1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "qemu/memalign.h" 24 #include "trace.h" 25 #include "qed.h" 26 #include "sysemu/block-backend.h" 27 #include "qapi/qmp/qdict.h" 28 #include "qapi/qobject-input-visitor.h" 29 #include "qapi/qapi-visit-block-core.h" 30 31 static QemuOptsList qed_create_opts; 32 33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 34 const char *filename) 35 { 36 const QEDHeader *header = (const QEDHeader *)buf; 37 38 if (buf_size < sizeof(*header)) { 39 return 0; 40 } 41 if (le32_to_cpu(header->magic) != QED_MAGIC) { 42 return 0; 43 } 44 return 100; 45 } 46 47 /** 48 * Check whether an image format is raw 49 * 50 * @fmt: Backing file format, may be NULL 51 */ 52 static bool qed_fmt_is_raw(const char *fmt) 53 { 54 return fmt && strcmp(fmt, "raw") == 0; 55 } 56 57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 58 { 59 cpu->magic = le32_to_cpu(le->magic); 60 cpu->cluster_size = le32_to_cpu(le->cluster_size); 61 cpu->table_size = le32_to_cpu(le->table_size); 62 cpu->header_size = le32_to_cpu(le->header_size); 63 cpu->features = le64_to_cpu(le->features); 64 cpu->compat_features = le64_to_cpu(le->compat_features); 65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 67 cpu->image_size = le64_to_cpu(le->image_size); 68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 70 } 71 72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 73 { 74 le->magic = cpu_to_le32(cpu->magic); 75 le->cluster_size = cpu_to_le32(cpu->cluster_size); 76 le->table_size = cpu_to_le32(cpu->table_size); 77 le->header_size = cpu_to_le32(cpu->header_size); 78 le->features = cpu_to_le64(cpu->features); 79 le->compat_features = cpu_to_le64(cpu->compat_features); 80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 82 le->image_size = cpu_to_le64(cpu->image_size); 83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 85 } 86 87 int qed_write_header_sync(BDRVQEDState *s) 88 { 89 QEDHeader le; 90 91 qed_header_cpu_to_le(&s->header, &le); 92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0); 93 } 94 95 /** 96 * Update header in-place (does not rewrite backing filename or other strings) 97 * 98 * This function only updates known header fields in-place and does not affect 99 * extra data after the QED header. 100 * 101 * No new allocating reqs can start while this function runs. 102 */ 103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s) 104 { 105 /* We must write full sectors for O_DIRECT but cannot necessarily generate 106 * the data following the header if an unrecognized compat feature is 107 * active. Therefore, first read the sectors containing the header, update 108 * them, and write back. 109 */ 110 111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 112 size_t len = nsectors * BDRV_SECTOR_SIZE; 113 uint8_t *buf; 114 int ret; 115 116 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 117 118 buf = qemu_blockalign(s->bs, len); 119 120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 121 if (ret < 0) { 122 goto out; 123 } 124 125 /* Update header */ 126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 127 128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 129 if (ret < 0) { 130 goto out; 131 } 132 133 ret = 0; 134 out: 135 qemu_vfree(buf); 136 return ret; 137 } 138 139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 140 { 141 uint64_t table_entries; 142 uint64_t l2_size; 143 144 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 145 l2_size = table_entries * cluster_size; 146 147 return l2_size * table_entries; 148 } 149 150 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 151 { 152 if (cluster_size < QED_MIN_CLUSTER_SIZE || 153 cluster_size > QED_MAX_CLUSTER_SIZE) { 154 return false; 155 } 156 if (cluster_size & (cluster_size - 1)) { 157 return false; /* not power of 2 */ 158 } 159 return true; 160 } 161 162 static bool qed_is_table_size_valid(uint32_t table_size) 163 { 164 if (table_size < QED_MIN_TABLE_SIZE || 165 table_size > QED_MAX_TABLE_SIZE) { 166 return false; 167 } 168 if (table_size & (table_size - 1)) { 169 return false; /* not power of 2 */ 170 } 171 return true; 172 } 173 174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 175 uint32_t table_size) 176 { 177 if (image_size % BDRV_SECTOR_SIZE != 0) { 178 return false; /* not multiple of sector size */ 179 } 180 if (image_size > qed_max_image_size(cluster_size, table_size)) { 181 return false; /* image is too large */ 182 } 183 return true; 184 } 185 186 /** 187 * Read a string of known length from the image file 188 * 189 * @file: Image file 190 * @offset: File offset to start of string, in bytes 191 * @n: String length in bytes 192 * @buf: Destination buffer 193 * @buflen: Destination buffer length in bytes 194 * @ret: 0 on success, -errno on failure 195 * 196 * The string is NUL-terminated. 197 */ 198 static int coroutine_fn GRAPH_RDLOCK 199 qed_read_string(BdrvChild *file, uint64_t offset, 200 size_t n, char *buf, size_t buflen) 201 { 202 int ret; 203 if (n >= buflen) { 204 return -EINVAL; 205 } 206 ret = bdrv_co_pread(file, offset, n, buf, 0); 207 if (ret < 0) { 208 return ret; 209 } 210 buf[n] = '\0'; 211 return 0; 212 } 213 214 /** 215 * Allocate new clusters 216 * 217 * @s: QED state 218 * @n: Number of contiguous clusters to allocate 219 * @ret: Offset of first allocated cluster 220 * 221 * This function only produces the offset where the new clusters should be 222 * written. It updates BDRVQEDState but does not make any changes to the image 223 * file. 224 * 225 * Called with table_lock held. 226 */ 227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 228 { 229 uint64_t offset = s->file_size; 230 s->file_size += n * s->header.cluster_size; 231 return offset; 232 } 233 234 QEDTable *qed_alloc_table(BDRVQEDState *s) 235 { 236 /* Honor O_DIRECT memory