRECT but cannot necessarily generate 111 * the data following the header if an unrecognized compat feature is 112 * active. Therefore, first read the sectors containing the header, update 113 * them, and write back. 114 */ 115 116 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 117 size_t len = nsectors * BDRV_SECTOR_SIZE; 118 uint8_t *buf; 119 int ret; 120 121 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 122 123 buf = qemu_blockalign(s->bs, len); 124 125 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 126 if (ret < 0) { 127 goto out; 128 } 129 130 /* Update header */ 131 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 132 133 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 134 if (ret < 0) { 135 goto out; 136 } 137 138 ret = 0; 139 out: 140 qemu_vfree(buf); 141 return ret; 142 } 143 144 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 145 { 146 uint64_t table_entries; 147 uint64_t l2_size; 148 149 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 150 l2_size = table_entries * cluster_size; 151 152 return l2_size * table_entries; 153 } 154 155 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 156 { 157 if (cluster_size < QED_MIN_CLUSTER_SIZE || 158 cluster_size > QED_MAX_CLUSTER_SIZE) { 159 return false; 160 } 161 if (cluster_size & (cluster_size - 1)) { 162 return false; /* not power of 2 */ 163 } 164 return true; 165 } 166 167 static bool qed_is_table_size_valid(uint32_t table_size) 168 { 169 if (table_size < QED_MIN_TABLE_SIZE || 170 table_size > QED_MAX_TABLE_SIZE) { 171 return false; 172 } 173 if (table_size & (table_size - 1)) { 174 return false; /* not power of 2 */ 175 } 176 return true; 177 } 178 179 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 180 uint32_t table_size) 181 { 182 if (image_size % BDRV_SECTOR_SIZE != 0) { 183 return false; /* not multiple of sector size */ 184 } 185 if (image_size > qed_max_image_size(cluster_size, table_size)) { 186 return false; /* image is too large */ 187 } 188 return true; 189 } 190 191 /** 192 * Read a string of known length from the image file 193 * 194 * @file: Image file 195 * @offset: File offset to start of string, in bytes 196 * @n: String length in bytes 197 * @buf: Destination buffer 198 * @buflen: Destination buffer length in bytes 199 * @ret: 0 on success, -errno on failure 200 * 201 * The string is NUL-terminated. 202 */ 203 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 204 char *buf, size_t buflen) 205 { 206 int ret; 207 if (n >= buflen) { 208 return -EINVAL; 209 } 210 ret = bdrv_pread(file, offset, buf, n); 211 if (ret < 0) { 212 return ret; 213 } 214 buf[n] = '\0'; 215 return 0; 216 } 217 218 /** 219 * Allocate new clusters 220 * 221 * @s: QED state 222 * @n: Number of contiguous clusters to allocate 223 * @ret: Offset of first allocated cluster 224 * 225 * This function only produces the offset where the new clusters should be 226 * written. It updates BDRVQEDState but does not make any changes to the image 227 * file. 228 * 229 * Called with table_lock held. 230 */ 231 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 232 { 233 uint64_t offset = s->file_size; 234 s->file_size += n * s->header.cluster_size; 235 return offset; 236 } 237 238 QEDTable *qed_alloc_table(BDRVQEDState *s) 239 { 240 /* Honor O_DIRECT memory alignment requirements */ 241 return qemu_blockalign(s->bs, 242 s->header.cluster_size * s->header.table_size); 243 } 244 245 /** 246 * Allocate a new zeroed L2 table 247 * 248 * Called with table_lock held. 249 */ 250 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 251 { 252 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 253 254 l2_table->table = qed_alloc_table(s); 255 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 256 257 memset(l2_table->table->offsets, 0, 258 s->header.cluster_size * s->header.table_size); 259 return l2_table; 260 } 261 262 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 263 { 264 qemu_co_mutex_lock(&s->table_lock); 265 266 /* No reentrancy is allowed. */ 267 assert(!s->allocating_write_reqs_plugged); 268 if (s->allocating_acb != NULL) { 269 /* Another allocating write came concurrently. This cannot happen 270 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 271 */ 272 qemu_co_mutex_unlock(&s->table_lock); 273 return false; 274 } 275 276 s->allocating_write_reqs_plugged = true; 277 qemu_co_mutex_unlock(&s->table_lock); 278 return true; 279 } 280 281 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 282 { 283 qemu_co_mutex_lock(&s->table_lock); 284 assert(s->allocating_write_reqs_plugged); 285 s->allocating_write_reqs_plugged = false; 286 qemu_co_queue_next(&s->allocating_write_reqs); 287 qemu_co_mutex_unlock(&s->table_lock); 288 } 289 290 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 291 { 292 BDRVQEDState *s = opaque; 293 int ret; 294 295 trace_qed_need_check_timer_cb(s); 296 297 if (!qed_plug_allocating_write_reqs(s)) { 298 return; 299 } 300 301 /* Ensure writes are on disk before clearing flag */ 302 ret = bdrv_co_flush(s->bs->file->bs); 303 if (ret < 0) { 304 qed_unplug_allocating_write_reqs(s); 305 return; 306 } 307 308 s->header.features &= ~QED_F_NEED_CHECK; 309 ret = qed_write_header(s); 310 (void) ret; 311 312 qed_unplug_allocating_write_reqs(s); 313 314 ret = bdrv_co_flush(s->bs); 315 (void) ret; 316 } 317 318 static void qed_need_check_timer_cb(void *opaque) 319 { 320 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 321 qemu_coroutine_enter(co); 322 } 323 324 static void qed_start_need_check_timer(BDRVQEDState *s) 325 { 326 trace_qed_start_need_check_timer(s); 327 328 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 329 * migration. 