1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/option.h" 21 #include "trace.h" 22 #include "qed.h" 23 #include "sysemu/block-backend.h" 24 #include "qapi/qmp/qdict.h" 25 #include "qapi/qobject-input-visitor.h" 26 #include "qapi/qapi-visit-block-core.h" 27 28 static QemuOptsList qed_create_opts; 29 30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 31 const char *filename) 32 { 33 const QEDHeader *header = (const QEDHeader *)buf; 34 35 if (buf_size < sizeof(*header)) { 36 return 0; 37 } 38 if (le32_to_cpu(header->magic) != QED_MAGIC) { 39 return 0; 40 } 41 return 100; 42 } 43 44 /** 45 * Check whether an image format is raw 46 * 47 * @fmt: Backing file format, may be NULL 48 */ 49 static bool qed_fmt_is_raw(const char *fmt) 50 { 51 return fmt && strcmp(fmt, "raw") == 0; 52 } 53 54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 55 { 56 cpu->magic = le32_to_cpu(le->magic); 57 cpu->cluster_size = le32_to_cpu(le->cluster_size); 58 cpu->table_size = le32_to_cpu(le->table_size); 59 cpu->header_size = le32_to_cpu(le->header_size); 60 cpu->features = le64_to_cpu(le->features); 61 cpu->compat_features = le64_to_cpu(le->compat_features); 62 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 63 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 64 cpu->image_size = le64_to_cpu(le->image_size); 65 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 66 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 67 } 68 69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 70 { 71 le->magic = cpu_to_le32(cpu->magic); 72 le->cluster_size = cpu_to_le32(cpu->cluster_size); 73 le->table_size = cpu_to_le32(cpu->table_size); 74 le->header_size = cpu_to_le32(cpu->header_size); 75 le->features = cpu_to_le64(cpu->features); 76 le->compat_features = cpu_to_le64(cpu->compat_features); 77 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 78 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 79 le->image_size = cpu_to_le64(cpu->image_size); 80 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 81 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 82 } 83 84 int qed_write_header_sync(BDRVQEDState *s) 85 { 86 QEDHeader le; 87 int ret; 88 89 qed_header_cpu_to_le(&s->header, &le); 90 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 91 if (ret != sizeof(le)) { 92 return ret; 93 } 94 return 0; 95 } 96 97 /** 98 * Update header in-place (does not rewrite backing filename or other strings) 99 * 100 * This function only updates known header fields in-place and does not affect 101 * extra data after the QED header. 102 * 103 * No new allocating reqs can start while this function runs. 104 */ 105 static int coroutine_fn qed_write_header(BDRVQEDState *s) 106 { 107 /* We must write full sectors for O_DIRECT but cannot necessarily generate 108 * the data following the header if an unrecognized compat feature is 109 * active. Therefore, first read the sectors containing the header, update 110 * them, and write back. 111 */ 112 113 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 114 size_t len = nsectors * BDRV_SECTOR_SIZE; 115 uint8_t *buf; 116 struct iovec iov; 117 QEMUIOVector qiov; 118 int ret; 119 120 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 121 122 buf = qemu_blockalign(s->bs, len); 123 iov = (struct iovec) { 124 .iov_base = buf, 125 .iov_len = len, 126 }; 127 qemu_iovec_init_external(&qiov, &iov, 1); 128 129 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 130 if (ret < 0) { 131 goto out; 132 } 133 134 /* Update header */ 135 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 136 137 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 138 if (ret < 0) { 139 goto out; 140 } 141 142 ret = 0; 143 out: 144 qemu_vfree(buf); 145 return ret; 146 } 147 148 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 149 { 150 uint64_t table_entries; 151 uint64_t l2_size; 152 153 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 154 l2_size = table_entries * cluster_size; 155 156 return l2_size * table_entries; 157 } 158 159 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 160 { 161 if (cluster_size < QED_MIN_CLUSTER_SIZE || 162 cluster_size > QED_MAX_CLUSTER_SIZE) { 163 return false; 164 } 165 if (cluster_size & (cluster_size - 1)) { 166 return false; /* not power of 2 */ 167 } 168 return true; 169 } 170 171 static bool qed_is_table_size_valid(uint32_t table_size) 172 { 173 if (table_size < QED_MIN_TABLE_SIZE || 174 table_size > QED_MAX_TABLE_SIZE) { 175 return false; 176 } 177 if (table_size & (table_size - 1)) { 178 return false; /* not power of 2 */ 179 } 180 return true; 181 } 182 183 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 184 uint32_t table_size) 185 { 186 if (image_size % BDRV_SECTOR_SIZE != 0) { 187 return false; /* not multiple of sector size */ 188 } 189 if (image_size > qed_max_image_size(cluster_size, table_size)) { 190 return false; /* image is too large */ 191 } 192 return true; 193 } 194 195 /** 196 * Read a string of known length from the image file 197 * 198 * @file: Image file 199 * @offset: File offset to start of string, in bytes 200 * @n: String length in bytes 201 * @buf: Destination buffer 202 * @buflen: Destination buffer length in bytes 203 * @ret: 0 on success, -errno on failure 204 * 205 * The string is NUL-terminated. 