alignment requirements */ 237 return qemu_blockalign(s->bs, 238 s->header.cluster_size * s->header.table_size); 239 } 240 241 /** 242 * Allocate a new zeroed L2 table 243 * 244 * Called with table_lock held. 245 */ 246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 247 { 248 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 249 250 l2_table->table = qed_alloc_table(s); 251 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 252 253 memset(l2_table->table->offsets, 0, 254 s->header.cluster_size * s->header.table_size); 255 return l2_table; 256 } 257 258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s) 259 { 260 qemu_co_mutex_lock(&s->table_lock); 261 262 /* No reentrancy is allowed. */ 263 assert(!s->allocating_write_reqs_plugged); 264 if (s->allocating_acb != NULL) { 265 /* Another allocating write came concurrently. This cannot happen 266 * from bdrv_qed_drain_begin, but it can happen when the timer runs. 267 */ 268 qemu_co_mutex_unlock(&s->table_lock); 269 return false; 270 } 271 272 s->allocating_write_reqs_plugged = true; 273 qemu_co_mutex_unlock(&s->table_lock); 274 return true; 275 } 276 277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s) 278 { 279 qemu_co_mutex_lock(&s->table_lock); 280 assert(s->allocating_write_reqs_plugged); 281 s->allocating_write_reqs_plugged = false; 282 qemu_co_queue_next(&s->allocating_write_reqs); 283 qemu_co_mutex_unlock(&s->table_lock); 284 } 285 286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s) 287 { 288 int ret; 289 290 trace_qed_need_check_timer_cb(s); 291 assert_bdrv_graph_readable(); 292 293 if (!qed_plug_allocating_write_reqs(s)) { 294 return; 295 } 296 297 /* Ensure writes are on disk before clearing flag */ 298 ret = bdrv_co_flush(s->bs->file->bs); 299 if (ret < 0) { 300 qed_unplug_allocating_write_reqs(s); 301 return; 302 } 303 304 s->header.features &= ~QED_F_NEED_CHECK; 305 ret = qed_write_header(s); 306 (void) ret; 307 308 qed_unplug_allocating_write_reqs(s); 309 310 ret = bdrv_co_flush(s->bs); 311 (void) ret; 312 } 313 314 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 315 { 316 BDRVQEDState *s = opaque; 317 GRAPH_RDLOCK_GUARD(); 318 319 qed_need_check_timer(opaque); 320 bdrv_dec_in_flight(s->bs); 321 } 322 323 static void qed_need_check_timer_cb(void *opaque) 324 { 325 BDRVQEDState *s = opaque; 326 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 327 328 bdrv_inc_in_flight(s->bs); 329 qemu_coroutine_enter(co); 330 } 331 332 static void qed_start_need_check_timer(BDRVQEDState *s) 333 { 334 trace_qed_start_need_check_timer(s); 335 336 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 337 * migration. 338 */ 339 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 340 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 341 } 342 343 /* It's okay to call this multiple times or when no timer is started */ 344 static void qed_cancel_need_check_timer(BDRVQEDState *s) 345 { 346 trace_qed_cancel_need_check_timer(s); 347 timer_del(s->need_check_timer); 348 } 349 350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 351 { 352 BDRVQEDState *s = bs->opaque; 353 354 qed_cancel_need_check_timer(s); 355 timer_free(s->need_check_timer); 356 } 357 358 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 359 AioContext *new_context) 360 { 361 BDRVQEDState *s = bs->opaque; 362 363 s->need_check_timer = aio_timer_new(new_context, 364 QEMU_CLOCK_VIRTUAL, SCALE_NS, 365 qed_need_check_timer_cb, s); 366 if (s->header.features & QED_F_NEED_CHECK) { 367 qed_start_need_check_timer(s); 368 } 369 } 370 371 static void bdrv_qed_drain_begin(BlockDriverState *bs) 372 { 373 BDRVQEDState *s = bs->opaque; 374 375 /* Fire the timer immediately in order to start doing I/O as soon as the 376 * header is flushed. 377 */ 378 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 379 Coroutine *co; 380 381 qed_cancel_need_check_timer(s); 382 co = qemu_coroutine_create(qed_need_check_timer_entry, s); 383 bdrv_inc_in_flight(bs); 384 aio_co_enter(bdrv_get_aio_context(bs), co); 385 } 386 } 387 388 static void bdrv_qed_init_state(BlockDriverState *bs) 389 { 390 BDRVQEDState *s = bs->opaque; 391 392 memset(s, 0, sizeof(BDRVQEDState)); 393 s->bs = bs; 394 qemu_co_mutex_init(&s->table_lock); 395 qemu_co_queue_init(&s->allocating_write_reqs); 396 } 397 398 /* Called with table_lock held. */ 399 static int coroutine_fn GRAPH_RDLOCK 400 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) 401 { 402 BDRVQEDState *s = bs->opaque; 403 QEDHeader le_header; 404 int64_t file_size; 405 int ret; 406 407 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0); 408 if (ret < 0) { 409 error_setg(errp, "Failed to read QED header"); 410 return ret; 411 } 412 qed_header_le_to_cpu(&le_header, &s->header); 413 414 if (s->header.magic != QED_MAGIC) { 415 error_setg(errp, "Image not in QED format"); 416 return -EINVAL; 417 } 418 if (s->header.features & ~QED_FEATURE_MASK) { 419 /* image uses unsupported feature bits */ 420 error_setg(errp, "Unsupported QED features: %" PRIx64, 421 s->header.features & ~QED_FEATURE_MASK); 422 return -ENOTSUP; 423 } 424 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 425 error_setg(errp, "QED cluster size is invalid"); 426 return -EINVAL; 427 } 428 429 /* Round down file size to the last cluster */ 430 file_size = bdrv_co_getlength(bs->file->bs); 431 if (file_size < 0) { 432 error_setg(errp, "Failed to get file length"); 433 return file_size; 434 } 435 s->file_size = qed_start_of_cluster(s, file_size); 436 437 if (!qed_is_table_size_valid(s->header.table_size)) { 438 error_setg(errp, "QED table size is invalid"); 439 return -EINVAL; 440 } 441 if (!qed_is_image_size_valid(s->header.image_size, 442 s->header.cluster_size, 443 s->header.table_size)) { 444 error_setg(errp, "QED image size is invalid"); 445 return -EINVAL; 446 } 