330 */ 331 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 332 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 333 } 334 335 /* It's okay to call this multiple times or when no timer is started */ 336 static void qed_cancel_need_check_timer(BDRVQEDState *s) 337 { 338 trace_qed_cancel_need_check_timer(s); 339 timer_del(s->need_check_timer); 340 } 341 342 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 343 { 344 BDRVQEDState *s = bs->opaque; 345 346 qed_cancel_need_check_timer(s); 347 timer_free(s->need_check_timer); 348 } 349 350 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 351 AioContext *new_context) 352 { 353 BDRVQEDState *s = bs->opaque; 354 355 s->need_check_timer = aio_timer_new(new_context, 356 QEMU_CLOCK_VIRTUAL, SCALE_NS, 357 qed_need_check_timer_cb, s); 358 if (s->header.features & QED_F_NEED_CHECK) { 359 qed_start_need_check_timer(s); 360 } 361 } 362 363 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 364 { 365 BDRVQEDState *s = bs->opaque; 366 367 /* Fire the timer immediately in order to start doing I/O as soon as the 368 * header is flushed. 369 */ 370 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 371 qed_cancel_need_check_timer(s); 372 qed_need_check_timer_entry(s); 373 } 374 } 375 376 static void bdrv_qed_init_state(BlockDriverState *bs) 377 { 378 BDRVQEDState *s = bs->opaque; 379 380 memset(s, 0, sizeof(BDRVQEDState)); 381 s->bs = bs; 382 qemu_co_mutex_init(&s->table_lock); 383 qemu_co_queue_init(&s->allocating_write_reqs); 384 } 385 386 /* Called with table_lock held. */ 387 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 388 int flags, Error **errp) 389 { 390 BDRVQEDState *s = bs->opaque; 391 QEDHeader le_header; 392 int64_t file_size; 393 int ret; 394 395 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 396 if (ret < 0) { 397 error_setg(errp, "Failed to read QED header"); 398 return ret; 399 } 400 qed_header_le_to_cpu(&le_header, &s->header); 401 402 if (s->header.magic != QED_MAGIC) { 403 error_setg(errp, "Image not in QED format"); 404 return -EINVAL; 405 } 406 if (s->header.features & ~QED_FEATURE_MASK) { 407 /* image uses unsupported feature bits */ 408 error_setg(errp, "Unsupported QED features: %" PRIx64, 409 s->header.features & ~QED_FEATURE_MASK); 410 return -ENOTSUP; 411 } 412 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 413 error_setg(errp, "QED cluster size is invalid"); 414 return -EINVAL; 415 } 416 417 /* Round down file size to the last cluster */ 418 file_size = bdrv_getlength(bs->file->bs); 419 if (file_size < 0) { 420 error_setg(errp, "Failed to get file length"); 421 return file_size; 422 } 423 s->file_size = qed_start_of_cluster(s, file_size); 424 425 if (!qed_is_table_size_valid(s->header.table_size)) { 426 error_setg(errp, "QED table size is invalid"); 427 return -EINVAL; 428 } 429 if (!qed_is_image_size_valid(s->header.image_size, 430 s->header.cluster_size, 431 s->header.table_size)) { 432 error_setg(errp, "QED image size is invalid"); 433 return -EINVAL; 434 } 435 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 436 error_setg(errp, "QED table offset is invalid"); 437 return -EINVAL; 438 } 439 440 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 441 sizeof(uint64_t); 442 s->l2_shift = ctz32(s->header.cluster_size); 443 s->l2_mask = s->table_nelems - 1; 444 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 445 446 /* Header size calculation must not overflow uint32_t */ 447 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 448 error_setg(errp, "QED header size is too large"); 449 return -EINVAL; 450 } 451 452 if ((s->header.features & QED_F_BACKING_FILE)) { 453 if ((uint64_t)s->header.backing_filename_offset + 454 s->header.backing_filename_size > 455 s->header.cluster_size * s->header.header_size) { 456 error_setg(errp, "QED backing filename offset is invalid"); 457 return -EINVAL; 458 } 459 460 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 461 s->header.backing_filename_size, 462 bs->auto_backing_file, 463 sizeof(bs->auto_backing_file)); 464 if (ret < 0) { 465 error_setg(errp, "Failed to read backing filename"); 466 return ret; 467 } 468 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 469 bs->auto_backing_file); 470 471 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 472 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 473 } 474 } 475 476 /* Reset unknown autoclear feature bits. This is a backwards 477 * compatibility mechanism that allows images to be opened by older 478 * programs, which "knock out" unknown feature bits. When an image is 479 * opened by a newer program again it can detect that the autoclear 480 * feature is no longer valid. 