206 */ 207 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 208 char *buf, size_t buflen) 209 { 210 int ret; 211 if (n >= buflen) { 212 return -EINVAL; 213 } 214 ret = bdrv_pread(file, offset, buf, n); 215 if (ret < 0) { 216 return ret; 217 } 218 buf[n] = '\0'; 219 return 0; 220 } 221 222 /** 223 * Allocate new clusters 224 * 225 * @s: QED state 226 * @n: Number of contiguous clusters to allocate 227 * @ret: Offset of first allocated cluster 228 * 229 * This function only produces the offset where the new clusters should be 230 * written. It updates BDRVQEDState but does not make any changes to the image 231 * file. 232 * 233 * Called with table_lock held. 234 */ 235 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 236 { 237 uint64_t offset = s->file_size; 238 s->file_size += n * s->header.cluster_size; 239 return offset; 240 } 241 242 QEDTable *qed_alloc_table(BDRVQEDState *s) 243 { 244 /* Honor O_DIRECT memory alignment requirements */ 245 return qemu_blockalign(s->bs, 246 s->header.cluster_size * s->header.table_size); 247 } 248 249 /** 250 * Allocate a new zeroed L2 table 251 * 252 * Called with table_lock held. 253 */ 254 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 255 { 256 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 257 258 l2_table->table = qed_alloc_table(s); 259 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 260 261 memset(l2_table->table->offsets, 0, 262 s->header.cluster_size * s->header.table_size); 263 return l2_table; 264 } 265 266 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 267 { 268 qemu_co_mutex_lock(&s->table_lock); 269 270 /* No reentrancy is allowed. */ 271 assert(!s->allocating_write_reqs_plugged); 272 if (s->allocating_acb != NULL) { 273 /* Another allocating write came concurrently. This cannot happen 274 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 275 */ 276 qemu_co_mutex_unlock(&s->table_lock); 277 return false; 278 } 279 280 s->allocating_write_reqs_plugged = true; 281 qemu_co_mutex_unlock(&s->table_lock); 282 return true; 283 } 284 285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 286 { 287 qemu_co_mutex_lock(&s->table_lock); 288 assert(s->allocating_write_reqs_plugged); 289 s->allocating_write_reqs_plugged = false; 290 qemu_co_queue_next(&s->allocating_write_reqs); 291 qemu_co_mutex_unlock(&s->table_lock); 292 } 293 294 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 295 { 296 BDRVQEDState *s = opaque; 297 int ret; 298 299 trace_qed_need_check_timer_cb(s); 300 301 if (!qed_plug_allocating_write_reqs(s)) { 302 return; 303 } 304 305 /* Ensure writes are on disk before clearing flag */ 306 ret = bdrv_co_flush(s->bs->file->bs); 307 if (ret < 0) { 308 qed_unplug_allocating_write_reqs(s); 309 return; 310 } 311 312 s->header.features &= ~QED_F_NEED_CHECK; 313 ret = qed_write_header(s); 314 (void) ret; 315 316 qed_unplug_allocating_write_reqs(s); 317 318 ret = bdrv_co_flush(s->bs); 319 (void) ret; 320 } 321 322 static void qed_need_check_timer_cb(void *opaque) 323 { 324 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 325 qemu_coroutine_enter(co); 326 } 327 328 static void qed_start_need_check_timer(BDRVQEDState *s) 329 { 330 trace_qed_start_need_check_timer(s); 331 332 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 333 * migration. 334 */ 335 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 336 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 337 } 338 339 /* It's okay to call this multiple times or when no timer is started */ 340 static void qed_cancel_need_check_timer(BDRVQEDState *s) 341 { 342 trace_qed_cancel_need_check_timer(s); 343 timer_del(s->need_check_timer); 344 } 345 346 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 347 { 348 BDRVQEDState *s = bs->opaque; 349 350 qed_cancel_need_check_timer(s); 351 timer_free(s->need_check_timer); 352 } 353 354 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 355 AioContext *new_context) 356 { 357 BDRVQEDState *s = bs->opaque; 358 359 s->need_check_timer = aio_timer_new(new_context, 360 QEMU_CLOCK_VIRTUAL, SCALE_NS, 361 qed_need_check_timer_cb, s); 362 if (s->header.features & QED_F_NEED_CHECK) { 363 qed_start_need_check_timer(s); 364 } 365 } 366 367 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 368 { 369 BDRVQEDState *s = bs->opaque; 370 371 /* Fire the timer immediately in order to start doing I/O as soon as the 372 * header is flushed. 373 */ 374 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 375 qed_cancel_need_check_timer(s); 376 qed_need_check_timer_entry(s); 377 } 378 } 379 380 static void bdrv_qed_init_state(BlockDriverState *bs) 381 { 382 BDRVQEDState *s = bs->opaque; 383 384 memset(s, 0, sizeof(BDRVQEDState)); 385 s->bs = bs; 386 qemu_co_mutex_init(&s->table_lock); 387 qemu_co_queue_init(&s->allocating_write_reqs); 388 } 389 390 /* Called with table_lock held. */ 391 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 392 int flags, Error **errp) 393 { 394 BDRVQEDState *s = bs->opaque; 395 QEDHeader le_header; 396 int64_t file_size; 397 int ret; 398 399 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 400 if (ret < 0) { 401 return ret; 402 } 403 qed_header_le_to_cpu(&le_header, &s->header); 404 405 if (s->header.magic != QED_MAGIC) { 406 error_setg(errp, "Image not in QED format"); 407 return -EINVAL; 408 } 409 if (s->header.features & ~QED_FEATURE_MASK) { 410 /* image uses unsupported feature bits */ 411 error_setg(errp, "Unsupported QED features: %" PRIx64, 412 s->header.features & ~QED_FEATURE_MASK); 413 return -ENOTSUP; 414 } 415 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 416 return -EINVAL; 417 } 418 419 /* Round down file size to the last cluster */ 420 file_size = bdrv_getlength(bs->file->bs); 421 if (file_size < 0) { 422 return file_size; 423 } 424 s->file_size = qed_start_of_cluster(s, file_size); 425 426 if (!qed_is_table_size_valid(s->header.table_size)) { 427 return -EINVAL; 428 } 429 if (!qed_is_image_size_valid(s->header.image_size, 430 s->header.cluster_size, 431 s->header.table_size)) { 432 return -EINVAL; 433 } 434 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 435 return -EINVAL; 436 } 437 438 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 439 sizeof(uint64_t); 440 s->l2_shift = ctz32(s->header.cluster_size); 441 s->l2_mask = s->table_nelems - 1; 442 