447 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 448 error_setg(errp, "QED table offset is invalid"); 449 return -EINVAL; 450 } 451 452 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 453 sizeof(uint64_t); 454 s->l2_shift = ctz32(s->header.cluster_size); 455 s->l2_mask = s->table_nelems - 1; 456 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 457 458 /* Header size calculation must not overflow uint32_t */ 459 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 460 error_setg(errp, "QED header size is too large"); 461 return -EINVAL; 462 } 463 464 if ((s->header.features & QED_F_BACKING_FILE)) { 465 g_autofree char *backing_file_str = NULL; 466 467 if ((uint64_t)s->header.backing_filename_offset + 468 s->header.backing_filename_size > 469 s->header.cluster_size * s->header.header_size) { 470 error_setg(errp, "QED backing filename offset is invalid"); 471 return -EINVAL; 472 } 473 474 backing_file_str = g_malloc(sizeof(bs->backing_file)); 475 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 476 s->header.backing_filename_size, 477 backing_file_str, sizeof(bs->backing_file)); 478 if (ret < 0) { 479 error_setg(errp, "Failed to read backing filename"); 480 return ret; 481 } 482 483 if (!g_str_equal(backing_file_str, bs->backing_file)) { 484 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 485 backing_file_str); 486 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file), 487 backing_file_str); 488 } 489 490 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 491 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 492 } 493 } 494 495 /* Reset unknown autoclear feature bits. This is a backwards 496 * compatibility mechanism that allows images to be opened by older 497 * programs, which "knock out" unknown feature bits. When an image is 498 * opened by a newer program again it can detect that the autoclear 499 * feature is no longer valid. 500 */ 501 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 502 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 503 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 504 505 ret = qed_write_header_sync(s); 506 if (ret) { 507 error_setg(errp, "Failed to update header"); 508 return ret; 509 } 510 511 /* From here on only known autoclear feature bits are valid */ 512 bdrv_co_flush(bs->file->bs); 513 } 514 515 s->l1_table = qed_alloc_table(s); 516 qed_init_l2_cache(&s->l2_cache); 517 518 ret = qed_read_l1_table_sync(s); 519 if (ret) { 520 error_setg(errp, "Failed to read L1 table"); 521 goto out; 522 } 523 524 /* If image was not closed cleanly, check consistency */ 525 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 526 /* Read-only images cannot be fixed. There is no risk of corruption 527 * since write operations are not possible. Therefore, allow 528 * potentially inconsistent images to be opened read-only. This can 529 * aid data recovery from an otherwise inconsistent image. 530 */ 531 if (!bdrv_is_read_only(bs->file->bs) && 532 !(flags & BDRV_O_INACTIVE)) { 533 BdrvCheckResult result = {0}; 534 535 ret = qed_check(s, &result, true); 536 if (ret) { 537 error_setg(errp, "Image corrupted"); 538 goto out; 539 } 540 } 541 } 542 543 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 544 545 out: 546 if (ret) { 547 qed_free_l2_cache(&s->l2_cache); 548 qemu_vfree(s->l1_table); 549 } 550 return ret; 551 } 552 553 typedef struct QEDOpenCo { 554 BlockDriverState *bs; 555 QDict *options; 556 int flags; 557 Error **errp; 558 int ret; 559 } QEDOpenCo; 560 561 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 562 { 563 QEDOpenCo *qoc = opaque; 564 BDRVQEDState *s = qoc->bs->opaque; 565 566 GRAPH_RDLOCK_GUARD(); 567 568 qemu_co_mutex_lock(&s->table_lock); 569 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 570 qemu_co_mutex_unlock(&s->table_lock); 571 } 572 573 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options, 574 int flags, Error **errp) 575 { 576 QEDOpenCo qoc = { 577 .bs = bs, 578 .options = options, 579 .flags = flags, 580 .errp = errp, 581 .ret = -EINPROGRESS 582 }; 583 int ret; 584 585 ret = bdrv_open_file_child(NULL, options, "file", bs, errp); 586 if (ret < 0) { 587 return ret; 588 } 589 590 bdrv_qed_init_state(bs); 591 assert(!qemu_in_coroutine()); 592 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 593 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 594 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 595 596 return qoc.ret; 597 } 598 599 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 600 { 601 BDRVQEDState *s = bs->opaque; 602 603 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 604 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size); 605 } 606 607 /* We have nothing to do for QED reopen, stubs just return 608 * success */ 609 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 610 BlockReopenQueue *queue, Error **errp) 611 { 612 return 0; 613 } 614 615 static void GRAPH_RDLOCK bdrv_qed_do_close(BlockDriverState *bs) 616 { 617 BDRVQEDState *s = bs->opaque; 618 619 bdrv_qed_detach_aio_context(bs); 620 621 /* Ensure writes reach stable storage */ 622 bdrv_flush(bs->file->bs); 623 624 /* Clean shutdown, no check required on next open */ 625 if (s->header.features & QED_F_NEED_CHECK) { 626 s->header.features &= ~QED_F_NEED_CHECK; 627 qed_write_header_sync(s); 628 } 629 630 qed_free_l2_cache(&s->l2_cache); 631 qemu_vfree(s->l1_table); 632 } 633 634 static void GRAPH_UNLOCKED bdrv_qed_close(BlockDriverState *bs) 635 { 636 GLOBAL_STATE_CODE(); 637 GRAPH_RDLOCK_GUARD_MAINLOOP(); 638 639 bdrv_qed_do_close(bs); 640 } 641 642 static int coroutine_fn GRAPH_UNLOCKED 643 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp) 644 { 645 BlockdevCreateOptionsQed *qed_opts; 646 BlockBackend *blk = NULL; 647 BlockDriverState *bs = NULL; 648 649 QEDHeader header; 