481 */ 482 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 483 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 484 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 485 486 ret = qed_write_header_sync(s); 487 if (ret) { 488 error_setg(errp, "Failed to update header"); 489 return ret; 490 } 491 492 /* From here on only known autoclear feature bits are valid */ 493 bdrv_flush(bs->file->bs); 494 } 495 496 s->l1_table = qed_alloc_table(s); 497 qed_init_l2_cache(&s->l2_cache); 498 499 ret = qed_read_l1_table_sync(s); 500 if (ret) { 501 error_setg(errp, "Failed to read L1 table"); 502 goto out; 503 } 504 505 /* If image was not closed cleanly, check consistency */ 506 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 507 /* Read-only images cannot be fixed. There is no risk of corruption 508 * since write operations are not possible. Therefore, allow 509 * potentially inconsistent images to be opened read-only. This can 510 * aid data recovery from an otherwise inconsistent image. 511 */ 512 if (!bdrv_is_read_only(bs->file->bs) && 513 !(flags & BDRV_O_INACTIVE)) { 514 BdrvCheckResult result = {0}; 515 516 ret = qed_check(s, &result, true); 517 if (ret) { 518 error_setg(errp, "Image corrupted"); 519 goto out; 520 } 521 } 522 } 523 524 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 525 526 out: 527 if (ret) { 528 qed_free_l2_cache(&s->l2_cache); 529 qemu_vfree(s->l1_table); 530 } 531 return ret; 532 } 533 534 typedef struct QEDOpenCo { 535 BlockDriverState *bs; 536 QDict *options; 537 int flags; 538 Error **errp; 539 int ret; 540 } QEDOpenCo; 541 542 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 543 { 544 QEDOpenCo *qoc = opaque; 545 BDRVQEDState *s = qoc->bs->opaque; 546 547 qemu_co_mutex_lock(&s->table_lock); 548 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 549 qemu_co_mutex_unlock(&s->table_lock); 550 } 551 552 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 553 Error **errp) 554 { 555 QEDOpenCo qoc = { 556 .bs = bs, 557 .options = options, 558 .flags = flags, 559 .errp = errp, 560 .ret = -EINPROGRESS 561 }; 562 563 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds, 564 BDRV_CHILD_IMAGE, false, errp); 565 if (!bs->file) { 566 return -EINVAL; 567 } 568 569 bdrv_qed_init_state(bs); 570 if (qemu_in_coroutine()) { 571 bdrv_qed_open_entry(&qoc); 572 } else { 573 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 574 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 575 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 576 } 577 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 578 return qoc.ret; 579 } 580 581 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 582 { 583 BDRVQEDState *s = bs->opaque; 584 585 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 586 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size); 587 } 588 589 /* We have nothing to do for QED reopen, stubs just return 590 * success */ 591 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 592 BlockReopenQueue *queue, Error **errp) 593 { 594 return 0; 595 } 596 597 static void bdrv_qed_close(BlockDriverState *bs) 598 { 599 BDRVQEDState *s = bs->opaque; 600 601 bdrv_qed_detach_aio_context(bs); 602 603 /* Ensure writes reach stable storage */ 604 bdrv_flush(bs->file->bs); 605 606 /* Clean shutdown, no check required on next open */ 607 if (s->header.features & QED_F_NEED_CHECK) { 608 s->header.features &= ~QED_F_NEED_CHECK; 609 qed_write_header_sync(s); 610 } 611 612 qed_free_l2_cache(&s->l2_cache); 613 qemu_vfree(s->l1_table); 614 } 615 616 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 617 Error **errp) 618 { 619 BlockdevCreateOptionsQed *qed_opts; 620 BlockBackend *blk = NULL; 621 BlockDriverState *bs = NULL; 622 623 QEDHeader header; 624 QEDHeader le_header; 625 uint8_t *l1_table = NULL; 626 size_t l1_size; 627 int ret = 0; 628 629 assert(opts->driver == BLOCKDEV_DRIVER_QED); 630 qed_opts = &opts->u.qed; 631 632 /* Validate options and set default values */ 633 if (!qed_opts->has_cluster_size) { 634 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 635 } 636 if (!qed_opts->has_table_size) { 637 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 638 } 639 640 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 641 error_setg(errp, "QED cluster size must be within range [%u, %u] " 642 "and power of 2", 643 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 644 return -EINVAL; 645 } 646 if (!qed_is_table_size_valid(qed_opts->table_size)) { 647 error_setg(errp, "QED table size must be within range [%u, %u] " 648 "and power of 2", 649 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 650 return -EINVAL; 651 } 652 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 653 qed_opts->table_size)) 654 { 655 error_setg(errp, "QED image size must be a non-zero multiple of " 656 "cluster size and less than %" PRIu64 " bytes", 657 qed_max_image_size(qed_opts->cluster_size, 658 qed_opts->table_size)); 659 return -EINVAL; 660 } 661 662 /* Create BlockBackend to write to the image */ 663 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 664 if (bs == NULL) { 665 return -EIO; 666 } 667 668 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 669 errp); 670 if (!blk) { 671 ret = -EPERM; 672 goto out; 673 } 674 blk_set_allow_write_beyond_eof(blk, true); 675 676 /* Prepare image format */ 677 header = (QEDHeader) { 678 .magic = QED_MAGIC, 679 .cluster_size = qed_opts->cluster_size, 680 .table_size = qed_opts->table_size, 681 .header_size = 1, 682 .features = 0, 683 .compat_features = 0, 684 .l1_table_offset = qed_opts->cluster_size, 685 .image_size = qed_opts->size, 686 }; 687 688 l1_size = header.cluster_size * header.table_size; 689 690 /* 691 * The QED format associates file length with allocation status, 692 * so a new file (which is empty) must have a length of 0. 