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 443 444 /* Header size calculation must not overflow uint32_t */ 445 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 446 return -EINVAL; 447 } 448 449 if ((s->header.features & QED_F_BACKING_FILE)) { 450 if ((uint64_t)s->header.backing_filename_offset + 451 s->header.backing_filename_size > 452 s->header.cluster_size * s->header.header_size) { 453 return -EINVAL; 454 } 455 456 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 457 s->header.backing_filename_size, bs->backing_file, 458 sizeof(bs->backing_file)); 459 if (ret < 0) { 460 return ret; 461 } 462 463 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 464 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 465 } 466 } 467 468 /* Reset unknown autoclear feature bits. This is a backwards 469 * compatibility mechanism that allows images to be opened by older 470 * programs, which "knock out" unknown feature bits. When an image is 471 * opened by a newer program again it can detect that the autoclear 472 * feature is no longer valid. 473 */ 474 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 475 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 476 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 477 478 ret = qed_write_header_sync(s); 479 if (ret) { 480 return ret; 481 } 482 483 /* From here on only known autoclear feature bits are valid */ 484 bdrv_flush(bs->file->bs); 485 } 486 487 s->l1_table = qed_alloc_table(s); 488 qed_init_l2_cache(&s->l2_cache); 489 490 ret = qed_read_l1_table_sync(s); 491 if (ret) { 492 goto out; 493 } 494 495 /* If image was not closed cleanly, check consistency */ 496 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 497 /* Read-only images cannot be fixed. There is no risk of corruption 498 * since write operations are not possible. Therefore, allow 499 * potentially inconsistent images to be opened read-only. This can 500 * aid data recovery from an otherwise inconsistent image. 501 */ 502 if (!bdrv_is_read_only(bs->file->bs) && 503 !(flags & BDRV_O_INACTIVE)) { 504 BdrvCheckResult result = {0}; 505 506 ret = qed_check(s, &result, true); 507 if (ret) { 508 goto out; 509 } 510 } 511 } 512 513 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 514 515 out: 516 if (ret) { 517 qed_free_l2_cache(&s->l2_cache); 518 qemu_vfree(s->l1_table); 519 } 520 return ret; 521 } 522 523 typedef struct QEDOpenCo { 524 BlockDriverState *bs; 525 QDict *options; 526 int flags; 527 Error **errp; 528 int ret; 529 } QEDOpenCo; 530 531 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 532 { 533 QEDOpenCo *qoc = opaque; 534 BDRVQEDState *s = qoc->bs->opaque; 535 536 qemu_co_mutex_lock(&s->table_lock); 537 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 538 qemu_co_mutex_unlock(&s->table_lock); 539 } 540 541 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 542 Error **errp) 543 { 544 QEDOpenCo qoc = { 545 .bs = bs, 546 .options = options, 547 .flags = flags, 548 .errp = errp, 549 .ret = -EINPROGRESS 550 }; 551 552 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 553 false, errp); 554 if (!bs->file) { 555 return -EINVAL; 556 } 557 558 bdrv_qed_init_state(bs); 559 if (qemu_in_coroutine()) { 560 bdrv_qed_open_entry(&qoc); 561 } else { 562 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 563 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 564 } 565 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 566 return qoc.ret; 567 } 568 569 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 570 { 571 BDRVQEDState *s = bs->opaque; 572 573 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 574 } 575 576 /* We have nothing to do for QED reopen, stubs just return 577 * success */ 578 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 579 BlockReopenQueue *queue, Error **errp) 580 { 581 return 0; 582 } 583 584 static void bdrv_qed_close(BlockDriverState *bs) 585 { 586 BDRVQEDState *s = bs->opaque; 587 588 bdrv_qed_detach_aio_context(bs); 589 590 /* Ensure writes reach stable storage */ 591 bdrv_flush(bs->file->bs); 592 593 /* Clean shutdown, no check required on next open */ 594 if (s->header.features & QED_F_NEED_CHECK) { 595 s->header.features &= ~QED_F_NEED_CHECK; 596 qed_write_header_sync(s); 597 } 598 599 qed_free_l2_cache(&s->l2_cache); 600 qemu_vfree(s->l1_table); 601 } 602 603 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 604 Error **errp) 605 { 606 BlockdevCreateOptionsQed *qed_opts; 607 BlockBackend *blk = NULL; 608 BlockDriverState *bs = NULL; 609 610 QEDHeader header; 611 QEDHeader le_header; 612 uint8_t *l1_table = NULL; 613 size_t l1_size; 614 int ret = 0; 615 616 assert(opts->driver == BLOCKDEV_DRIVER_QED); 617 qed_opts = &opts->u.qed; 618 619 /* Validate options and set default values */ 620 if (!qed_opts->has_cluster_size) { 621 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 622 } 623 if (!qed_opts->has_table_size) { 624 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 625 } 626 627 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 628 error_setg(errp, "QED cluster size must be within range [%u, %u] " 629 "and power of 2", 630 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 631 return -EINVAL; 632 } 633 if (!qed_is_table_size_valid(qed_opts->table_size)) { 634 error_setg(errp, "QED table size must be within range [%u, %u] " 635 "and power of 2", 636 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 637 return -EINVAL; 638 } 639 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 640 qed_opts->table_size)) 641 { 642 error_setg(errp, "QED image size must be a non-zero multiple of " 643 "cluster size and less than %" PRIu64 " bytes", 644 qed_max_image_size(qed_opts->cluster_size, 645 qed_opts->table_size)); 646 return -EINVAL; 647 } 648 649 /* Create BlockBackend to write to the image */ 