1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "qemu/timer.h" 18 #include "qemu/bswap.h" 19 #include "trace.h" 20 #include "qed.h" 21 #include "qapi/qmp/qerror.h" 22 #include "sysemu/block-backend.h" 23 24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 25 const char *filename) 26 { 27 const QEDHeader *header = (const QEDHeader *)buf; 28 29 if (buf_size < sizeof(*header)) { 30 return 0; 31 } 32 if (le32_to_cpu(header->magic) != QED_MAGIC) { 33 return 0; 34 } 35 return 100; 36 } 37 38 /** 39 * Check whether an image format is raw 40 * 41 * @fmt: Backing file format, may be NULL 42 */ 43 static bool qed_fmt_is_raw(const char *fmt) 44 { 45 return fmt && strcmp(fmt, "raw") == 0; 46 } 47 48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 49 { 50 cpu->magic = le32_to_cpu(le->magic); 51 cpu->cluster_size = le32_to_cpu(le->cluster_size); 52 cpu->table_size = le32_to_cpu(le->table_size); 53 cpu->header_size = le32_to_cpu(le->header_size); 54 cpu->features = le64_to_cpu(le->features); 55 cpu->compat_features = le64_to_cpu(le->compat_features); 56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 58 cpu->image_size = le64_to_cpu(le->image_size); 59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 61 } 62 63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 64 { 65 le->magic = cpu_to_le32(cpu->magic); 66 le->cluster_size = cpu_to_le32(cpu->cluster_size); 67 le->table_size = cpu_to_le32(cpu->table_size); 68 le->header_size = cpu_to_le32(cpu->header_size); 69 le->features = cpu_to_le64(cpu->features); 70 le->compat_features = cpu_to_le64(cpu->compat_features); 71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 73 le->image_size = cpu_to_le64(cpu->image_size); 74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 76 } 77 78 int qed_write_header_sync(BDRVQEDState *s) 79 { 80 QEDHeader le; 81 int ret; 82 83 qed_header_cpu_to_le(&s->header, &le); 84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 85 if (ret != sizeof(le)) { 86 return ret; 87 } 88 return 0; 89 } 90 91 /** 92 * Update header in-place (does not rewrite backing filename or other strings) 93 * 94 * This function only updates known header fields in-place and does not affect 95 * extra data after the QED header. 96 * 97 * No new allocating reqs can start while this function runs. 98 */ 99 static int coroutine_fn qed_write_header(BDRVQEDState *s) 100 { 101 /* We must write full sectors for O_DIRECT but cannot necessarily generate 102 * the data following the header if an unrecognized compat feature is 103 * active. Therefore, first read the sectors containing the header, update 104 * them, and write back. 105 */ 106 107 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 108 size_t len = nsectors * BDRV_SECTOR_SIZE; 109 uint8_t *buf; 110 struct iovec iov; 111 QEMUIOVector qiov; 112 int ret; 113 114 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 115 116 buf = qemu_blockalign(s->bs, len); 117 iov = (struct iovec) { 118 .iov_base = buf, 119 .iov_len = len, 120 }; 121 qemu_iovec_init_external(&qiov, &iov, 1); 122 123 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 124 if (ret < 0) { 125 goto out; 126 } 127 128 /* Update header */ 129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 130 131 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 132 if (ret < 0) { 133 goto out; 134 } 135 136 ret = 0; 137 out: 138 qemu_vfree(buf); 139 return ret; 140 } 141 142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 143 { 144 uint64_t table_entries; 145 uint64_t l2_size; 146 147 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 148 l2_size = table_entries * cluster_size; 149 150 return l2_size * table_entries; 151 } 152 153 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 154 { 155 if (cluster_size < QED_MIN_CLUSTER_SIZE || 156 cluster_size > QED_MAX_CLUSTER_SIZE) { 157 return false; 158 } 159 if (cluster_size & (cluster_size - 1)) { 160 return false; /* not power of 2 */ 161 } 162 return true; 163 } 164 165 static bool qed_is_table_size_valid(uint32_t table_size) 166 { 167 if (table_size < QED_MIN_TABLE_SIZE || 168 table_size > QED_MAX_TABLE_SIZE) { 169 return false; 170 } 171 if (table_size & (table_size - 1)) { 172 return false; /* not power of 2 */ 173 } 174 return true; 175 } 176 177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 178 uint32_t table_size) 179 { 180 if (image_size % BDRV_SECTOR_SIZE != 0) { 181 return false; /* not multiple of sector size */ 182 } 183 if (image_size > qed_max_image_size(cluster_size, table_size)) { 184 return false; /* image is too large */ 185 } 186 return true; 187 } 188 189 /** 190 * Read a string of known length from the image file 191 * 192 * @file: Image file 193 * @offset: File offset to start of string, in bytes 194 * @n: String length in bytes 195 * @buf: Destination buffer 196 * @buflen: Destination buffer length in bytes 197 * @ret: 0 on success, -errno on failure 198 * 199 * The string is NUL-terminated. 