693 */ 694 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 695 if (ret < 0) { 696 goto out; 697 } 698 699 if (qed_opts->has_backing_file) { 700 header.features |= QED_F_BACKING_FILE; 701 header.backing_filename_offset = sizeof(le_header); 702 header.backing_filename_size = strlen(qed_opts->backing_file); 703 704 if (qed_opts->has_backing_fmt) { 705 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 706 if (qed_fmt_is_raw(backing_fmt)) { 707 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 708 } 709 } 710 } 711 712 qed_header_cpu_to_le(&header, &le_header); 713 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 714 if (ret < 0) { 715 goto out; 716 } 717 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 718 header.backing_filename_size, 0); 719 if (ret < 0) { 720 goto out; 721 } 722 723 l1_table = g_malloc0(l1_size); 724 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 725 if (ret < 0) { 726 goto out; 727 } 728 729 ret = 0; /* success */ 730 out: 731 g_free(l1_table); 732 blk_unref(blk); 733 bdrv_unref(bs); 734 return ret; 735 } 736 737 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv, 738 const char *filename, 739 QemuOpts *opts, 740 Error **errp) 741 { 742 BlockdevCreateOptions *create_options = NULL; 743 QDict *qdict; 744 Visitor *v; 745 BlockDriverState *bs = NULL; 746 int ret; 747 748 static const QDictRenames opt_renames[] = { 749 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 750 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 751 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 752 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 753 { NULL, NULL }, 754 }; 755 756 /* Parse options and convert legacy syntax */ 757 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 758 759 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 760 ret = -EINVAL; 761 goto fail; 762 } 763 764 /* Create and open the file (protocol layer) */ 765 ret = bdrv_create_file(filename, opts, errp); 766 if (ret < 0) { 767 goto fail; 768 } 769 770 bs = bdrv_open(filename, NULL, NULL, 771 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 772 if (bs == NULL) { 773 ret = -EIO; 774 goto fail; 775 } 776 777 /* Now get the QAPI type BlockdevCreateOptions */ 778 qdict_put_str(qdict, "driver", "qed"); 779 qdict_put_str(qdict, "file", bs->node_name); 780 781 v = qobject_input_visitor_new_flat_confused(qdict, errp); 782 if (!v) { 783 ret = -EINVAL; 784 goto fail; 785 } 786 787 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 788 visit_free(v); 789 if (!create_options) { 790 ret = -EINVAL; 791 goto fail; 792 } 793 794 /* Silently round up size */ 795 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 796 create_options->u.qed.size = 797 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 798 799 /* Create the qed image (format layer) */ 800 ret = bdrv_qed_co_create(create_options, errp); 801 802 fail: 803 qobject_unref(qdict); 804 bdrv_unref(bs); 805 qapi_free_BlockdevCreateOptions(create_options); 806 return ret; 807 } 808 809 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 810 bool want_zero, 811 int64_t pos, int64_t bytes, 812 int64_t *pnum, int64_t *map, 813 BlockDriverState **file) 814 { 815 BDRVQEDState *s = bs->opaque; 816 size_t len = MIN(bytes, SIZE_MAX); 817 int status; 818 QEDRequest request = { .l2_table = NULL }; 819 uint64_t offset; 820 int ret; 821 822 qemu_co_mutex_lock(&s->table_lock); 823 ret = qed_find_cluster(s, &request, pos, &len, &offset); 824 825 *pnum = len; 826 switch (ret) { 827 case QED_CLUSTER_FOUND: 828 *map = offset | qed_offset_into_cluster(s, pos); 829 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 830 *file = bs->file->bs; 831 break; 832 case QED_CLUSTER_ZERO: 833 status = BDRV_BLOCK_ZERO; 834 break; 835 case QED_CLUSTER_L2: 836 case QED_CLUSTER_L1: 837 status = 0; 838 break; 839 default: 840 assert(ret < 0); 841 status = ret; 842 break; 843 } 844 845 qed_unref_l2_cache_entry(request.l2_table); 846 qemu_co_mutex_unlock(&s->table_lock); 847 848 return status; 849 } 850 851 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 852 { 853 return acb->bs->opaque; 854 } 855 856 /** 857 * Read from the backing file or zero-fill if no backing file 858 * 859 * @s: QED state 860 * @pos: Byte position in device 861 * @qiov: Destination I/O vector 862 * 863 * This function reads qiov->size bytes starting at pos from the backing file. 864 * If there is no backing file then zeroes are read. 865 */ 866 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 867 QEMUIOVector *qiov) 868 { 869 if (s->bs->backing) { 870 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 871 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 872 } 873 qemu_iovec_memset(qiov, 0, 0, qiov->size); 874 return 0; 875 } 876 877 /** 878 * Copy data from backing file into the image 879 * 880 * @s: QED state 881 * @pos: Byte position in device 882 * @len: Number of bytes 883 * @offset: Byte offset in image file 884 */ 885 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 886 uint64_t pos, uint64_t len, 887 uint64_t offset) 888 { 889 QEMUIOVector qiov; 890 int ret; 891 892 /* Skip copy entirely if there is no work to do */ 893 