650 QEDHeader le_header; 651 uint8_t *l1_table = NULL; 652 size_t l1_size; 653 int ret = 0; 654 655 assert(opts->driver == BLOCKDEV_DRIVER_QED); 656 qed_opts = &opts->u.qed; 657 658 /* Validate options and set default values */ 659 if (!qed_opts->has_cluster_size) { 660 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 661 } 662 if (!qed_opts->has_table_size) { 663 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 664 } 665 666 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 667 error_setg(errp, "QED cluster size must be within range [%u, %u] " 668 "and power of 2", 669 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 670 return -EINVAL; 671 } 672 if (!qed_is_table_size_valid(qed_opts->table_size)) { 673 error_setg(errp, "QED table size must be within range [%u, %u] " 674 "and power of 2", 675 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 676 return -EINVAL; 677 } 678 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 679 qed_opts->table_size)) 680 { 681 error_setg(errp, "QED image size must be a non-zero multiple of " 682 "cluster size and less than %" PRIu64 " bytes", 683 qed_max_image_size(qed_opts->cluster_size, 684 qed_opts->table_size)); 685 return -EINVAL; 686 } 687 688 /* Create BlockBackend to write to the image */ 689 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp); 690 if (bs == NULL) { 691 return -EIO; 692 } 693 694 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 695 errp); 696 if (!blk) { 697 ret = -EPERM; 698 goto out; 699 } 700 blk_set_allow_write_beyond_eof(blk, true); 701 702 /* Prepare image format */ 703 header = (QEDHeader) { 704 .magic = QED_MAGIC, 705 .cluster_size = qed_opts->cluster_size, 706 .table_size = qed_opts->table_size, 707 .header_size = 1, 708 .features = 0, 709 .compat_features = 0, 710 .l1_table_offset = qed_opts->cluster_size, 711 .image_size = qed_opts->size, 712 }; 713 714 l1_size = header.cluster_size * header.table_size; 715 716 /* 717 * The QED format associates file length with allocation status, 718 * so a new file (which is empty) must have a length of 0. 719 */ 720 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 721 if (ret < 0) { 722 goto out; 723 } 724 725 if (qed_opts->backing_file) { 726 header.features |= QED_F_BACKING_FILE; 727 header.backing_filename_offset = sizeof(le_header); 728 header.backing_filename_size = strlen(qed_opts->backing_file); 729 730 if (qed_opts->has_backing_fmt) { 731 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 732 if (qed_fmt_is_raw(backing_fmt)) { 733 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 734 } 735 } 736 } 737 738 qed_header_cpu_to_le(&header, &le_header); 739 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0); 740 if (ret < 0) { 741 goto out; 742 } 743 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size, 744 qed_opts->backing_file, 0); 745 if (ret < 0) { 746 goto out; 747 } 748 749 l1_table = g_malloc0(l1_size); 750 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0); 751 if (ret < 0) { 752 goto out; 753 } 754 755 ret = 0; /* success */ 756 out: 757 g_free(l1_table); 758 blk_co_unref(blk); 759 bdrv_co_unref(bs); 760 return ret; 761 } 762 763 static int coroutine_fn GRAPH_UNLOCKED 764 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename, 765 QemuOpts *opts, Error **errp) 766 { 767 BlockdevCreateOptions *create_options = NULL; 768 QDict *qdict; 769 Visitor *v; 770 BlockDriverState *bs = NULL; 771 int ret; 772 773 static const QDictRenames opt_renames[] = { 774 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 775 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 776 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 777 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 778 { NULL, NULL }, 779 }; 780 781 /* Parse options and convert legacy syntax */ 782 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 783 784 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 785 ret = -EINVAL; 786 goto fail; 787 } 788 789 /* Create and open the file (protocol layer) */ 790 ret = bdrv_co_create_file(filename, opts, errp); 791 if (ret < 0) { 792 goto fail; 793 } 794 795 bs = bdrv_co_open(filename, NULL, NULL, 796 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 797 if (bs == NULL) { 798 ret = -EIO; 799 goto fail; 800 } 801 802 /* Now get the QAPI type BlockdevCreateOptions */ 803 qdict_put_str(qdict, "driver", "qed"); 804 qdict_put_str(qdict, "file", bs->node_name); 805 806 v = qobject_input_visitor_new_flat_confused(qdict, errp); 807 if (!v) { 808 ret = -EINVAL; 809 goto fail; 810 } 811 812 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 813 visit_free(v); 814 if (!create_options) { 815 ret = -EINVAL; 816 goto fail; 817 } 818 819 /* Silently round up size */ 820 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 821 create_options->u.qed.size = 822 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 823 824 /* Create the qed image (format layer) */ 825 ret = bdrv_qed_co_create(create_options, errp); 826 827 fail: 828 qobject_unref(qdict); 829 bdrv_co_unref(bs); 830 qapi_free_BlockdevCreateOptions(create_options); 831 return ret; 832 } 833 834 static int coroutine_fn GRAPH_RDLOCK 835 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos, 836 int64_t bytes, int64_t *pnum, int64_t *map, 837 BlockDriverState **file) 838 { 839 BDRVQEDState *s = bs->opaque; 840 size_t len = MIN(bytes, SIZE_MAX); 841 int status; 842 QEDRequest request = { .l2_table = NULL }; 843 uint64_t offset; 844 int ret; 845 846 qemu_co_mutex_lock(&s->table_lock); 847 ret = qed_find_cluster(s, &request, pos, &len, &offset); 848 849 *pnum = len; 850 switch (ret) { 851 case QED_CLUSTER_FOUND: 852 *map = offset | qed_offset_into_cluster(s, pos); 853 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 854 *file = bs->file->bs; 855 break; 856 