200 */ 201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 202 char *buf, size_t buflen) 203 { 204 int ret; 205 if (n >= buflen) { 206 return -EINVAL; 207 } 208 ret = bdrv_pread(file, offset, buf, n); 209 if (ret < 0) { 210 return ret; 211 } 212 buf[n] = '\0'; 213 return 0; 214 } 215 216 /** 217 * Allocate new clusters 218 * 219 * @s: QED state 220 * @n: Number of contiguous clusters to allocate 221 * @ret: Offset of first allocated cluster 222 * 223 * This function only produces the offset where the new clusters should be 224 * written. It updates BDRVQEDState but does not make any changes to the image 225 * file. 226 * 227 * Called with table_lock held. 228 */ 229 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 230 { 231 uint64_t offset = s->file_size; 232 s->file_size += n * s->header.cluster_size; 233 return offset; 234 } 235 236 QEDTable *qed_alloc_table(BDRVQEDState *s) 237 { 238 /* Honor O_DIRECT memory alignment requirements */ 239 return qemu_blockalign(s->bs, 240 s->header.cluster_size * s->header.table_size); 241 } 242 243 /** 244 * Allocate a new zeroed L2 table 245 * 246 * Called with table_lock held. 247 */ 248 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 249 { 250 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 251 252 l2_table->table = qed_alloc_table(s); 253 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 254 255 memset(l2_table->table->offsets, 0, 256 s->header.cluster_size * s->header.table_size); 257 return l2_table; 258 } 259 260 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 261 { 262 qemu_co_mutex_lock(&s->table_lock); 263 264 /* No reentrancy is allowed. */ 265 assert(!s->allocating_write_reqs_plugged); 266 if (s->allocating_acb != NULL) { 267 /* Another allocating write came concurrently. This cannot happen 268 * from bdrv_qed_co_drain, but it can happen when the timer runs. 269 */ 270 qemu_co_mutex_unlock(&s->table_lock); 271 return false; 272 } 273 274 s->allocating_write_reqs_plugged = true; 275 qemu_co_mutex_unlock(&s->table_lock); 276 return true; 277 } 278 279 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 280 { 281 qemu_co_mutex_lock(&s->table_lock); 282 assert(s->allocating_write_reqs_plugged); 283 s->allocating_write_reqs_plugged = false; 284 qemu_co_queue_next(&s->allocating_write_reqs); 285 qemu_co_mutex_unlock(&s->table_lock); 286 } 287 288 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 289 { 290 BDRVQEDState *s = opaque; 291 int ret; 292 293 trace_qed_need_check_timer_cb(s); 294 295 if (!qed_plug_allocating_write_reqs(s)) { 296 return; 297 } 298 299 /* Ensure writes are on disk before clearing flag */ 300 ret = bdrv_co_flush(s->bs->file->bs); 301 if (ret < 0) { 302 qed_unplug_allocating_write_reqs(s); 303 return; 304 } 305 306 s->header.features &= ~QED_F_NEED_CHECK; 307 ret = qed_write_header(s); 308 (void) ret; 309 310 qed_unplug_allocating_write_reqs(s); 311 312 ret = bdrv_co_flush(s->bs); 313 (void) ret; 314 } 315 316 static void qed_need_check_timer_cb(void *opaque) 317 { 318 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 319 qemu_coroutine_enter(co); 320 } 321 322 static void qed_start_need_check_timer(BDRVQEDState *s) 323 { 324 trace_qed_start_need_check_timer(s); 325 326 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 327 * migration. 328 */ 329 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 330 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 331 } 332 333 /* It's okay to call this multiple times or when no timer is started */ 334 static void qed_cancel_need_check_timer(BDRVQEDState *s) 335 { 336 trace_qed_cancel_need_check_timer(s); 337 timer_del(s->need_check_timer); 338 } 339 340 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 341 { 342 BDRVQEDState *s = bs->opaque; 343 344 qed_cancel_need_check_timer(s); 345 timer_free(s->need_check_timer); 346 } 347 348 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 349 AioContext *new_context) 350 { 351 BDRVQEDState *s = bs->opaque; 352 353 s->need_check_timer = aio_timer_new(new_context, 354 QEMU_CLOCK_VIRTUAL, SCALE_NS, 355 qed_need_check_timer_cb, s); 356 if (s->header.features & QED_F_NEED_CHECK) { 357 qed_start_need_check_timer(s); 358 } 359 } 360 361 static void coroutine_fn bdrv_qed_co_drain(BlockDriverState *bs) 362 { 363 BDRVQEDState *s = bs->opaque; 364 365 /* Fire the timer immediately in order to start doing I/O as soon as the 366 * header is flushed. 367 */ 368 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 369 qed_cancel_need_check_timer(s); 370 qed_need_check_timer_entry(s); 371 } 372 } 373 374 static void bdrv_qed_init_state(BlockDriverState *bs) 375 { 376 BDRVQEDState *s = bs->opaque; 377 378 memset(s, 0, sizeof(BDRVQEDState)); 379 s->bs = bs; 380 qemu_co_mutex_init(&s->table_lock); 381 qemu_co_queue_init(&s->allocating_write_reqs); 382 } 383 384 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, 385 Error **errp) 386 { 387 BDRVQEDState *s = bs->opaque; 388 QEDHeader le_header; 389 int64_t file_size; 390 int ret; 391 392 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 393 if (ret < 0) { 394 return ret; 395 } 396 qed_header_le_to_cpu(&le_header, &s->header); 397 398 if (s->header.magic != QED_MAGIC) { 399 error_setg(errp, "Image not in QED format"); 400 return -EINVAL; 401 } 402 if (s->header.features & ~QED_FEATURE_MASK) { 403 /* image uses unsupported feature bits */ 404 error_setg(errp, "Unsupported QED features: %" PRIx64, 405 s->header.features & ~QED_FEATURE_MASK); 406 return -ENOTSUP; 407 } 408 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 409 return -EINVAL; 410 } 411 412 /* Round down file size to the last cluster */ 413 file_size = bdrv_getlength(bs->file->bs); 414 if (file_size < 0) { 415 return file_size; 416 } 417 s->file_size = qed_start_of_cluster(s, file_size); 418 419 if (!qed_is_table_size_valid(s->header.table_size)) { 420 return -EINVAL; 421 } 422 if (!qed_is_image_size_valid(s->header.image_size, 423 s->header.cluster_size, 424 s->header.table_size)) { 425 return -EINVAL; 426 } 427 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 428 return -EINVAL; 