if (len == 0) { 894 return 0; 895 } 896 897 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 898 899 ret = qed_read_backing_file(s, pos, &qiov); 900 901 if (ret) { 902 goto out; 903 } 904 905 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 906 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 907 if (ret < 0) { 908 goto out; 909 } 910 ret = 0; 911 out: 912 qemu_vfree(qemu_iovec_buf(&qiov)); 913 return ret; 914 } 915 916 /** 917 * Link one or more contiguous clusters into a table 918 * 919 * @s: QED state 920 * @table: L2 table 921 * @index: First cluster index 922 * @n: Number of contiguous clusters 923 * @cluster: First cluster offset 924 * 925 * The cluster offset may be an allocated byte offset in the image file, the 926 * zero cluster marker, or the unallocated cluster marker. 927 * 928 * Called with table_lock held. 929 */ 930 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 931 int index, unsigned int n, 932 uint64_t cluster) 933 { 934 int i; 935 for (i = index; i < index + n; i++) { 936 table->offsets[i] = cluster; 937 if (!qed_offset_is_unalloc_cluster(cluster) && 938 !qed_offset_is_zero_cluster(cluster)) { 939 cluster += s->header.cluster_size; 940 } 941 } 942 } 943 944 /* Called with table_lock held. */ 945 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 946 { 947 BDRVQEDState *s = acb_to_s(acb); 948 949 /* Free resources */ 950 qemu_iovec_destroy(&acb->cur_qiov); 951 qed_unref_l2_cache_entry(acb->request.l2_table); 952 953 /* Free the buffer we may have allocated for zero writes */ 954 if (acb->flags & QED_AIOCB_ZERO) { 955 qemu_vfree(acb->qiov->iov[0].iov_base); 956 acb->qiov->iov[0].iov_base = NULL; 957 } 958 959 /* Start next allocating write request waiting behind this one. Note that 960 * requests enqueue themselves when they first hit an unallocated cluster 961 * but they wait until the entire request is finished before waking up the 962 * next request in the queue. This ensures that we don't cycle through 963 * requests multiple times but rather finish one at a time completely. 964 */ 965 if (acb == s->allocating_acb) { 966 s->allocating_acb = NULL; 967 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 968 qemu_co_queue_next(&s->allocating_write_reqs); 969 } else if (s->header.features & QED_F_NEED_CHECK) { 970 qed_start_need_check_timer(s); 971 } 972 } 973 } 974 975 /** 976 * Update L1 table with new L2 table offset and write it out 977 * 978 * Called with table_lock held. 979 */ 980 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 981 { 982 BDRVQEDState *s = acb_to_s(acb); 983 CachedL2Table *l2_table = acb->request.l2_table; 984 uint64_t l2_offset = l2_table->offset; 985 int index, ret; 986 987 index = qed_l1_index(s, acb->cur_pos); 988 s->l1_table->offsets[index] = l2_table->offset; 989 990 ret = qed_write_l1_table(s, index, 1); 991 992 /* Commit the current L2 table to the cache */ 993 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 994 995 /* This is guaranteed to succeed because we just committed the entry to the 996 * cache. 997 */ 998 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 999 assert(acb->request.l2_table != NULL); 1000 1001 return ret; 1002 } 1003 1004 1005 /** 1006 * Update L2 table with new cluster offsets and write them out 1007 * 1008 * Called with table_lock held. 1009 */ 1010 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1011 { 1012 BDRVQEDState *s = acb_to_s(acb); 1013 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1014 int index, ret; 1015 1016 if (need_alloc) { 1017 qed_unref_l2_cache_entry(acb->request.l2_table); 1018 acb->request.l2_table = qed_new_l2_table(s); 1019 } 1020 1021 index = qed_l2_index(s, acb->cur_pos); 1022 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1023 offset); 1024 1025 if (need_alloc) { 1026 /* Write out the whole new L2 table */ 1027 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1028 if (ret) { 1029 return ret; 1030 } 1031 return qed_aio_write_l1_update(acb); 1032 } else { 1033 /* Write out only the updated part of the L2 table */ 1034 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1035 false); 1036 if (ret) { 1037 return ret; 1038 } 1039 } 1040 return 0; 1041 } 1042 1043 /** 1044 * Write data to the image file 1045 * 1046 * Called with table_lock *not* held. 1047 */ 1048 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1049 { 1050 BDRVQEDState *s = acb_to_s(acb); 1051 uint64_t offset = acb->cur_cluster + 1052 qed_offset_into_cluster(s, acb->cur_pos); 1053 1054 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1055 1056 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1057 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1058 &acb->cur_qiov, 0); 1059 } 1060 1061 /** 1062 * Populate untouched regions of new data cluster 1063 * 1064 * Called with table_lock held. 1065 */ 1066 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1067 { 1068 BDRVQEDState *s = acb_to_s(acb); 1069 uint64_t start, len, offset; 1070 int ret; 1071 1072 qemu_co_mutex_unlock(&s->table_lock); 1073 1074 /* Populate front untouched region of new data cluster */ 1075 start = qed_start_of_cluster(s, acb->cur_pos); 1076 len = qed_offset_into_cluster(s, acb->cur_pos); 1077 1078 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1079 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1080 if (ret < 0) { 