650 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 651 if (bs == NULL) { 652 return -EIO; 653 } 654 655 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL); 656 ret = blk_insert_bs(blk, bs, errp); 657 if (ret < 0) { 658 goto out; 659 } 660 blk_set_allow_write_beyond_eof(blk, true); 661 662 /* Prepare image format */ 663 header = (QEDHeader) { 664 .magic = QED_MAGIC, 665 .cluster_size = qed_opts->cluster_size, 666 .table_size = qed_opts->table_size, 667 .header_size = 1, 668 .features = 0, 669 .compat_features = 0, 670 .l1_table_offset = qed_opts->cluster_size, 671 .image_size = qed_opts->size, 672 }; 673 674 l1_size = header.cluster_size * header.table_size; 675 676 /* File must start empty and grow, check truncate is supported */ 677 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp); 678 if (ret < 0) { 679 goto out; 680 } 681 682 if (qed_opts->has_backing_file) { 683 header.features |= QED_F_BACKING_FILE; 684 header.backing_filename_offset = sizeof(le_header); 685 header.backing_filename_size = strlen(qed_opts->backing_file); 686 687 if (qed_opts->has_backing_fmt) { 688 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 689 if (qed_fmt_is_raw(backing_fmt)) { 690 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 691 } 692 } 693 } 694 695 qed_header_cpu_to_le(&header, &le_header); 696 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 697 if (ret < 0) { 698 goto out; 699 } 700 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 701 header.backing_filename_size, 0); 702 if (ret < 0) { 703 goto out; 704 } 705 706 l1_table = g_malloc0(l1_size); 707 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 708 if (ret < 0) { 709 goto out; 710 } 711 712 ret = 0; /* success */ 713 out: 714 g_free(l1_table); 715 blk_unref(blk); 716 bdrv_unref(bs); 717 return ret; 718 } 719 720 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename, 721 QemuOpts *opts, 722 Error **errp) 723 { 724 BlockdevCreateOptions *create_options = NULL; 725 QDict *qdict; 726 Visitor *v; 727 BlockDriverState *bs = NULL; 728 Error *local_err = NULL; 729 int ret; 730 731 static const QDictRenames opt_renames[] = { 732 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 733 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 734 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 735 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 736 { NULL, NULL }, 737 }; 738 739 /* Parse options and convert legacy syntax */ 740 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 741 742 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 743 ret = -EINVAL; 744 goto fail; 745 } 746 747 /* Create and open the file (protocol layer) */ 748 ret = bdrv_create_file(filename, opts, &local_err); 749 if (ret < 0) { 750 error_propagate(errp, local_err); 751 goto fail; 752 } 753 754 bs = bdrv_open(filename, NULL, NULL, 755 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 756 if (bs == NULL) { 757 ret = -EIO; 758 goto fail; 759 } 760 761 /* Now get the QAPI type BlockdevCreateOptions */ 762 qdict_put_str(qdict, "driver", "qed"); 763 qdict_put_str(qdict, "file", bs->node_name); 764 765 v = qobject_input_visitor_new_flat_confused(qdict, errp); 766 if (!v) { 767 ret = -EINVAL; 768 goto fail; 769 } 770 771 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err); 772 visit_free(v); 773 774 if (local_err) { 775 error_propagate(errp, local_err); 776 ret = -EINVAL; 777 goto fail; 778 } 779 780 /* Silently round up size */ 781 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 782 create_options->u.qed.size = 783 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 784 785 /* Create the qed image (format layer) */ 786 ret = bdrv_qed_co_create(create_options, errp); 787 788 fail: 789 qobject_unref(qdict); 790 bdrv_unref(bs); 791 qapi_free_BlockdevCreateOptions(create_options); 792 return ret; 793 } 794 795 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 796 bool want_zero, 797 int64_t pos, int64_t bytes, 798 int64_t *pnum, int64_t *map, 799 BlockDriverState **file) 800 { 801 BDRVQEDState *s = bs->opaque; 802 size_t len = MIN(bytes, SIZE_MAX); 803 int status; 804 QEDRequest request = { .l2_table = NULL }; 805 uint64_t offset; 806 int ret; 807 808 qemu_co_mutex_lock(&s->table_lock); 809 ret = qed_find_cluster(s, &request, pos, &len, &offset); 810 811 *pnum = len; 812 switch (ret) { 813 case QED_CLUSTER_FOUND: 814 *map = offset | qed_offset_into_cluster(s, pos); 815 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 816 *file = bs->file->bs; 817 break; 818 case QED_CLUSTER_ZERO: 819 status = BDRV_BLOCK_ZERO; 820 break; 821 case QED_CLUSTER_L2: 822 case QED_CLUSTER_L1: 823 status = 0; 824 break; 825 default: 826 assert(ret < 0); 827 status = ret; 828 break; 829 } 830 831 qed_unref_l2_cache_entry(request.l2_table); 832 qemu_co_mutex_unlock(&s->table_lock); 833 834 return status; 835 } 836 837 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 838 { 839 return acb->bs->opaque; 840 } 841 842 /** 843 * Read from the backing file or zero-fill if no backing file 844 * 845 * @s: QED state 846 * @pos: Byte position in device 847 * @qiov: Destination I/O vector 848 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 849 * @cb: Completion function 850 * @opaque: User data for completion function 851 * 852 * This function reads qiov->size bytes starting at pos from the backing file. 853 * If there is no backing file then zeroes are read. 854 */ 855 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 856 QEMUIOVector *qiov, 857 QEMUIOVector **backing_qiov) 858 { 859 uint64_t backing_length = 0; 860 size_t size; 861 int ret; 862 863 /* If there is a backing file, get its length. Treat the absence of a 864 * backing file like a zero length backing file. 865 */ 866 if (s->bs->backing) { 867 int64_t l = bdrv_getlength(s->bs->backing->bs); 