429 } 430 431 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 432 sizeof(uint64_t); 433 s->l2_shift = ctz32(s->header.cluster_size); 434 s->l2_mask = s->table_nelems - 1; 435 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 436 437 /* Header size calculation must not overflow uint32_t */ 438 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 439 return -EINVAL; 440 } 441 442 if ((s->header.features & QED_F_BACKING_FILE)) { 443 if ((uint64_t)s->header.backing_filename_offset + 444 s->header.backing_filename_size > 445 s->header.cluster_size * s->header.header_size) { 446 return -EINVAL; 447 } 448 449 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 450 s->header.backing_filename_size, bs->backing_file, 451 sizeof(bs->backing_file)); 452 if (ret < 0) { 453 return ret; 454 } 455 456 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 457 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 458 } 459 } 460 461 /* Reset unknown autoclear feature bits. This is a backwards 462 * compatibility mechanism that allows images to be opened by older 463 * programs, which "knock out" unknown feature bits. When an image is 464 * opened by a newer program again it can detect that the autoclear 465 * feature is no longer valid. 466 */ 467 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 468 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 469 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 470 471 ret = qed_write_header_sync(s); 472 if (ret) { 473 return ret; 474 } 475 476 /* From here on only known autoclear feature bits are valid */ 477 bdrv_flush(bs->file->bs); 478 } 479 480 s->l1_table = qed_alloc_table(s); 481 qed_init_l2_cache(&s->l2_cache); 482 483 ret = qed_read_l1_table_sync(s); 484 if (ret) { 485 goto out; 486 } 487 488 /* If image was not closed cleanly, check consistency */ 489 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 490 /* Read-only images cannot be fixed. There is no risk of corruption 491 * since write operations are not possible. Therefore, allow 492 * potentially inconsistent images to be opened read-only. This can 493 * aid data recovery from an otherwise inconsistent image. 494 */ 495 if (!bdrv_is_read_only(bs->file->bs) && 496 !(flags & BDRV_O_INACTIVE)) { 497 BdrvCheckResult result = {0}; 498 499 ret = qed_check(s, &result, true); 500 if (ret) { 501 goto out; 502 } 503 } 504 } 505 506 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 507 508 out: 509 if (ret) { 510 qed_free_l2_cache(&s->l2_cache); 511 qemu_vfree(s->l1_table); 512 } 513 return ret; 514 } 515 516 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 517 Error **errp) 518 { 519 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 520 false, errp); 521 if (!bs->file) { 522 return -EINVAL; 523 } 524 525 bdrv_qed_init_state(bs); 526 return bdrv_qed_do_open(bs, options, flags, errp); 527 } 528 529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 530 { 531 BDRVQEDState *s = bs->opaque; 532 533 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 534 } 535 536 /* We have nothing to do for QED reopen, stubs just return 537 * success */ 538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 539 BlockReopenQueue *queue, Error **errp) 540 { 541 return 0; 542 } 543 544 static void bdrv_qed_close(BlockDriverState *bs) 545 { 546 BDRVQEDState *s = bs->opaque; 547 548 bdrv_qed_detach_aio_context(bs); 549 550 /* Ensure writes reach stable storage */ 551 bdrv_flush(bs->file->bs); 552 553 /* Clean shutdown, no check required on next open */ 554 if (s->header.features & QED_F_NEED_CHECK) { 555 s->header.features &= ~QED_F_NEED_CHECK; 556 qed_write_header_sync(s); 557 } 558 559 qed_free_l2_cache(&s->l2_cache); 560 qemu_vfree(s->l1_table); 561 } 562 563 static int qed_create(const char *filename, uint32_t cluster_size, 564 uint64_t image_size, uint32_t table_size, 565 const char *backing_file, const char *backing_fmt, 566 QemuOpts *opts, Error **errp) 567 { 568 QEDHeader header = { 569 .magic = QED_MAGIC, 570 .cluster_size = cluster_size, 571 .table_size = table_size, 572 .header_size = 1, 573 .features = 0, 574 .compat_features = 0, 575 .l1_table_offset = cluster_size, 576 .image_size = image_size, 577 }; 578 QEDHeader le_header; 579 uint8_t *l1_table = NULL; 580 size_t l1_size = header.cluster_size * header.table_size; 581 Error *local_err = NULL; 582 int ret = 0; 583 BlockBackend *blk; 584 585 ret = bdrv_create_file(filename, opts, &local_err); 586 if (ret < 0) { 587 error_propagate(errp, local_err); 588 return ret; 589 } 590 591 blk = blk_new_open(filename, NULL, NULL, 592 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, 593 &local_err); 594 if (blk == NULL) { 595 error_propagate(errp, local_err); 596 return -EIO; 597 } 598 599 blk_set_allow_write_beyond_eof(blk, true); 600 601 /* File must start empty and grow, check truncate is supported */ 602 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp); 603 if (ret < 0) { 604 goto out; 605 } 606 607 if (backing_file) { 608 header.features |= QED_F_BACKING_FILE; 609 header.backing_filename_offset = sizeof(le_header); 610 header.backing_filename_size = strlen(backing_file); 611 612 if (qed_fmt_is_raw(backing_fmt)) { 613 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 614 } 615 } 616 617 qed_header_cpu_to_le(&header, &le_header); 618 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 619 if (ret < 0) { 620 goto out; 621 } 622 ret = blk_pwrite(blk, sizeof(le_header), backing_file, 623 header.backing_filename_size, 0); 624 if (ret < 0) { 625 goto