1081 goto out; 1082 } 1083 1084 /* Populate back untouched region of new data cluster */ 1085 start = acb->cur_pos + acb->cur_qiov.size; 1086 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1087 offset = acb->cur_cluster + 1088 qed_offset_into_cluster(s, acb->cur_pos) + 1089 acb->cur_qiov.size; 1090 1091 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1092 ret = qed_copy_from_backing_file(s, start, len, offset); 1093 if (ret < 0) { 1094 goto out; 1095 } 1096 1097 ret = qed_aio_write_main(acb); 1098 if (ret < 0) { 1099 goto out; 1100 } 1101 1102 if (s->bs->backing) { 1103 /* 1104 * Flush new data clusters before updating the L2 table 1105 * 1106 * This flush is necessary when a backing file is in use. A crash 1107 * during an allocating write could result in empty clusters in the 1108 * image. If the write only touched a subregion of the cluster, 1109 * then backing image sectors have been lost in the untouched 1110 * region. The solution is to flush after writing a new data 1111 * cluster and before updating the L2 table. 1112 */ 1113 ret = bdrv_co_flush(s->bs->file->bs); 1114 } 1115 1116 out: 1117 qemu_co_mutex_lock(&s->table_lock); 1118 return ret; 1119 } 1120 1121 /** 1122 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1123 */ 1124 static bool qed_should_set_need_check(BDRVQEDState *s) 1125 { 1126 /* The flush before L2 update path ensures consistency */ 1127 if (s->bs->backing) { 1128 return false; 1129 } 1130 1131 return !(s->header.features & QED_F_NEED_CHECK); 1132 } 1133 1134 /** 1135 * Write new data cluster 1136 * 1137 * @acb: Write request 1138 * @len: Length in bytes 1139 * 1140 * This path is taken when writing to previously unallocated clusters. 1141 * 1142 * Called with table_lock held. 1143 */ 1144 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1145 { 1146 BDRVQEDState *s = acb_to_s(acb); 1147 int ret; 1148 1149 /* Cancel timer when the first allocating request comes in */ 1150 if (s->allocating_acb == NULL) { 1151 qed_cancel_need_check_timer(s); 1152 } 1153 1154 /* Freeze this request if another allocating write is in progress */ 1155 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1156 if (s->allocating_acb != NULL) { 1157 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1158 assert(s->allocating_acb == NULL); 1159 } 1160 s->allocating_acb = acb; 1161 return -EAGAIN; /* start over with looking up table entries */ 1162 } 1163 1164 acb->cur_nclusters = qed_bytes_to_clusters(s, 1165 qed_offset_into_cluster(s, acb->cur_pos) + len); 1166 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1167 1168 if (acb->flags & QED_AIOCB_ZERO) { 1169 /* Skip ahead if the clusters are already zero */ 1170 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1171 return 0; 1172 } 1173 acb->cur_cluster = 1; 1174 } else { 1175 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1176 } 1177 1178 if (qed_should_set_need_check(s)) { 1179 s->header.features |= QED_F_NEED_CHECK; 1180 ret = qed_write_header(s); 1181 if (ret < 0) { 1182 return ret; 1183 } 1184 } 1185 1186 if (!(acb->flags & QED_AIOCB_ZERO)) { 1187 ret = qed_aio_write_cow(acb); 1188 if (ret < 0) { 1189 return ret; 1190 } 1191 } 1192 1193 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1194 } 1195 1196 /** 1197 * Write data cluster in place 1198 * 1199 * @acb: Write request 1200 * @offset: Cluster offset in bytes 1201 * @len: Length in bytes 1202 * 1203 * This path is taken when writing to already allocated clusters. 1204 * 1205 * Called with table_lock held. 1206 */ 1207 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1208 size_t len) 1209 { 1210 BDRVQEDState *s = acb_to_s(acb); 1211 int r; 1212 1213 qemu_co_mutex_unlock(&s->table_lock); 1214 1215 /* Allocate buffer for zero writes */ 1216 if (acb->flags & QED_AIOCB_ZERO) { 1217 struct iovec *iov = acb->qiov->iov; 1218 1219 if (!iov->iov_base) { 1220 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1221 if (iov->iov_base == NULL) { 1222 r = -ENOMEM; 1223 goto out; 1224 } 1225 memset(iov->iov_base, 0, iov->iov_len); 1226 } 1227 } 1228 1229 /* Calculate the I/O vector */ 1230 acb->cur_cluster = offset; 1231 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1232 1233 /* Do the actual write. */ 1234 r = qed_aio_write_main(acb); 1235 out: 1236 qemu_co_mutex_lock(&s->table_lock); 1237 return r; 1238 } 1239 1240 /** 1241 * Write data cluster 1242 * 1243 * @opaque: Write request 1244 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1245 * @offset: Cluster offset in bytes 1246 * @len: Length in bytes 1247 * 1248 * Called with table_lock held. 1249 */ 1250 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1251 uint64_t offset, size_t len) 1252 { 1253 QEDAIOCB *acb = opaque; 1254 1255 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1256 1257 acb->find_cluster_ret = ret; 1258 1259 switch (ret) { 1260 case QED_CLUSTER_FOUND: 1261 return qed_aio_write_inplace(acb, offset, len); 1262 1263 case QED_CLUSTER_L2: 1264 case QED_CLUSTER_L1: 1265 case QED_CLUSTER_ZERO: 1266 return qed_aio_write_alloc(acb, len); 1267 1268 default: 1269 g_assert_not_reached(); 1270 } 1271 } 1272 1273 /** 1274 * Read data cluster 1275 * 1276 * @opaque: Read request 1277 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1278 * @offset: Cluster offset in bytes 1279 * @len: Length in bytes 1280 * 1281 * Called with table_lock held. 1282 */ 1283 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1284 uint64_t offset, size_t len) 1285 { 1286 QEDAIOCB *acb = opaque; 1287 BDRVQEDState *s = acb_to_s(acb); 1288 BlockDriverState *bs = acb->bs; 1289 int r; 1290 1291 qemu_co_mutex_unlock(&s->table_lock); 1292 1293 /* Adjust offset into cluster */ 1294 offset += qed_offset_into_cluster(s, acb->cur_pos); 1295 1296 trace_qed_aio_read_data(s, acb, ret, offset, len); 1297 1298 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1299 1300 /* Handle zero cluster and backing file reads, otherwise read 1301 * data cluster directly. 