868 if (l < 0) { 869 return l; 870 } 871 backing_length = l; 872 } 873 874 /* Zero all sectors if reading beyond the end of the backing file */ 875 if (pos >= backing_length || 876 pos + qiov->size > backing_length) { 877 qemu_iovec_memset(qiov, 0, 0, qiov->size); 878 } 879 880 /* Complete now if there are no backing file sectors to read */ 881 if (pos >= backing_length) { 882 return 0; 883 } 884 885 /* If the read straddles the end of the backing file, shorten it */ 886 size = MIN((uint64_t)backing_length - pos, qiov->size); 887 888 assert(*backing_qiov == NULL); 889 *backing_qiov = g_new(QEMUIOVector, 1); 890 qemu_iovec_init(*backing_qiov, qiov->niov); 891 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 892 893 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 894 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 895 if (ret < 0) { 896 return ret; 897 } 898 return 0; 899 } 900 901 /** 902 * Copy data from backing file into the image 903 * 904 * @s: QED state 905 * @pos: Byte position in device 906 * @len: Number of bytes 907 * @offset: Byte offset in image file 908 */ 909 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 910 uint64_t pos, uint64_t len, 911 uint64_t offset) 912 { 913 QEMUIOVector qiov; 914 QEMUIOVector *backing_qiov = NULL; 915 struct iovec iov; 916 int ret; 917 918 /* Skip copy entirely if there is no work to do */ 919 if (len == 0) { 920 return 0; 921 } 922 923 iov = (struct iovec) { 924 .iov_base = qemu_blockalign(s->bs, len), 925 .iov_len = len, 926 }; 927 qemu_iovec_init_external(&qiov, &iov, 1); 928 929 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 930 931 if (backing_qiov) { 932 qemu_iovec_destroy(backing_qiov); 933 g_free(backing_qiov); 934 backing_qiov = NULL; 935 } 936 937 if (ret) { 938 goto out; 939 } 940 941 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 942 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 943 if (ret < 0) { 944 goto out; 945 } 946 ret = 0; 947 out: 948 qemu_vfree(iov.iov_base); 949 return ret; 950 } 951 952 /** 953 * Link one or more contiguous clusters into a table 954 * 955 * @s: QED state 956 * @table: L2 table 957 * @index: First cluster index 958 * @n: Number of contiguous clusters 959 * @cluster: First cluster offset 960 * 961 * The cluster offset may be an allocated byte offset in the image file, the 962 * zero cluster marker, or the unallocated cluster marker. 963 * 964 * Called with table_lock held. 965 */ 966 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 967 int index, unsigned int n, 968 uint64_t cluster) 969 { 970 int i; 971 for (i = index; i < index + n; i++) { 972 table->offsets[i] = cluster; 973 if (!qed_offset_is_unalloc_cluster(cluster) && 974 !qed_offset_is_zero_cluster(cluster)) { 975 cluster += s->header.cluster_size; 976 } 977 } 978 } 979 980 /* Called with table_lock held. */ 981 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 982 { 983 BDRVQEDState *s = acb_to_s(acb); 984 985 /* Free resources */ 986 qemu_iovec_destroy(&acb->cur_qiov); 987 qed_unref_l2_cache_entry(acb->request.l2_table); 988 989 /* Free the buffer we may have allocated for zero writes */ 990 if (acb->flags & QED_AIOCB_ZERO) { 991 qemu_vfree(acb->qiov->iov[0].iov_base); 992 acb->qiov->iov[0].iov_base = NULL; 993 } 994 995 /* Start next allocating write request waiting behind this one. Note that 996 * requests enqueue themselves when they first hit an unallocated cluster 997 * but they wait until the entire request is finished before waking up the 998 * next request in the queue. This ensures that we don't cycle through 999 * requests multiple times but rather finish one at a time completely. 1000 */ 1001 if (acb == s->allocating_acb) { 1002 s->allocating_acb = NULL; 1003 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 1004 qemu_co_queue_next(&s->allocating_write_reqs); 1005 } else if (s->header.features & QED_F_NEED_CHECK) { 1006 qed_start_need_check_timer(s); 1007 } 1008 } 1009 } 1010 1011 /** 1012 * Update L1 table with new L2 table offset and write it out 1013 * 1014 * Called with table_lock held. 1015 */ 1016 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 1017 { 1018 BDRVQEDState *s = acb_to_s(acb); 1019 CachedL2Table *l2_table = acb->request.l2_table; 1020 uint64_t l2_offset = l2_table->offset; 1021 int index, ret; 1022 1023 index = qed_l1_index(s, acb->cur_pos); 1024 s->l1_table->offsets[index] = l2_table->offset; 1025 1026 ret = qed_write_l1_table(s, index, 1); 1027 1028 /* Commit the current L2 table to the cache */ 1029 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 1030 1031 /* This is guaranteed to succeed because we just committed the entry to the 1032 * cache. 1033 */ 1034 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 1035 assert(acb->request.l2_table != NULL); 1036 1037 return ret; 1038 } 1039 1040 1041 /** 1042 * Update L2 table with new cluster offsets and write them out 1043 * 1044 * Called with table_lock held. 1045 */ 1046 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1047 { 1048 BDRVQEDState *s = acb_to_s(acb); 1049 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1050 int index, ret; 1051 1052 if (need_alloc) { 1053 qed_unref_l2_cache_entry(acb->request.l2_table); 1054 acb->request.l2_table = qed_new_l2_table(s); 1055 } 1056 1057 index = qed_l2_index(s, acb->cur_pos); 1058 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1059 offset); 1060 1061 if (need_alloc) { 1062 /* Write out the whole new L2 table */ 1063 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1064 if (ret) { 1065 return ret; 1066 } 1067 return qed_aio_write_l1_update(acb); 1068 } else { 1069 /* Write out only the updated part of the L2 table */ 1070 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1071 false); 1072 if (ret) { 1073 return