out; 626 } 627 628 l1_table = g_malloc0(l1_size); 629 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 630 if (ret < 0) { 631 goto out; 632 } 633 634 ret = 0; /* success */ 635 out: 636 g_free(l1_table); 637 blk_unref(blk); 638 return ret; 639 } 640 641 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp) 642 { 643 uint64_t image_size = 0; 644 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 645 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 646 char *backing_file = NULL; 647 char *backing_fmt = NULL; 648 int ret; 649 650 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), 651 BDRV_SECTOR_SIZE); 652 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); 653 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT); 654 cluster_size = qemu_opt_get_size_del(opts, 655 BLOCK_OPT_CLUSTER_SIZE, 656 QED_DEFAULT_CLUSTER_SIZE); 657 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE, 658 QED_DEFAULT_TABLE_SIZE); 659 660 if (!qed_is_cluster_size_valid(cluster_size)) { 661 error_setg(errp, "QED cluster size must be within range [%u, %u] " 662 "and power of 2", 663 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 664 ret = -EINVAL; 665 goto finish; 666 } 667 if (!qed_is_table_size_valid(table_size)) { 668 error_setg(errp, "QED table size must be within range [%u, %u] " 669 "and power of 2", 670 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 671 ret = -EINVAL; 672 goto finish; 673 } 674 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 675 error_setg(errp, "QED image size must be a non-zero multiple of " 676 "cluster size and less than %" PRIu64 " bytes", 677 qed_max_image_size(cluster_size, table_size)); 678 ret = -EINVAL; 679 goto finish; 680 } 681 682 ret = qed_create(filename, cluster_size, image_size, table_size, 683 backing_file, backing_fmt, opts, errp); 684 685 finish: 686 g_free(backing_file); 687 g_free(backing_fmt); 688 return ret; 689 } 690 691 typedef struct { 692 BlockDriverState *bs; 693 Coroutine *co; 694 uint64_t pos; 695 int64_t status; 696 int *pnum; 697 BlockDriverState **file; 698 } QEDIsAllocatedCB; 699 700 /* Called with table_lock held. */ 701 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 702 { 703 QEDIsAllocatedCB *cb = opaque; 704 BDRVQEDState *s = cb->bs->opaque; 705 *cb->pnum = len / BDRV_SECTOR_SIZE; 706 switch (ret) { 707 case QED_CLUSTER_FOUND: 708 offset |= qed_offset_into_cluster(s, cb->pos); 709 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset; 710 *cb->file = cb->bs->file->bs; 711 break; 712 case QED_CLUSTER_ZERO: 713 cb->status = BDRV_BLOCK_ZERO; 714 break; 715 case QED_CLUSTER_L2: 716 case QED_CLUSTER_L1: 717 cb->status = 0; 718 break; 719 default: 720 assert(ret < 0); 721 cb->status = ret; 722 break; 723 } 724 725 if (cb->co) { 726 aio_co_wake(cb->co); 727 } 728 } 729 730 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, 731 int64_t sector_num, 732 int nb_sectors, int *pnum, 733 BlockDriverState **file) 734 { 735 BDRVQEDState *s = bs->opaque; 736 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 737 QEDIsAllocatedCB cb = { 738 .bs = bs, 739 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, 740 .status = BDRV_BLOCK_OFFSET_MASK, 741 .pnum = pnum, 742 .file = file, 743 }; 744 QEDRequest request = { .l2_table = NULL }; 745 uint64_t offset; 746 int ret; 747 748 qemu_co_mutex_lock(&s->table_lock); 749 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset); 750 qed_is_allocated_cb(&cb, ret, offset, len); 751 752 /* The callback was invoked immediately */ 753 assert(cb.status != BDRV_BLOCK_OFFSET_MASK); 754 755 qed_unref_l2_cache_entry(request.l2_table); 756 qemu_co_mutex_unlock(&s->table_lock); 757 758 return cb.status; 759 } 760 761 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 762 { 763 return acb->bs->opaque; 764 } 765 766 /** 767 * Read from the backing file or zero-fill if no backing file 768 * 769 * @s: QED state 770 * @pos: Byte position in device 771 * @qiov: Destination I/O vector 772 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 773 * @cb: Completion function 774 * @opaque: User data for completion function 775 * 776 * This function reads qiov->size bytes starting at pos from the backing file. 777 * If there is no backing file then zeroes are read. 778 */ 779 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 780 QEMUIOVector *qiov, 781 QEMUIOVector **backing_qiov) 782 { 783 uint64_t backing_length = 0; 784 size_t size; 785 int ret; 786 787 /* If there is a backing file, get its length. Treat the absence of a 788 * backing file like a zero length backing file. 789 */ 790 if (s->bs->backing) { 791 int64_t l = bdrv_getlength(s->bs->backing->bs); 792 if (l < 0) { 793 return l; 794 } 795 backing_length = l; 796 } 797 798 /* Zero all sectors if reading beyond the end of the backing file */ 799 if (pos >= backing_length || 800 pos + qiov->size > backing_length) { 801 qemu_iovec_memset(qiov, 0, 0, qiov->size); 802 } 803 804 /* Complete now if there are no backing file sectors to read */ 805 if (pos >= backing_length) { 806 return 0; 807 } 808 809 /* If the read straddles the end of the backing file, shorten it */ 810 size = MIN((uint64_t)backing_length - pos, qiov->size); 811 812 assert(*backing_qiov == NULL); 813 *backing_qiov = g_new(QEMUIOVector, 1); 814 qemu_iovec_init(*backing_qiov, qiov->niov); 815 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 816 817 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 818 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 819 if (ret < 0) { 820 return ret; 