1302 */ 1303 if (ret == QED_CLUSTER_ZERO) { 1304 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1305 r = 0; 1306 } else if (ret != QED_CLUSTER_FOUND) { 1307 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1308 } else { 1309 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1310 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1311 &acb->cur_qiov, 0); 1312 } 1313 1314 qemu_co_mutex_lock(&s->table_lock); 1315 return r; 1316 } 1317 1318 /** 1319 * Begin next I/O or complete the request 1320 */ 1321 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1322 { 1323 BDRVQEDState *s = acb_to_s(acb); 1324 uint64_t offset; 1325 size_t len; 1326 int ret; 1327 1328 qemu_co_mutex_lock(&s->table_lock); 1329 while (1) { 1330 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1331 1332 acb->qiov_offset += acb->cur_qiov.size; 1333 acb->cur_pos += acb->cur_qiov.size; 1334 qemu_iovec_reset(&acb->cur_qiov); 1335 1336 /* Complete request */ 1337 if (acb->cur_pos >= acb->end_pos) { 1338 ret = 0; 1339 break; 1340 } 1341 1342 /* Find next cluster and start I/O */ 1343 len = acb->end_pos - acb->cur_pos; 1344 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1345 if (ret < 0) { 1346 break; 1347 } 1348 1349 if (acb->flags & QED_AIOCB_WRITE) { 1350 ret = qed_aio_write_data(acb, ret, offset, len); 1351 } else { 1352 ret = qed_aio_read_data(acb, ret, offset, len); 1353 } 1354 1355 if (ret < 0 && ret != -EAGAIN) { 1356 break; 1357 } 1358 } 1359 1360 trace_qed_aio_complete(s, acb, ret); 1361 qed_aio_complete(acb); 1362 qemu_co_mutex_unlock(&s->table_lock); 1363 return ret; 1364 } 1365 1366 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1367 QEMUIOVector *qiov, int nb_sectors, 1368 int flags) 1369 { 1370 QEDAIOCB acb = { 1371 .bs = bs, 1372 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1373 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1374 .qiov = qiov, 1375 .flags = flags, 1376 }; 1377 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1378 1379 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1380 1381 /* Start request */ 1382 return qed_aio_next_io(&acb); 1383 } 1384 1385 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1386 int64_t sector_num, int nb_sectors, 1387 QEMUIOVector *qiov) 1388 { 1389 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1390 } 1391 1392 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1393 int64_t sector_num, int nb_sectors, 1394 QEMUIOVector *qiov, int flags) 1395 { 1396 assert(!flags); 1397 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1398 } 1399 1400 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1401 int64_t offset, 1402 int64_t bytes, 1403 BdrvRequestFlags flags) 1404 { 1405 BDRVQEDState *s = bs->opaque; 1406 1407 /* 1408 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1409 * then it will be allocated during request processing. 1410 */ 1411 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1412 1413 /* 1414 * QED is not prepared for 63bit write-zero requests, so rely on 1415 * max_pwrite_zeroes. 1416 */ 1417 assert(bytes <= INT_MAX); 1418 1419 /* Fall back if the request is not aligned */ 1420 if (qed_offset_into_cluster(s, offset) || 1421 qed_offset_into_cluster(s, bytes)) { 1422 return -ENOTSUP; 1423 } 1424 1425 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1426 bytes >> BDRV_SECTOR_BITS, 1427 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1428 } 1429 1430 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1431 int64_t offset, 1432 bool exact, 1433 PreallocMode prealloc, 1434 BdrvRequestFlags flags, 1435 Error **errp) 1436 { 1437 BDRVQEDState *s = bs->opaque; 1438 uint64_t old_image_size; 1439 int ret; 1440 1441 if (prealloc != PREALLOC_MODE_OFF) { 1442 error_setg(errp, "Unsupported preallocation mode '%s'", 1443 PreallocMode_str(prealloc)); 1444 return -ENOTSUP; 1445 } 1446 1447 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1448 s->header.table_size)) { 1449 error_setg(errp, "Invalid image size specified"); 1450 return -EINVAL; 1451 } 1452 1453 if ((uint64_t)offset < s->header.image_size) { 1454 error_setg(errp, "Shrinking images is currently not supported"); 1455 return -ENOTSUP; 1456 } 1457 1458 old_image_size = s->header.image_size; 1459 s->header.image_size = offset; 1460 ret = qed_write_header_sync(s); 1461 if (ret < 0) { 1462 s->header.image_size = old_image_size; 1463 error_setg_errno(errp, -ret, "Failed to update the image size"); 1464 } 1465 return ret; 1466 } 1467 1468 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1469 { 1470 BDRVQEDState *s = bs->opaque; 1471 return s->header.image_size; 1472 } 1473 1474 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1475 { 1476 BDRVQEDState *s = bs->opaque; 1477 1478 memset(bdi, 0, sizeof(*bdi)); 1479 bdi->cluster_size = s->header.cluster_size; 1480 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1481 return 0; 1482 } 1483 1484 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1485 const char *backing_file, 1486 const char *backing_fmt) 1487 { 1488 BDRVQEDState *s = bs->opaque; 1489 QEDHeader new_header, le_header; 1490 void *buffer; 1491 size_t buffer_len, backing_file_len; 1492 int ret; 1493 1494 /* Refuse to set backing filename if unknown compat feature bits are 1495 * active. If the image uses an unknown compat feature then we may not 1496 * know the layout of data following the header structure and cannot safely 1497 * add a new string. 