ret; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 /** 1080 * Write data to the image file 1081 * 1082 * Called with table_lock *not* held. 1083 */ 1084 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1085 { 1086 BDRVQEDState *s = acb_to_s(acb); 1087 uint64_t offset = acb->cur_cluster + 1088 qed_offset_into_cluster(s, acb->cur_pos); 1089 1090 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1091 1092 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1093 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1094 &acb->cur_qiov, 0); 1095 } 1096 1097 /** 1098 * Populate untouched regions of new data cluster 1099 * 1100 * Called with table_lock held. 1101 */ 1102 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1103 { 1104 BDRVQEDState *s = acb_to_s(acb); 1105 uint64_t start, len, offset; 1106 int ret; 1107 1108 qemu_co_mutex_unlock(&s->table_lock); 1109 1110 /* Populate front untouched region of new data cluster */ 1111 start = qed_start_of_cluster(s, acb->cur_pos); 1112 len = qed_offset_into_cluster(s, acb->cur_pos); 1113 1114 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1115 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1116 if (ret < 0) { 1117 goto out; 1118 } 1119 1120 /* Populate back untouched region of new data cluster */ 1121 start = acb->cur_pos + acb->cur_qiov.size; 1122 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1123 offset = acb->cur_cluster + 1124 qed_offset_into_cluster(s, acb->cur_pos) + 1125 acb->cur_qiov.size; 1126 1127 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1128 ret = qed_copy_from_backing_file(s, start, len, offset); 1129 if (ret < 0) { 1130 goto out; 1131 } 1132 1133 ret = qed_aio_write_main(acb); 1134 if (ret < 0) { 1135 goto out; 1136 } 1137 1138 if (s->bs->backing) { 1139 /* 1140 * Flush new data clusters before updating the L2 table 1141 * 1142 * This flush is necessary when a backing file is in use. A crash 1143 * during an allocating write could result in empty clusters in the 1144 * image. If the write only touched a subregion of the cluster, 1145 * then backing image sectors have been lost in the untouched 1146 * region. The solution is to flush after writing a new data 1147 * cluster and before updating the L2 table. 1148 */ 1149 ret = bdrv_co_flush(s->bs->file->bs); 1150 } 1151 1152 out: 1153 qemu_co_mutex_lock(&s->table_lock); 1154 return ret; 1155 } 1156 1157 /** 1158 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1159 */ 1160 static bool qed_should_set_need_check(BDRVQEDState *s) 1161 { 1162 /* The flush before L2 update path ensures consistency */ 1163 if (s->bs->backing) { 1164 return false; 1165 } 1166 1167 return !(s->header.features & QED_F_NEED_CHECK); 1168 } 1169 1170 /** 1171 * Write new data cluster 1172 * 1173 * @acb: Write request 1174 * @len: Length in bytes 1175 * 1176 * This path is taken when writing to previously unallocated clusters. 1177 * 1178 * Called with table_lock held. 1179 */ 1180 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1181 { 1182 BDRVQEDState *s = acb_to_s(acb); 1183 int ret; 1184 1185 /* Cancel timer when the first allocating request comes in */ 1186 if (s->allocating_acb == NULL) { 1187 qed_cancel_need_check_timer(s); 1188 } 1189 1190 /* Freeze this request if another allocating write is in progress */ 1191 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1192 if (s->allocating_acb != NULL) { 1193 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1194 assert(s->allocating_acb == NULL); 1195 } 1196 s->allocating_acb = acb; 1197 return -EAGAIN; /* start over with looking up table entries */ 1198 } 1199 1200 acb->cur_nclusters = qed_bytes_to_clusters(s, 1201 qed_offset_into_cluster(s, acb->cur_pos) + len); 1202 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1203 1204 if (acb->flags & QED_AIOCB_ZERO) { 1205 /* Skip ahead if the clusters are already zero */ 1206 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1207 return 0; 1208 } 1209 acb->cur_cluster = 1; 1210 } else { 1211 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1212 } 1213 1214 if (qed_should_set_need_check(s)) { 1215 s->header.features |= QED_F_NEED_CHECK; 1216 ret = qed_write_header(s); 1217 if (ret < 0) { 1218 return ret; 1219 } 1220 } 1221 1222 if (!(acb->flags & QED_AIOCB_ZERO)) { 1223 ret = qed_aio_write_cow(acb); 1224 if (ret < 0) { 1225 return ret; 1226 } 1227 } 1228 1229 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1230 } 1231 1232 /** 1233 * Write data cluster in place 1234 * 1235 * @acb: Write request 1236 * @offset: Cluster offset in bytes 1237 * @len: Length in bytes 1238 * 1239 * This path is taken when writing to already allocated clusters. 1240 * 1241 * Called with table_lock held. 1242 */ 1243 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1244 size_t len) 1245 { 1246 BDRVQEDState *s = acb_to_s(acb); 1247 int r; 1248 1249 qemu_co_mutex_unlock(&s->table_lock); 1250 1251 /* Allocate buffer for zero writes */ 1252 if (acb->flags & QED_AIOCB_ZERO) { 1253 struct iovec *iov = acb->qiov->iov; 1254 1255 if (!iov->iov_base) { 1256 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1257 if (iov->iov_base == NULL) { 1258 r = -ENOMEM; 1259 goto out; 1260 } 1261 memset(iov->iov_base, 0, iov->iov_len); 1262 } 1263 } 1264 1265 /* Calculate the I/O vector */ 1266 acb->cur_cluster = offset; 1267 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1268 1269 /* Do the actual write. */ 1270 r = qed_aio_write_main(acb); 1271 out: 1272 qemu_co_mutex_lock(&s->table_lock); 1273 return r; 1274 } 1275 1276 /** 1277 * Write data cluster 1278 * 1279 * @opaque: Write request 1280 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1281 * @offset: Cluster offset in bytes 1282 * @len: Length in bytes 1283 * 1284 * Called with table_lock held. 1285 */ 1286 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1287 