821 } 822 return 0; 823 } 824 825 /** 826 * Copy data from backing file into the image 827 * 828 * @s: QED state 829 * @pos: Byte position in device 830 * @len: Number of bytes 831 * @offset: Byte offset in image file 832 */ 833 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 834 uint64_t pos, uint64_t len, 835 uint64_t offset) 836 { 837 QEMUIOVector qiov; 838 QEMUIOVector *backing_qiov = NULL; 839 struct iovec iov; 840 int ret; 841 842 /* Skip copy entirely if there is no work to do */ 843 if (len == 0) { 844 return 0; 845 } 846 847 iov = (struct iovec) { 848 .iov_base = qemu_blockalign(s->bs, len), 849 .iov_len = len, 850 }; 851 qemu_iovec_init_external(&qiov, &iov, 1); 852 853 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 854 855 if (backing_qiov) { 856 qemu_iovec_destroy(backing_qiov); 857 g_free(backing_qiov); 858 backing_qiov = NULL; 859 } 860 861 if (ret) { 862 goto out; 863 } 864 865 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 866 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 867 if (ret < 0) { 868 goto out; 869 } 870 ret = 0; 871 out: 872 qemu_vfree(iov.iov_base); 873 return ret; 874 } 875 876 /** 877 * Link one or more contiguous clusters into a table 878 * 879 * @s: QED state 880 * @table: L2 table 881 * @index: First cluster index 882 * @n: Number of contiguous clusters 883 * @cluster: First cluster offset 884 * 885 * The cluster offset may be an allocated byte offset in the image file, the 886 * zero cluster marker, or the unallocated cluster marker. 887 * 888 * Called with table_lock held. 889 */ 890 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 891 int index, unsigned int n, 892 uint64_t cluster) 893 { 894 int i; 895 for (i = index; i < index + n; i++) { 896 table->offsets[i] = cluster; 897 if (!qed_offset_is_unalloc_cluster(cluster) && 898 !qed_offset_is_zero_cluster(cluster)) { 899 cluster += s->header.cluster_size; 900 } 901 } 902 } 903 904 /* Called with table_lock held. */ 905 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 906 { 907 BDRVQEDState *s = acb_to_s(acb); 908 909 /* Free resources */ 910 qemu_iovec_destroy(&acb->cur_qiov); 911 qed_unref_l2_cache_entry(acb->request.l2_table); 912 913 /* Free the buffer we may have allocated for zero writes */ 914 if (acb->flags & QED_AIOCB_ZERO) { 915 qemu_vfree(acb->qiov->iov[0].iov_base); 916 acb->qiov->iov[0].iov_base = NULL; 917 } 918 919 /* Start next allocating write request waiting behind this one. Note that 920 * requests enqueue themselves when they first hit an unallocated cluster 921 * but they wait until the entire request is finished before waking up the 922 * next request in the queue. This ensures that we don't cycle through 923 * requests multiple times but rather finish one at a time completely. 924 */ 925 if (acb == s->allocating_acb) { 926 s->allocating_acb = NULL; 927 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 928 qemu_co_queue_next(&s->allocating_write_reqs); 929 } else if (s->header.features & QED_F_NEED_CHECK) { 930 qed_start_need_check_timer(s); 931 } 932 } 933 } 934 935 /** 936 * Update L1 table with new L2 table offset and write it out 937 * 938 * Called with table_lock held. 939 */ 940 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 941 { 942 BDRVQEDState *s = acb_to_s(acb); 943 CachedL2Table *l2_table = acb->request.l2_table; 944 uint64_t l2_offset = l2_table->offset; 945 int index, ret; 946 947 index = qed_l1_index(s, acb->cur_pos); 948 s->l1_table->offsets[index] = l2_table->offset; 949 950 ret = qed_write_l1_table(s, index, 1); 951 952 /* Commit the current L2 table to the cache */ 953 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 954 955 /* This is guaranteed to succeed because we just committed the entry to the 956 * cache. 957 */ 958 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 959 assert(acb->request.l2_table != NULL); 960 961 return ret; 962 } 963 964 965 /** 966 * Update L2 table with new cluster offsets and write them out 967 * 968 * Called with table_lock held. 969 */ 970 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 971 { 972 BDRVQEDState *s = acb_to_s(acb); 973 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 974 int index, ret; 975 976 if (need_alloc) { 977 qed_unref_l2_cache_entry(acb->request.l2_table); 978 acb->request.l2_table = qed_new_l2_table(s); 979 } 980 981 index = qed_l2_index(s, acb->cur_pos); 982 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 983 offset); 984 985 if (need_alloc) { 986 /* Write out the whole new L2 table */ 987 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 988 if (ret) { 989 return ret; 990 } 991 return qed_aio_write_l1_update(acb); 992 } else { 993 /* Write out only the updated part of the L2 table */ 994 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 995 false); 996 if (ret) { 997 return ret; 998 } 999 } 1000 return 0; 1001 } 1002 1003 /** 1004 * Write data to the image file 1005 * 1006 * Called with table_lock *not* held. 1007 */ 1008 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1009 { 1010 BDRVQEDState *s = acb_to_s(acb); 1011 uint64_t offset = acb->cur_cluster + 1012 qed_offset_into_cluster(s, acb->cur_pos); 1013 1014 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1015 1016 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1017 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1018 &acb->cur_qiov, 0); 1019 } 1020 1021 /** 1022 * Populate untouched regions of new data cluster 1023 * 1024 * Called with table_lock held. 1025 */ 1026 