case QED_CLUSTER_ZERO: 857 status = BDRV_BLOCK_ZERO; 858 break; 859 case QED_CLUSTER_L2: 860 case QED_CLUSTER_L1: 861 status = 0; 862 break; 863 default: 864 assert(ret < 0); 865 status = ret; 866 break; 867 } 868 869 qed_unref_l2_cache_entry(request.l2_table); 870 qemu_co_mutex_unlock(&s->table_lock); 871 872 return status; 873 } 874 875 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 876 { 877 return acb->bs->opaque; 878 } 879 880 /** 881 * Read from the backing file or zero-fill if no backing file 882 * 883 * @s: QED state 884 * @pos: Byte position in device 885 * @qiov: Destination I/O vector 886 * 887 * This function reads qiov->size bytes starting at pos from the backing file. 888 * If there is no backing file then zeroes are read. 889 */ 890 static int coroutine_fn GRAPH_RDLOCK 891 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov) 892 { 893 if (s->bs->backing) { 894 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 895 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 896 } 897 qemu_iovec_memset(qiov, 0, 0, qiov->size); 898 return 0; 899 } 900 901 /** 902 * Copy data from backing file into the image 903 * 904 * @s: QED state 905 * @pos: Byte position in device 906 * @len: Number of bytes 907 * @offset: Byte offset in image file 908 */ 909 static int coroutine_fn GRAPH_RDLOCK 910 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len, 911 uint64_t offset) 912 { 913 QEMUIOVector qiov; 914 int ret; 915 916 /* Skip copy entirely if there is no work to do */ 917 if (len == 0) { 918 return 0; 919 } 920 921 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 922 923 ret = qed_read_backing_file(s, pos, &qiov); 924 925 if (ret) { 926 goto out; 927 } 928 929 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE); 930 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 931 if (ret < 0) { 932 goto out; 933 } 934 ret = 0; 935 out: 936 qemu_vfree(qemu_iovec_buf(&qiov)); 937 return ret; 938 } 939 940 /** 941 * Link one or more contiguous clusters into a table 942 * 943 * @s: QED state 944 * @table: L2 table 945 * @index: First cluster index 946 * @n: Number of contiguous clusters 947 * @cluster: First cluster offset 948 * 949 * The cluster offset may be an allocated byte offset in the image file, the 950 * zero cluster marker, or the unallocated cluster marker. 951 * 952 * Called with table_lock held. 953 */ 954 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 955 int index, unsigned int n, 956 uint64_t cluster) 957 { 958 int i; 959 for (i = index; i < index + n; i++) { 960 table->offsets[i] = cluster; 961 if (!qed_offset_is_unalloc_cluster(cluster) && 962 !qed_offset_is_zero_cluster(cluster)) { 963 cluster += s->header.cluster_size; 964 } 965 } 966 } 967 968 /* Called with table_lock held. */ 969 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 970 { 971 BDRVQEDState *s = acb_to_s(acb); 972 973 /* Free resources */ 974 qemu_iovec_destroy(&acb->cur_qiov); 975 qed_unref_l2_cache_entry(acb->request.l2_table); 976 977 /* Free the buffer we may have allocated for zero writes */ 978 if (acb->flags & QED_AIOCB_ZERO) { 979 qemu_vfree(acb->qiov->iov[0].iov_base); 980 acb->qiov->iov[0].iov_base = NULL; 981 } 982 983 /* Start next allocating write request waiting behind this one. Note that 984 * requests enqueue themselves when they first hit an unallocated cluster 985 * but they wait until the entire request is finished before waking up the 986 * next request in the queue. This ensures that we don't cycle through 987 * requests multiple times but rather finish one at a time completely. 988 */ 989 if (acb == s->allocating_acb) { 990 s->allocating_acb = NULL; 991 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 992 qemu_co_queue_next(&s->allocating_write_reqs); 993 } else if (s->header.features & QED_F_NEED_CHECK) { 994 qed_start_need_check_timer(s); 995 } 996 } 997 } 998 999 /** 1000 * Update L1 table with new L2 table offset and write it out 1001 * 1002 * Called with table_lock held. 1003 */ 1004 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb) 1005 { 1006 BDRVQEDState *s = acb_to_s(acb); 1007 CachedL2Table *l2_table = acb->request.l2_table; 1008 uint64_t l2_offset = l2_table->offset; 1009 int index, ret; 1010 1011 index = qed_l1_index(s, acb->cur_pos); 1012 s->l1_table->offsets[index] = l2_table->offset; 1013 1014 ret = qed_write_l1_table(s, index, 1); 1015 1016 /* Commit the current L2 table to the cache */ 1017 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 1018 1019 /* This is guaranteed to succeed because we just committed the entry to the 1020 * cache. 1021 */ 1022 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 1023 assert(acb->request.l2_table != NULL); 1024 1025 return ret; 1026 } 1027 1028 1029 /** 1030 * Update L2 table with new cluster offsets and write them out 1031 * 1032 * Called with table_lock held. 1033 */ 1034 static int coroutine_fn GRAPH_RDLOCK 1035 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1036 { 1037 BDRVQEDState *s = acb_to_s(acb); 1038 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1039 int index, ret; 1040 1041 if (need_alloc) { 1042 qed_unref_l2_cache_entry(acb->request.l2_table); 1043 acb->request.l2_table = qed_new_l2_table(s); 1044 } 1045 1046 index = qed_l2_index(s, acb->cur_pos); 1047 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1048 offset); 1049 1050 if (need_alloc) { 1051 /* Write out the whole new L2 table */ 1052 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1053 if (ret) { 1054 return ret; 1055 } 1056 return qed_aio_write_l1_update(acb); 1057 } else { 1058 /* Write out only the updated part of the L2 table */ 1059 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1060 false); 1061 if (ret) { 1062 return ret; 1063 } 1064 } 1065 return 0; 1066 } 1067 1068 /** 1069 * Write data to