uint64_t offset, size_t len) 1288 { 1289 QEDAIOCB *acb = opaque; 1290 1291 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1292 1293 acb->find_cluster_ret = ret; 1294 1295 switch (ret) { 1296 case QED_CLUSTER_FOUND: 1297 return qed_aio_write_inplace(acb, offset, len); 1298 1299 case QED_CLUSTER_L2: 1300 case QED_CLUSTER_L1: 1301 case QED_CLUSTER_ZERO: 1302 return qed_aio_write_alloc(acb, len); 1303 1304 default: 1305 g_assert_not_reached(); 1306 } 1307 } 1308 1309 /** 1310 * Read data cluster 1311 * 1312 * @opaque: Read request 1313 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1314 * @offset: Cluster offset in bytes 1315 * @len: Length in bytes 1316 * 1317 * Called with table_lock held. 1318 */ 1319 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1320 uint64_t offset, size_t len) 1321 { 1322 QEDAIOCB *acb = opaque; 1323 BDRVQEDState *s = acb_to_s(acb); 1324 BlockDriverState *bs = acb->bs; 1325 int r; 1326 1327 qemu_co_mutex_unlock(&s->table_lock); 1328 1329 /* Adjust offset into cluster */ 1330 offset += qed_offset_into_cluster(s, acb->cur_pos); 1331 1332 trace_qed_aio_read_data(s, acb, ret, offset, len); 1333 1334 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1335 1336 /* Handle zero cluster and backing file reads, otherwise read 1337 * data cluster directly. 1338 */ 1339 if (ret == QED_CLUSTER_ZERO) { 1340 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1341 r = 0; 1342 } else if (ret != QED_CLUSTER_FOUND) { 1343 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1344 &acb->backing_qiov); 1345 } else { 1346 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1347 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1348 &acb->cur_qiov, 0); 1349 } 1350 1351 qemu_co_mutex_lock(&s->table_lock); 1352 return r; 1353 } 1354 1355 /** 1356 * Begin next I/O or complete the request 1357 */ 1358 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1359 { 1360 BDRVQEDState *s = acb_to_s(acb); 1361 uint64_t offset; 1362 size_t len; 1363 int ret; 1364 1365 qemu_co_mutex_lock(&s->table_lock); 1366 while (1) { 1367 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1368 1369 if (acb->backing_qiov) { 1370 qemu_iovec_destroy(acb->backing_qiov); 1371 g_free(acb->backing_qiov); 1372 acb->backing_qiov = NULL; 1373 } 1374 1375 acb->qiov_offset += acb->cur_qiov.size; 1376 acb->cur_pos += acb->cur_qiov.size; 1377 qemu_iovec_reset(&acb->cur_qiov); 1378 1379 /* Complete request */ 1380 if (acb->cur_pos >= acb->end_pos) { 1381 ret = 0; 1382 break; 1383 } 1384 1385 /* Find next cluster and start I/O */ 1386 len = acb->end_pos - acb->cur_pos; 1387 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1388 if (ret < 0) { 1389 break; 1390 } 1391 1392 if (acb->flags & QED_AIOCB_WRITE) { 1393 ret = qed_aio_write_data(acb, ret, offset, len); 1394 } else { 1395 ret = qed_aio_read_data(acb, ret, offset, len); 1396 } 1397 1398 if (ret < 0 && ret != -EAGAIN) { 1399 break; 1400 } 1401 } 1402 1403 trace_qed_aio_complete(s, acb, ret); 1404 qed_aio_complete(acb); 1405 qemu_co_mutex_unlock(&s->table_lock); 1406 return ret; 1407 } 1408 1409 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1410 QEMUIOVector *qiov, int nb_sectors, 1411 int flags) 1412 { 1413 QEDAIOCB acb = { 1414 .bs = bs, 1415 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1416 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1417 .qiov = qiov, 1418 .flags = flags, 1419 }; 1420 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1421 1422 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1423 1424 /* Start request */ 1425 return qed_aio_next_io(&acb); 1426 } 1427 1428 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1429 int64_t sector_num, int nb_sectors, 1430 QEMUIOVector *qiov) 1431 { 1432 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1433 } 1434 1435 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1436 int64_t sector_num, int nb_sectors, 1437 QEMUIOVector *qiov, int flags) 1438 { 1439 assert(!flags); 1440 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1441 } 1442 1443 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1444 int64_t offset, 1445 int bytes, 1446 BdrvRequestFlags flags) 1447 { 1448 BDRVQEDState *s = bs->opaque; 1449 QEMUIOVector qiov; 1450 struct iovec iov; 1451 1452 /* Fall back if the request is not aligned */ 1453 if (qed_offset_into_cluster(s, offset) || 1454 qed_offset_into_cluster(s, bytes)) { 1455 return -ENOTSUP; 1456 } 1457 1458 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1459 * then it will be allocated during request processing. 1460 */ 1461 iov.iov_base = NULL; 1462 iov.iov_len = bytes; 1463 1464 qemu_iovec_init_external(&qiov, &iov, 1); 1465 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1466 bytes >> BDRV_SECTOR_BITS, 1467 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1468 } 1469 1470 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1471 int64_t offset, 1472 PreallocMode prealloc, 1473 Error **errp) 1474 { 1475 BDRVQEDState *s = bs->opaque; 1476 uint64_t old_image_size; 1477 int ret; 1478 1479 if (prealloc != PREALLOC_MODE_OFF) { 1480 error_setg(errp, "Unsupported preallocation mode '%s'", 1481 PreallocMode_str(prealloc)); 1482 return -ENOTSUP; 1483 } 1484 1485 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1486 s->header.table_size)) { 1487 error_setg(errp, "Invalid image size specified"); 1488 return -EINVAL; 1489 } 1490 1491 if ((uint64_t)offset < s->header.image_size) { 1492 error_setg(errp, "Shrinking images is currently not supported"); 1493 return -ENOTSUP; 1494 } 1495 1496 old_image_size = s->header.image_size; 1497 s->header.image_size = offset; 1498 ret = qed_write_header_sync(s); 1499 if (ret < 0) { 1500 s->header.image_size = old_image_size; 1501 error_setg_errno(errp, -ret, "Failed to update the image