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1027 { 1028 BDRVQEDState *s = acb_to_s(acb); 1029 uint64_t start, len, offset; 1030 int ret; 1031 1032 qemu_co_mutex_unlock(&s->table_lock); 1033 1034 /* Populate front untouched region of new data cluster */ 1035 start = qed_start_of_cluster(s, acb->cur_pos); 1036 len = qed_offset_into_cluster(s, acb->cur_pos); 1037 1038 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1039 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1040 if (ret < 0) { 1041 goto out; 1042 } 1043 1044 /* Populate back untouched region of new data cluster */ 1045 start = acb->cur_pos + acb->cur_qiov.size; 1046 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1047 offset = acb->cur_cluster + 1048 qed_offset_into_cluster(s, acb->cur_pos) + 1049 acb->cur_qiov.size; 1050 1051 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1052 ret = qed_copy_from_backing_file(s, start, len, offset); 1053 if (ret < 0) { 1054 goto out; 1055 } 1056 1057 ret = qed_aio_write_main(acb); 1058 if (ret < 0) { 1059 goto out; 1060 } 1061 1062 if (s->bs->backing) { 1063 /* 1064 * Flush new data clusters before updating the L2 table 1065 * 1066 * This flush is necessary when a backing file is in use. A crash 1067 * during an allocating write could result in empty clusters in the 1068 * image. If the write only touched a subregion of the cluster, 1069 * then backing image sectors have been lost in the untouched 1070 * region. The solution is to flush after writing a new data 1071 * cluster and before updating the L2 table. 1072 */ 1073 ret = bdrv_co_flush(s->bs->file->bs); 1074 } 1075 1076 out: 1077 qemu_co_mutex_lock(&s->table_lock); 1078 return ret; 1079 } 1080 1081 /** 1082 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1083 */ 1084 static bool qed_should_set_need_check(BDRVQEDState *s) 1085 { 1086 /* The flush before L2 update path ensures consistency */ 1087 if (s->bs->backing) { 1088 return false; 1089 } 1090 1091 return !(s->header.features & QED_F_NEED_CHECK); 1092 } 1093 1094 /** 1095 * Write new data cluster 1096 * 1097 * @acb: Write request 1098 * @len: Length in bytes 1099 * 1100 * This path is taken when writing to previously unallocated clusters. 1101 * 1102 * Called with table_lock held. 1103 */ 1104 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1105 { 1106 BDRVQEDState *s = acb_to_s(acb); 1107 int ret; 1108 1109 /* Cancel timer when the first allocating request comes in */ 1110 if (s->allocating_acb == NULL) { 1111 qed_cancel_need_check_timer(s); 1112 } 1113 1114 /* Freeze this request if another allocating write is in progress */ 1115 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1116 if (s->allocating_acb != NULL) { 1117 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1118 assert(s->allocating_acb == NULL); 1119 } 1120 s->allocating_acb = acb; 1121 return -EAGAIN; /* start over with looking up table entries */ 1122 } 1123 1124 acb->cur_nclusters = qed_bytes_to_clusters(s, 1125 qed_offset_into_cluster(s, acb->cur_pos) + len); 1126 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1127 1128 if (acb->flags & QED_AIOCB_ZERO) { 1129 /* Skip ahead if the clusters are already zero */ 1130 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1131 return 0; 1132 } 1133 acb->cur_cluster = 1; 1134 } else { 1135 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1136 } 1137 1138 if (qed_should_set_need_check(s)) { 1139 s->header.features |= QED_F_NEED_CHECK; 1140 ret = qed_write_header(s); 1141 if (ret < 0) { 1142 return ret; 1143 } 1144 } 1145 1146 if (!(acb->flags & QED_AIOCB_ZERO)) { 1147 ret = qed_aio_write_cow(acb); 1148 if (ret < 0) { 1149 return ret; 1150 } 1151 } 1152 1153 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1154 } 1155 1156 /** 1157 * Write data cluster in place 1158 * 1159 * @acb: Write request 1160 * @offset: Cluster offset in bytes 1161 * @len: Length in bytes 1162 * 1163 * This path is taken when writing to already allocated clusters. 1164 * 1165 * Called with table_lock held. 1166 */ 1167 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1168 size_t len) 1169 { 1170 BDRVQEDState *s = acb_to_s(acb); 1171 int r; 1172 1173 qemu_co_mutex_unlock(&s->table_lock); 1174 1175 /* Allocate buffer for zero writes */ 1176 if (acb->flags & QED_AIOCB_ZERO) { 1177 struct iovec *iov = acb->qiov->iov; 1178 1179 if (!iov->iov_base) { 1180 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1181 if (iov->iov_base == NULL) { 1182 r = -ENOMEM; 1183 goto out; 1184 } 1185 memset(iov->iov_base, 0, iov->iov_len); 1186 } 1187 } 1188 1189 /* Calculate the I/O vector */ 1190 acb->cur_cluster = offset; 1191 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1192 1193 /* Do the actual write. */ 1194 r = qed_aio_write_main(acb); 1195 out: 1196 qemu_co_mutex_lock(&s->table_lock); 1197 return r; 1198 } 1199 1200 /** 1201 * Write data cluster 1202 * 1203 * @opaque: Write request 1204 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1205 * @offset: Cluster offset in bytes 1206 * @len: Length in bytes 1207 * 1208 * Called with table_lock held. 1209 */ 1210 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1211 uint64_t offset, size_t len) 1212 { 1213 QEDAIOCB *acb = opaque; 1214 1215 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1216 1217 acb->find_cluster_ret = ret; 1218 1219 switch (ret) { 1220 case QED_CLUSTER_FOUND: 1221 return qed_aio_write_inplace(acb, offset, len); 1222 1223 case QED_CLUSTER_L2: 1224 case QED_CLUSTER_L1: 1225 case QED_CLUSTER_ZERO: 1226 return qed_aio_write_alloc(acb, len); 