the image file 1070 * 1071 * Called with table_lock *not* held. 1072 */ 1073 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb) 1074 { 1075 BDRVQEDState *s = acb_to_s(acb); 1076 uint64_t offset = acb->cur_cluster + 1077 qed_offset_into_cluster(s, acb->cur_pos); 1078 1079 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1080 1081 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1082 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1083 &acb->cur_qiov, 0); 1084 } 1085 1086 /** 1087 * Populate untouched regions of new data cluster 1088 * 1089 * Called with table_lock held. 1090 */ 1091 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb) 1092 { 1093 BDRVQEDState *s = acb_to_s(acb); 1094 uint64_t start, len, offset; 1095 int ret; 1096 1097 qemu_co_mutex_unlock(&s->table_lock); 1098 1099 /* Populate front untouched region of new data cluster */ 1100 start = qed_start_of_cluster(s, acb->cur_pos); 1101 len = qed_offset_into_cluster(s, acb->cur_pos); 1102 1103 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1104 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1105 if (ret < 0) { 1106 goto out; 1107 } 1108 1109 /* Populate back untouched region of new data cluster */ 1110 start = acb->cur_pos + acb->cur_qiov.size; 1111 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1112 offset = acb->cur_cluster + 1113 qed_offset_into_cluster(s, acb->cur_pos) + 1114 acb->cur_qiov.size; 1115 1116 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1117 ret = qed_copy_from_backing_file(s, start, len, offset); 1118 if (ret < 0) { 1119 goto out; 1120 } 1121 1122 ret = qed_aio_write_main(acb); 1123 if (ret < 0) { 1124 goto out; 1125 } 1126 1127 if (s->bs->backing) { 1128 /* 1129 * Flush new data clusters before updating the L2 table 1130 * 1131 * This flush is necessary when a backing file is in use. A crash 1132 * during an allocating write could result in empty clusters in the 1133 * image. If the write only touched a subregion of the cluster, 1134 * then backing image sectors have been lost in the untouched 1135 * region. The solution is to flush after writing a new data 1136 * cluster and before updating the L2 table. 1137 */ 1138 ret = bdrv_co_flush(s->bs->file->bs); 1139 } 1140 1141 out: 1142 qemu_co_mutex_lock(&s->table_lock); 1143 return ret; 1144 } 1145 1146 /** 1147 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1148 */ 1149 static bool GRAPH_RDLOCK qed_should_set_need_check(BDRVQEDState *s) 1150 { 1151 /* The flush before L2 update path ensures consistency */ 1152 if (s->bs->backing) { 1153 return false; 1154 } 1155 1156 return !(s->header.features & QED_F_NEED_CHECK); 1157 } 1158 1159 /** 1160 * Write new data cluster 1161 * 1162 * @acb: Write request 1163 * @len: Length in bytes 1164 * 1165 * This path is taken when writing to previously unallocated clusters. 1166 * 1167 * Called with table_lock held. 1168 */ 1169 static int coroutine_fn GRAPH_RDLOCK 1170 qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1171 { 1172 BDRVQEDState *s = acb_to_s(acb); 1173 int ret; 1174 1175 /* Cancel timer when the first allocating request comes in */ 1176 if (s->allocating_acb == NULL) { 1177 qed_cancel_need_check_timer(s); 1178 } 1179 1180 /* Freeze this request if another allocating write is in progress */ 1181 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1182 if (s->allocating_acb != NULL) { 1183 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1184 assert(s->allocating_acb == NULL); 1185 } 1186 s->allocating_acb = acb; 1187 return -EAGAIN; /* start over with looking up table entries */ 1188 } 1189 1190 acb->cur_nclusters = qed_bytes_to_clusters(s, 1191 qed_offset_into_cluster(s, acb->cur_pos) + len); 1192 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1193 1194 if (acb->flags & QED_AIOCB_ZERO) { 1195 /* Skip ahead if the clusters are already zero */ 1196 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1197 return 0; 1198 } 1199 acb->cur_cluster = 1; 1200 } else { 1201 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1202 } 1203 1204 if (qed_should_set_need_check(s)) { 1205 s->header.features |= QED_F_NEED_CHECK; 1206 ret = qed_write_header(s); 1207 if (ret < 0) { 1208 return ret; 1209 } 1210 } 1211 1212 if (!(acb->flags & QED_AIOCB_ZERO)) { 1213 ret = qed_aio_write_cow(acb); 1214 if (ret < 0) { 1215 return ret; 1216 } 1217 } 1218 1219 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1220 } 1221 1222 /** 1223 * Write data cluster in place 1224 * 1225 * @acb: Write request 1226 * @offset: Cluster offset in bytes 1227 * @len: Length in bytes 1228 * 1229 * This path is taken when writing to already allocated clusters. 1230 * 1231 * Called with table_lock held. 1232 */ 1233 static int coroutine_fn GRAPH_RDLOCK 1234 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1235 { 1236 BDRVQEDState *s = acb_to_s(acb); 1237 int r; 1238 1239 qemu_co_mutex_unlock(&s->table_lock); 1240 1241 /* Allocate buffer for zero writes */ 1242 if (acb->flags & QED_AIOCB_ZERO) { 1243 struct iovec *iov = acb->qiov->iov; 1244 1245 if (!iov->iov_base) { 1246 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1247 if (iov->iov_base == NULL) { 1248 r = -ENOMEM; 1249 goto out; 1250 } 1251 memset(iov->iov_base, 0, iov->iov_len); 1252 } 1253 } 1254 1255 /* Calculate the I/O vector */ 1256 acb->cur_cluster = offset; 1257 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1258 1259 /* Do the actual write. */ 1260 r = qed_aio_write_main(acb); 1261 out: 1262 qemu_co_mutex_lock(&s->table_lock); 1263 return r; 1264 } 1265 1266 /** 1267 * Write data cluster 1268 * 1269 * @opaque: Write request 1270 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1271 * @offset: Cluster offset in bytes 1272 * @len: Length in bytes 1273 * 1274 * Called with table_lock held. 1275 */ 1276 static int