size"); 1502 } 1503 return ret; 1504 } 1505 1506 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1507 { 1508 BDRVQEDState *s = bs->opaque; 1509 return s->header.image_size; 1510 } 1511 1512 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1513 { 1514 BDRVQEDState *s = bs->opaque; 1515 1516 memset(bdi, 0, sizeof(*bdi)); 1517 bdi->cluster_size = s->header.cluster_size; 1518 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1519 bdi->unallocated_blocks_are_zero = true; 1520 return 0; 1521 } 1522 1523 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1524 const char *backing_file, 1525 const char *backing_fmt) 1526 { 1527 BDRVQEDState *s = bs->opaque; 1528 QEDHeader new_header, le_header; 1529 void *buffer; 1530 size_t buffer_len, backing_file_len; 1531 int ret; 1532 1533 /* Refuse to set backing filename if unknown compat feature bits are 1534 * active. If the image uses an unknown compat feature then we may not 1535 * know the layout of data following the header structure and cannot safely 1536 * add a new string. 1537 */ 1538 if (backing_file && (s->header.compat_features & 1539 ~QED_COMPAT_FEATURE_MASK)) { 1540 return -ENOTSUP; 1541 } 1542 1543 memcpy(&new_header, &s->header, sizeof(new_header)); 1544 1545 new_header.features &= ~(QED_F_BACKING_FILE | 1546 QED_F_BACKING_FORMAT_NO_PROBE); 1547 1548 /* Adjust feature flags */ 1549 if (backing_file) { 1550 new_header.features |= QED_F_BACKING_FILE; 1551 1552 if (qed_fmt_is_raw(backing_fmt)) { 1553 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1554 } 1555 } 1556 1557 /* Calculate new header size */ 1558 backing_file_len = 0; 1559 1560 if (backing_file) { 1561 backing_file_len = strlen(backing_file); 1562 } 1563 1564 buffer_len = sizeof(new_header); 1565 new_header.backing_filename_offset = buffer_len; 1566 new_header.backing_filename_size = backing_file_len; 1567 buffer_len += backing_file_len; 1568 1569 /* Make sure we can rewrite header without failing */ 1570 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1571 return -ENOSPC; 1572 } 1573 1574 /* Prepare new header */ 1575 buffer = g_malloc(buffer_len); 1576 1577 qed_header_cpu_to_le(&new_header, &le_header); 1578 memcpy(buffer, &le_header, sizeof(le_header)); 1579 buffer_len = sizeof(le_header); 1580 1581 if (backing_file) { 1582 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1583 buffer_len += backing_file_len; 1584 } 1585 1586 /* Write new header */ 1587 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1588 g_free(buffer); 1589 if (ret == 0) { 1590 memcpy(&s->header, &new_header, sizeof(new_header)); 1591 } 1592 return ret; 1593 } 1594 1595 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1596 Error **errp) 1597 { 1598 BDRVQEDState *s = bs->opaque; 1599 Error *local_err = NULL; 1600 int ret; 1601 1602 bdrv_qed_close(bs); 1603 1604 bdrv_qed_init_state(bs); 1605 qemu_co_mutex_lock(&s->table_lock); 1606 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1607 qemu_co_mutex_unlock(&s->table_lock); 1608 if (local_err) { 1609 error_propagate(errp, local_err); 1610 error_prepend(errp, "Could not reopen qed layer: "); 1611 return; 1612 } else if (ret < 0) { 1613 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1614 return; 1615 } 1616 } 1617 1618 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result, 1619 BdrvCheckMode fix) 1620 { 1621 BDRVQEDState *s = bs->opaque; 1622 int ret; 1623 1624 qemu_co_mutex_lock(&s->table_lock); 1625 ret = qed_check(s, result, !!fix); 1626 qemu_co_mutex_unlock(&s->table_lock); 1627 1628 return ret; 1629 } 1630 1631 static QemuOptsList qed_create_opts = { 1632 .name = "qed-create-opts", 1633 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1634 .desc = { 1635 { 1636 .name = BLOCK_OPT_SIZE, 1637 .type = QEMU_OPT_SIZE, 1638 .help = "Virtual disk size" 1639 }, 1640 { 1641 .name = BLOCK_OPT_BACKING_FILE, 1642 .type = QEMU_OPT_STRING, 1643 .help = "File name of a base image" 1644 }, 1645 { 1646 .name = BLOCK_OPT_BACKING_FMT, 1647 .type = QEMU_OPT_STRING, 1648 .help = "Image format of the base image" 1649 }, 1650 { 1651 .name = BLOCK_OPT_CLUSTER_SIZE, 1652 .type = QEMU_OPT_SIZE, 1653 .help = "Cluster size (in bytes)", 1654 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1655 }, 1656 { 1657 .name = BLOCK_OPT_TABLE_SIZE, 1658 .type = QEMU_OPT_SIZE, 1659 .help = "L1/L2 table size (in clusters)" 1660 }, 1661 { /* end of list */ } 1662 } 1663 }; 1664 1665 static BlockDriver bdrv_qed = { 1666 .format_name = "qed", 1667 .instance_size = sizeof(BDRVQEDState), 1668 .create_opts = &qed_create_opts, 1669 .supports_backing = true, 1670 1671 .bdrv_probe = bdrv_qed_probe, 1672 .bdrv_open = bdrv_qed_open, 1673 .bdrv_close = bdrv_qed_close, 1674 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1675 .bdrv_child_perm = bdrv_format_default_perms, 1676 .bdrv_co_create = bdrv_qed_co_create, 1677 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1678 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1679 .bdrv_co_block_status = bdrv_qed_co_block_status, 1680 .bdrv_co_readv = bdrv_qed_co_readv, 1681 .bdrv_co_writev = bdrv_qed_co_writev, 1682 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1683 .bdrv_co_truncate = bdrv_qed_co_truncate, 1684 .bdrv_getlength = bdrv_qed_getlength, 1685 .bdrv_get_info = bdrv_qed_get_info, 1686 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1687 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1688 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1689 .bdrv_co_check = bdrv_qed_co_check, 1690 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1691 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1692 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1693 }; 1694 1695 static void bdrv_qed_init(void) 1696 { 1697 bdrv_register(&bdrv_qed); 1698 } 1699 1700 block_init(bdrv_qed_init); 1701