1227 1228 default: 1229 g_assert_not_reached(); 1230 } 1231 } 1232 1233 /** 1234 * Read data cluster 1235 * 1236 * @opaque: Read request 1237 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1238 * @offset: Cluster offset in bytes 1239 * @len: Length in bytes 1240 * 1241 * Called with table_lock held. 1242 */ 1243 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1244 uint64_t offset, size_t len) 1245 { 1246 QEDAIOCB *acb = opaque; 1247 BDRVQEDState *s = acb_to_s(acb); 1248 BlockDriverState *bs = acb->bs; 1249 int r; 1250 1251 qemu_co_mutex_unlock(&s->table_lock); 1252 1253 /* Adjust offset into cluster */ 1254 offset += qed_offset_into_cluster(s, acb->cur_pos); 1255 1256 trace_qed_aio_read_data(s, acb, ret, offset, len); 1257 1258 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1259 1260 /* Handle zero cluster and backing file reads, otherwise read 1261 * data cluster directly. 1262 */ 1263 if (ret == QED_CLUSTER_ZERO) { 1264 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1265 r = 0; 1266 } else if (ret != QED_CLUSTER_FOUND) { 1267 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1268 &acb->backing_qiov); 1269 } else { 1270 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1271 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1272 &acb->cur_qiov, 0); 1273 } 1274 1275 qemu_co_mutex_lock(&s->table_lock); 1276 return r; 1277 } 1278 1279 /** 1280 * Begin next I/O or complete the request 1281 */ 1282 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1283 { 1284 BDRVQEDState *s = acb_to_s(acb); 1285 uint64_t offset; 1286 size_t len; 1287 int ret; 1288 1289 qemu_co_mutex_lock(&s->table_lock); 1290 while (1) { 1291 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1292 1293 if (acb->backing_qiov) { 1294 qemu_iovec_destroy(acb->backing_qiov); 1295 g_free(acb->backing_qiov); 1296 acb->backing_qiov = NULL; 1297 } 1298 1299 acb->qiov_offset += acb->cur_qiov.size; 1300 acb->cur_pos += acb->cur_qiov.size; 1301 qemu_iovec_reset(&acb->cur_qiov); 1302 1303 /* Complete request */ 1304 if (acb->cur_pos >= acb->end_pos) { 1305 ret = 0; 1306 break; 1307 } 1308 1309 /* Find next cluster and start I/O */ 1310 len = acb->end_pos - acb->cur_pos; 1311 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1312 if (ret < 0) { 1313 break; 1314 } 1315 1316 if (acb->flags & QED_AIOCB_WRITE) { 1317 ret = qed_aio_write_data(acb, ret, offset, len); 1318 } else { 1319 ret = qed_aio_read_data(acb, ret, offset, len); 1320 } 1321 1322 if (ret < 0 && ret != -EAGAIN) { 1323 break; 1324 } 1325 } 1326 1327 trace_qed_aio_complete(s, acb, ret); 1328 qed_aio_complete(acb); 1329 qemu_co_mutex_unlock(&s->table_lock); 1330 return ret; 1331 } 1332 1333 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1334 QEMUIOVector *qiov, int nb_sectors, 1335 int flags) 1336 { 1337 QEDAIOCB acb = { 1338 .bs = bs, 1339 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1340 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1341 .qiov = qiov, 1342 .flags = flags, 1343 }; 1344 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1345 1346 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1347 1348 /* Start request */ 1349 return qed_aio_next_io(&acb); 1350 } 1351 1352 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1353 int64_t sector_num, int nb_sectors, 1354 QEMUIOVector *qiov) 1355 { 1356 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1357 } 1358 1359 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1360 int64_t sector_num, int nb_sectors, 1361 QEMUIOVector *qiov) 1362 { 1363 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1364 } 1365 1366 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1367 int64_t offset, 1368 int bytes, 1369 BdrvRequestFlags flags) 1370 { 1371 BDRVQEDState *s = bs->opaque; 1372 QEMUIOVector qiov; 1373 struct iovec iov; 1374 1375 /* Fall back if the request is not aligned */ 1376 if (qed_offset_into_cluster(s, offset) || 1377 qed_offset_into_cluster(s, bytes)) { 1378 return -ENOTSUP; 1379 } 1380 1381 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1382 * then it will be allocated during request processing. 1383 */ 1384 iov.iov_base = NULL; 1385 iov.iov_len = bytes; 1386 1387 qemu_iovec_init_external(&qiov, &iov, 1); 1388 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1389 bytes >> BDRV_SECTOR_BITS, 1390 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1391 } 1392 1393 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, 1394 PreallocMode prealloc, Error **errp) 1395 { 1396 BDRVQEDState *s = bs->opaque; 1397 uint64_t old_image_size; 1398 int ret; 1399 1400 if (prealloc != PREALLOC_MODE_OFF) { 1401 error_setg(errp, "Unsupported preallocation mode '%s'", 1402 PreallocMode_lookup[prealloc]); 1403 return -ENOTSUP; 1404 } 1405 1406 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1407 s->header.table_size)) { 1408 error_setg(errp, "Invalid image size specified"); 1409 return -EINVAL; 1410 } 1411 1412 if ((uint64_t)offset < s->header.image_size) { 1413 error_setg(errp, "Shrinking images is currently not supported"); 1414 return -ENOTSUP; 1415 } 1416 1417 old_image_size = s->header.image_size; 1418 s->header.image_size = offset; 1419 ret = qed_write_header_sync(s); 1420 if (ret < 0) { 1421 s->header.image_size = old_image_size; 1422 error_setg_errno(errp, -ret, "Failed to update the image size"); 1423 } 1424 return ret; 1425 } 1426 1427 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1428 { 1429 BDRVQEDState *s = bs->opaque; 1430 return s->header.image_size; 1431 } 1432 1433 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1434 { 1435 BDRVQEDState *s = bs->opaque; 1436 1437 memset(bdi, 0, sizeof(*bdi)); 1438 bdi->cluster_size = s->header.cluster_size; 1439 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1440 bdi->unallocated_blocks_are_zero = true; 1441 bdi->can_write_zeroes_with_unmap = true; 1442 return 0; 1443 } 1444 1445 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1446 const char *backing_file, 1447 const char *backing_fmt) 1448 { 1449 BDRVQEDState *s = bs->opaque; 1450 QEDHeader new_header, le_header; 1451 void *buffer; 1452 size_t buffer_len, backing_file_len; 1453 int ret; 1454 1455 /* Refuse to set backing filename if unknown compat feature bits are 1456 * active. If the image uses an unknown compat feature then we may not 1457 * know the layout of data following the header structure and cannot safely 1458 * add a new string. 1459 */ 1460 if (backing_file && (s->header.compat_features & 1461 ~QED_COMPAT_FEATURE_MASK)) { 1462 return -ENOTSUP; 1463 } 1464 1465 memcpy(&new_header, &s->header, sizeof(new_header)); 1466 1467 new_header.features &= ~(QED_F_BACKING_FILE | 1468 QED_F_BACKING_FORMAT_NO_PROBE); 1469 1470 /* Adjust feature flags */ 1471 if (backing_file) { 1472 new_header.features |= QED_F_BACKING_FILE; 1473 1474 if (qed_fmt_is_raw(backing_fmt)) { 1475 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1476 } 1477 } 1478 1479 /* Calculate new header size */ 1480 backing_file_len = 0; 1481 1482 if (backing_file) { 1483 backing_file_len = strlen(backing_file); 1484 } 1485 1486 buffer_len = sizeof(new_header); 1487 new_header.backing_filename_offset = buffer_len; 1488 new_header.backing_filename_size = backing_file_len; 1489 buffer_len += backing_file_len; 1490 1491 /* Make sure we can rewrite header without failing */ 1492 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1493 return -ENOSPC; 1494 } 1495 1496 /* Prepare new header */ 1497 buffer = g_malloc(buffer_len); 1498 1499 qed_header_cpu_to_le(&new_header, &le_header); 1500 memcpy(buffer, &le_header, sizeof(le_header)); 1501 buffer_len = sizeof(le_header); 1502 1503 if (backing_file) { 1504 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1505 buffer_len += backing_file_len; 1506 } 1507 1508 /* Write new header */ 1509 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1510 g_free(buffer); 1511 if (ret == 0) { 1512 memcpy(&s->header, &new_header, sizeof(new_header)); 1513 } 1514 return ret; 1515 } 1516 1517 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp) 1518 { 1519 BDRVQEDState *s = bs->opaque; 1520 Error *local_err = NULL; 1521 int ret; 1522 1523 bdrv_qed_close(bs); 1524 1525 bdrv_qed_init_state(bs); 1526 if (qemu_in_coroutine()) { 1527 qemu_co_mutex_lock(&s->table_lock); 1528 } 1529 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1530 if (qemu_in_coroutine()) { 1531 qemu_co_mutex_unlock(&s->table_lock); 1532 } 1533 if (local_err) { 1534 error_propagate(errp, local_err); 1535 error_prepend(errp, "Could not reopen qed layer: "); 1536 return; 1537 } else if (ret < 0) { 1538 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1539 return; 1540 } 1541 } 1542 1543 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1544 BdrvCheckMode fix) 1545 { 1546 BDRVQEDState *s = bs->opaque; 1547 1548 return qed_check(s, result, !!fix); 1549 } 1550 1551 static QemuOptsList qed_create_opts = { 1552 .name = "qed-create-opts", 1553 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1554 .desc = { 1555 { 1556 .name = BLOCK_OPT_SIZE, 1557 .type = QEMU_OPT_SIZE, 1558 .help = "Virtual disk size" 1559 }, 1560 { 1561 .name = BLOCK_OPT_BACKING_FILE, 1562 .type = QEMU_OPT_STRING, 1563 .help = "File name of a base image" 1564 }, 1565 { 1566 .name = BLOCK_OPT_BACKING_FMT, 1567 .type = QEMU_OPT_STRING, 1568 .help = "Image format of the base image" 1569 }, 1570 { 1571 .name = BLOCK_OPT_CLUSTER_SIZE, 1572 .type = QEMU_OPT_SIZE, 1573 .help = "Cluster size (in bytes)", 1574 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1575 }, 1576 { 1577 .name = BLOCK_OPT_TABLE_SIZE, 1578 .type = QEMU_OPT_SIZE, 1579 .help = "L1/L2 table size (in clusters)" 1580 }, 1581 { /* end of list */ } 1582 } 1583 }; 1584 1585 static BlockDriver bdrv_qed = { 1586 .format_name = "qed", 1587 .instance_size = sizeof(BDRVQEDState), 1588 .create_opts = &qed_create_opts, 1589 .supports_backing = true, 1590 1591 .bdrv_probe = bdrv_qed_probe, 1592 .bdrv_open = bdrv_qed_open, 1593 .bdrv_close = bdrv_qed_close, 1594 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1595 .bdrv_child_perm = bdrv_format_default_perms, 1596 .bdrv_create = bdrv_qed_create, 1597 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1598 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status, 1599 .bdrv_co_readv = bdrv_qed_co_readv, 1600 .bdrv_co_writev = bdrv_qed_co_writev, 1601 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1602 .bdrv_truncate = bdrv_qed_truncate, 1603 .bdrv_getlength = bdrv_qed_getlength, 1604 .bdrv_get_info = bdrv_qed_get_info, 1605 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1606 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1607 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1608 .bdrv_check = bdrv_qed_check, 1609 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1610 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1611 .bdrv_co_drain = bdrv_qed_co_drain, 1612 }; 1613 1614 static void bdrv_qed_init(void) 1615 { 1616 bdrv_register(&bdrv_qed); 1617 } 1618 1619 block_init(bdrv_qed_init); 1620