coroutine_fn GRAPH_RDLOCK 1277 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len) 1278 { 1279 QEDAIOCB *acb = opaque; 1280 1281 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1282 1283 acb->find_cluster_ret = ret; 1284 1285 switch (ret) { 1286 case QED_CLUSTER_FOUND: 1287 return qed_aio_write_inplace(acb, offset, len); 1288 1289 case QED_CLUSTER_L2: 1290 case QED_CLUSTER_L1: 1291 case QED_CLUSTER_ZERO: 1292 return qed_aio_write_alloc(acb, len); 1293 1294 default: 1295 g_assert_not_reached(); 1296 } 1297 } 1298 1299 /** 1300 * Read data cluster 1301 * 1302 * @opaque: Read request 1303 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1304 * @offset: Cluster offset in bytes 1305 * @len: Length in bytes 1306 * 1307 * Called with table_lock held. 1308 */ 1309 static int coroutine_fn GRAPH_RDLOCK 1310 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len) 1311 { 1312 QEDAIOCB *acb = opaque; 1313 BDRVQEDState *s = acb_to_s(acb); 1314 BlockDriverState *bs = acb->bs; 1315 int r; 1316 1317 qemu_co_mutex_unlock(&s->table_lock); 1318 1319 /* Adjust offset into cluster */ 1320 offset += qed_offset_into_cluster(s, acb->cur_pos); 1321 1322 trace_qed_aio_read_data(s, acb, ret, offset, len); 1323 1324 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1325 1326 /* Handle zero cluster and backing file reads, otherwise read 1327 * data cluster directly. 1328 */ 1329 if (ret == QED_CLUSTER_ZERO) { 1330 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1331 r = 0; 1332 } else if (ret != QED_CLUSTER_FOUND) { 1333 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1334 } else { 1335 BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO); 1336 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1337 &acb->cur_qiov, 0); 1338 } 1339 1340 qemu_co_mutex_lock(&s->table_lock); 1341 return r; 1342 } 1343 1344 /** 1345 * Begin next I/O or complete the request 1346 */ 1347 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb) 1348 { 1349 BDRVQEDState *s = acb_to_s(acb); 1350 uint64_t offset; 1351 size_t len; 1352 int ret; 1353 1354 qemu_co_mutex_lock(&s->table_lock); 1355 while (1) { 1356 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1357 1358 acb->qiov_offset += acb->cur_qiov.size; 1359 acb->cur_pos += acb->cur_qiov.size; 1360 qemu_iovec_reset(&acb->cur_qiov); 1361 1362 /* Complete request */ 1363 if (acb->cur_pos >= acb->end_pos) { 1364 ret = 0; 1365 break; 1366 } 1367 1368 /* Find next cluster and start I/O */ 1369 len = acb->end_pos - acb->cur_pos; 1370 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1371 if (ret < 0) { 1372 break; 1373 } 1374 1375 if (acb->flags & QED_AIOCB_WRITE) { 1376 ret = qed_aio_write_data(acb, ret, offset, len); 1377 } else { 1378 ret = qed_aio_read_data(acb, ret, offset, len); 1379 } 1380 1381 if (ret < 0 && ret != -EAGAIN) { 1382 break; 1383 } 1384 } 1385 1386 trace_qed_aio_complete(s, acb, ret); 1387 qed_aio_complete(acb); 1388 qemu_co_mutex_unlock(&s->table_lock); 1389 return ret; 1390 } 1391 1392 static int coroutine_fn GRAPH_RDLOCK 1393 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, 1394 int nb_sectors, int flags) 1395 { 1396 QEDAIOCB acb = { 1397 .bs = bs, 1398 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1399 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1400 .qiov = qiov, 1401 .flags = flags, 1402 }; 1403 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1404 1405 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1406 1407 /* Start request */ 1408 return qed_aio_next_io(&acb); 1409 } 1410 1411 static int coroutine_fn GRAPH_RDLOCK 1412 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 1413 QEMUIOVector *qiov) 1414 { 1415 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1416 } 1417 1418 static int coroutine_fn GRAPH_RDLOCK 1419 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 1420 QEMUIOVector *qiov, int flags) 1421 { 1422 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1423 } 1424 1425 static int coroutine_fn GRAPH_RDLOCK 1426 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1427 BdrvRequestFlags flags) 1428 { 1429 BDRVQEDState *s = bs->opaque; 1430 1431 /* 1432 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1433 * then it will be allocated during request processing. 1434 */ 1435 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1436 1437 /* 1438 * QED is not prepared for 63bit write-zero requests, so rely on 1439 * max_pwrite_zeroes. 1440 */ 1441 assert(bytes <= INT_MAX); 1442 1443 /* Fall back if the request is not aligned */ 1444 if (qed_offset_into_cluster(s, offset) || 1445 qed_offset_into_cluster(s, bytes)) { 1446 return -ENOTSUP; 1447 } 1448 1449 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1450 bytes >> BDRV_SECTOR_BITS, 1451 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1452 } 1453 1454 static int coroutine_fn GRAPH_RDLOCK 1455 bdrv_qed_co_truncate(BlockDriverState *bs, int64_t offset, bool exact, 1456 PreallocMode prealloc, BdrvRequestFlags flags, 1457 Error **errp) 1458 { 1459 BDRVQEDState *s = bs->opaque; 1460 uint64_t old_image_size; 1461 int ret; 1462 1463 if (prealloc != PREALLOC_MODE_OFF) { 1464 error_setg(errp, "Unsupported preallocation mode '%s'", 1465 PreallocMode_str(prealloc)); 1466 return -ENOTSUP; 1467 } 1468 1469 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1470 s->header.table_size)) { 1471 error_setg(errp, "Invalid image size specified"); 1472 return -EINVAL; 1473 } 1474 1475 if ((uint64_t)offset < s->header.image_size) { 1476 error_setg(errp, "Shrinking images is currently not supported"); 1477 return -ENOTSUP; 1478 } 1479 1480 old_image_size = s->header.image_size; 1481 s->header.image_size = offset; 1482 ret = qed_write_header_sync(s); 1483 if (ret < 0) { 1484 s->header.image_size = old_image_size; 1485 error_setg_errno(errp, -ret, "Failed