1498 */ 1499 if (backing_file && (s->header.compat_features & 1500 ~QED_COMPAT_FEATURE_MASK)) { 1501 return -ENOTSUP; 1502 } 1503 1504 memcpy(&new_header, &s->header, sizeof(new_header)); 1505 1506 new_header.features &= ~(QED_F_BACKING_FILE | 1507 QED_F_BACKING_FORMAT_NO_PROBE); 1508 1509 /* Adjust feature flags */ 1510 if (backing_file) { 1511 new_header.features |= QED_F_BACKING_FILE; 1512 1513 if (qed_fmt_is_raw(backing_fmt)) { 1514 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1515 } 1516 } 1517 1518 /* Calculate new header size */ 1519 backing_file_len = 0; 1520 1521 if (backing_file) { 1522 backing_file_len = strlen(backing_file); 1523 } 1524 1525 buffer_len = sizeof(new_header); 1526 new_header.backing_filename_offset = buffer_len; 1527 new_header.backing_filename_size = backing_file_len; 1528 buffer_len += backing_file_len; 1529 1530 /* Make sure we can rewrite header without failing */ 1531 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1532 return -ENOSPC; 1533 } 1534 1535 /* Prepare new header */ 1536 buffer = g_malloc(buffer_len); 1537 1538 qed_header_cpu_to_le(&new_header, &le_header); 1539 memcpy(buffer, &le_header, sizeof(le_header)); 1540 buffer_len = sizeof(le_header); 1541 1542 if (backing_file) { 1543 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1544 buffer_len += backing_file_len; 1545 } 1546 1547 /* Write new header */ 1548 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1549 g_free(buffer); 1550 if (ret == 0) { 1551 memcpy(&s->header, &new_header, sizeof(new_header)); 1552 } 1553 return ret; 1554 } 1555 1556 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1557 Error **errp) 1558 { 1559 BDRVQEDState *s = bs->opaque; 1560 int ret; 1561 1562 bdrv_qed_close(bs); 1563 1564 bdrv_qed_init_state(bs); 1565 qemu_co_mutex_lock(&s->table_lock); 1566 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1567 qemu_co_mutex_unlock(&s->table_lock); 1568 if (ret < 0) { 1569 error_prepend(errp, "Could not reopen qed layer: "); 1570 } 1571 } 1572 1573 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs, 1574 BdrvCheckResult *result, 1575 BdrvCheckMode fix) 1576 { 1577 BDRVQEDState *s = bs->opaque; 1578 int ret; 1579 1580 qemu_co_mutex_lock(&s->table_lock); 1581 ret = qed_check(s, result, !!fix); 1582 qemu_co_mutex_unlock(&s->table_lock); 1583 1584 return ret; 1585 } 1586 1587 static QemuOptsList qed_create_opts = { 1588 .name = "qed-create-opts", 1589 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1590 .desc = { 1591 { 1592 .name = BLOCK_OPT_SIZE, 1593 .type = QEMU_OPT_SIZE, 1594 .help = "Virtual disk size" 1595 }, 1596 { 1597 .name = BLOCK_OPT_BACKING_FILE, 1598 .type = QEMU_OPT_STRING, 1599 .help = "File name of a base image" 1600 }, 1601 { 1602 .name = BLOCK_OPT_BACKING_FMT, 1603 .type = QEMU_OPT_STRING, 1604 .help = "Image format of the base image" 1605 }, 1606 { 1607 .name = BLOCK_OPT_CLUSTER_SIZE, 1608 .type = QEMU_OPT_SIZE, 1609 .help = "Cluster size (in bytes)", 1610 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1611 }, 1612 { 1613 .name = BLOCK_OPT_TABLE_SIZE, 1614 .type = QEMU_OPT_SIZE, 1615 .help = "L1/L2 table size (in clusters)" 1616 }, 1617 { /* end of list */ } 1618 } 1619 }; 1620 1621 static BlockDriver bdrv_qed = { 1622 .format_name = "qed", 1623 .instance_size = sizeof(BDRVQEDState), 1624 .create_opts = &qed_create_opts, 1625 .is_format = true, 1626 .supports_backing = true, 1627 1628 .bdrv_probe = bdrv_qed_probe, 1629 .bdrv_open = bdrv_qed_open, 1630 .bdrv_close = bdrv_qed_close, 1631 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1632 .bdrv_child_perm = bdrv_default_perms, 1633 .bdrv_co_create = bdrv_qed_co_create, 1634 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1635 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1636 .bdrv_co_block_status = bdrv_qed_co_block_status, 1637 .bdrv_co_readv = bdrv_qed_co_readv, 1638 .bdrv_co_writev = bdrv_qed_co_writev, 1639 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1640 .bdrv_co_truncate = bdrv_qed_co_truncate, 1641 .bdrv_getlength = bdrv_qed_getlength, 1642 .bdrv_get_info = bdrv_qed_get_info, 1643 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1644 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1645 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1646 .bdrv_co_check = bdrv_qed_co_check, 1647 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1648 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1649 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1650 }; 1651 1652 static void bdrv_qed_init(void) 1653 { 1654 bdrv_register(&bdrv_qed); 1655 } 1656 1657 block_init(bdrv_qed_init); 1658