to update the image size"); 1486 } 1487 return ret; 1488 } 1489 1490 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs) 1491 { 1492 BDRVQEDState *s = bs->opaque; 1493 return s->header.image_size; 1494 } 1495 1496 static int coroutine_fn 1497 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1498 { 1499 BDRVQEDState *s = bs->opaque; 1500 1501 memset(bdi, 0, sizeof(*bdi)); 1502 bdi->cluster_size = s->header.cluster_size; 1503 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1504 return 0; 1505 } 1506 1507 static int coroutine_fn GRAPH_RDLOCK 1508 bdrv_qed_co_change_backing_file(BlockDriverState *bs, const char *backing_file, 1509 const char *backing_fmt) 1510 { 1511 BDRVQEDState *s = bs->opaque; 1512 QEDHeader new_header, le_header; 1513 void *buffer; 1514 size_t buffer_len, backing_file_len; 1515 int ret; 1516 1517 /* Refuse to set backing filename if unknown compat feature bits are 1518 * active. If the image uses an unknown compat feature then we may not 1519 * know the layout of data following the header structure and cannot safely 1520 * add a new string. 1521 */ 1522 if (backing_file && (s->header.compat_features & 1523 ~QED_COMPAT_FEATURE_MASK)) { 1524 return -ENOTSUP; 1525 } 1526 1527 memcpy(&new_header, &s->header, sizeof(new_header)); 1528 1529 new_header.features &= ~(QED_F_BACKING_FILE | 1530 QED_F_BACKING_FORMAT_NO_PROBE); 1531 1532 /* Adjust feature flags */ 1533 if (backing_file) { 1534 new_header.features |= QED_F_BACKING_FILE; 1535 1536 if (qed_fmt_is_raw(backing_fmt)) { 1537 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1538 } 1539 } 1540 1541 /* Calculate new header size */ 1542 backing_file_len = 0; 1543 1544 if (backing_file) { 1545 backing_file_len = strlen(backing_file); 1546 } 1547 1548 buffer_len = sizeof(new_header); 1549 new_header.backing_filename_offset = buffer_len; 1550 new_header.backing_filename_size = backing_file_len; 1551 buffer_len += backing_file_len; 1552 1553 /* Make sure we can rewrite header without failing */ 1554 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1555 return -ENOSPC; 1556 } 1557 1558 /* Prepare new header */ 1559 buffer = g_malloc(buffer_len); 1560 1561 qed_header_cpu_to_le(&new_header, &le_header); 1562 memcpy(buffer, &le_header, sizeof(le_header)); 1563 buffer_len = sizeof(le_header); 1564 1565 if (backing_file) { 1566 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1567 buffer_len += backing_file_len; 1568 } 1569 1570 /* Write new header */ 1571 ret = bdrv_co_pwrite_sync(bs->file, 0, buffer_len, buffer, 0); 1572 g_free(buffer); 1573 if (ret == 0) { 1574 memcpy(&s->header, &new_header, sizeof(new_header)); 1575 } 1576 return ret; 1577 } 1578 1579 static void coroutine_fn GRAPH_RDLOCK 1580 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp) 1581 { 1582 ERRP_GUARD(); 1583 BDRVQEDState *s = bs->opaque; 1584 int ret; 1585 1586 bdrv_qed_do_close(bs); 1587 1588 bdrv_qed_init_state(bs); 1589 qemu_co_mutex_lock(&s->table_lock); 1590 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1591 qemu_co_mutex_unlock(&s->table_lock); 1592 if (ret < 0) { 1593 error_prepend(errp, "Could not reopen qed layer: "); 1594 } 1595 } 1596 1597 static int coroutine_fn GRAPH_RDLOCK 1598 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result, 1599 BdrvCheckMode fix) 1600 { 1601 BDRVQEDState *s = bs->opaque; 1602 int ret; 1603 1604 qemu_co_mutex_lock(&s->table_lock); 1605 ret = qed_check(s, result, !!fix); 1606 qemu_co_mutex_unlock(&s->table_lock); 1607 1608 return ret; 1609 } 1610 1611 static QemuOptsList qed_create_opts = { 1612 .name = "qed-create-opts", 1613 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1614 .desc = { 1615 { 1616 .name = BLOCK_OPT_SIZE, 1617 .type = QEMU_OPT_SIZE, 1618 .help = "Virtual disk size" 1619 }, 1620 { 1621 .name = BLOCK_OPT_BACKING_FILE, 1622 .type = QEMU_OPT_STRING, 1623 .help = "File name of a base image" 1624 }, 1625 { 1626 .name = BLOCK_OPT_BACKING_FMT, 1627 .type = QEMU_OPT_STRING, 1628 .help = "Image format of the base image" 1629 }, 1630 { 1631 .name = BLOCK_OPT_CLUSTER_SIZE, 1632 .type = QEMU_OPT_SIZE, 1633 .help = "Cluster size (in bytes)", 1634 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1635 }, 1636 { 1637 .name = BLOCK_OPT_TABLE_SIZE, 1638 .type = QEMU_OPT_SIZE, 1639 .help = "L1/L2 table size (in clusters)" 1640 }, 1641 { /* end of list */ } 1642 } 1643 }; 1644 1645 static BlockDriver bdrv_qed = { 1646 .format_name = "qed", 1647 .instance_size = sizeof(BDRVQEDState), 1648 .create_opts = &qed_create_opts, 1649 .is_format = true, 1650 .supports_backing = true, 1651 1652 .bdrv_probe = bdrv_qed_probe, 1653 .bdrv_open = bdrv_qed_open, 1654 .bdrv_close = bdrv_qed_close, 1655 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1656 .bdrv_child_perm = bdrv_default_perms, 1657 .bdrv_co_create = bdrv_qed_co_create, 1658 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1659 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1660 .bdrv_co_block_status = bdrv_qed_co_block_status, 1661 .bdrv_co_readv = bdrv_qed_co_readv, 1662 .bdrv_co_writev = bdrv_qed_co_writev, 1663 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1664 .bdrv_co_truncate = bdrv_qed_co_truncate, 1665 .bdrv_co_getlength = bdrv_qed_co_getlength, 1666 .bdrv_co_get_info = bdrv_qed_co_get_info, 1667 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1668 .bdrv_co_change_backing_file = bdrv_qed_co_change_backing_file, 1669 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1670 .bdrv_co_check = bdrv_qed_co_check, 1671 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1672 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1673 .bdrv_drain_begin = bdrv_qed_drain_begin, 1674 }; 1675 1676 static void bdrv_qed_init(void) 1677 { 1678 bdrv_register(&bdrv_qed); 1679 } 1680 1681 block_init(bdrv_qed_init); 1682