1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu-timer.h" 16 #include "trace.h" 17 #include "qed.h" 18 #include "qerror.h" 19 #include "migration.h" 20 21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb) 22 { 23 QEDAIOCB *acb = (QEDAIOCB *)blockacb; 24 bool finished = false; 25 26 /* Wait for the request to finish */ 27 acb->finished = &finished; 28 while (!finished) { 29 qemu_aio_wait(); 30 } 31 } 32 33 static AIOPool qed_aio_pool = { 34 .aiocb_size = sizeof(QEDAIOCB), 35 .cancel = qed_aio_cancel, 36 }; 37 38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 39 const char *filename) 40 { 41 const QEDHeader *header = (const QEDHeader *)buf; 42 43 if (buf_size < sizeof(*header)) { 44 return 0; 45 } 46 if (le32_to_cpu(header->magic) != QED_MAGIC) { 47 return 0; 48 } 49 return 100; 50 } 51 52 /** 53 * Check whether an image format is raw 54 * 55 * @fmt: Backing file format, may be NULL 56 */ 57 static bool qed_fmt_is_raw(const char *fmt) 58 { 59 return fmt && strcmp(fmt, "raw") == 0; 60 } 61 62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 63 { 64 cpu->magic = le32_to_cpu(le->magic); 65 cpu->cluster_size = le32_to_cpu(le->cluster_size); 66 cpu->table_size = le32_to_cpu(le->table_size); 67 cpu->header_size = le32_to_cpu(le->header_size); 68 cpu->features = le64_to_cpu(le->features); 69 cpu->compat_features = le64_to_cpu(le->compat_features); 70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 72 cpu->image_size = le64_to_cpu(le->image_size); 73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 75 } 76 77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 78 { 79 le->magic = cpu_to_le32(cpu->magic); 80 le->cluster_size = cpu_to_le32(cpu->cluster_size); 81 le->table_size = cpu_to_le32(cpu->table_size); 82 le->header_size = cpu_to_le32(cpu->header_size); 83 le->features = cpu_to_le64(cpu->features); 84 le->compat_features = cpu_to_le64(cpu->compat_features); 85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 87 le->image_size = cpu_to_le64(cpu->image_size); 88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 90 } 91 92 static int qed_write_header_sync(BDRVQEDState *s) 93 { 94 QEDHeader le; 95 int ret; 96 97 qed_header_cpu_to_le(&s->header, &le); 98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 99 if (ret != sizeof(le)) { 100 return ret; 101 } 102 return 0; 103 } 104 105 typedef struct { 106 GenericCB gencb; 107 BDRVQEDState *s; 108 struct iovec iov; 109 QEMUIOVector qiov; 110 int nsectors; 111 uint8_t *buf; 112 } QEDWriteHeaderCB; 113 114 static void qed_write_header_cb(void *opaque, int ret) 115 { 116 QEDWriteHeaderCB *write_header_cb = opaque; 117 118 qemu_vfree(write_header_cb->buf); 119 gencb_complete(write_header_cb, ret); 120 } 121 122 static void qed_write_header_read_cb(void *opaque, int ret) 123 { 124 QEDWriteHeaderCB *write_header_cb = opaque; 125 BDRVQEDState *s = write_header_cb->s; 126 127 if (ret) { 128 qed_write_header_cb(write_header_cb, ret); 129 return; 130 } 131 132 /* Update header */ 133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf); 134 135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov, 136 write_header_cb->nsectors, qed_write_header_cb, 137 write_header_cb); 138 } 139 140 /** 141 * Update header in-place (does not rewrite backing filename or other strings) 142 * 143 * This function only updates known header fields in-place and does not affect 144 * extra data after the QED header. 145 */ 146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb, 147 void *opaque) 148 { 149 /* We must write full sectors for O_DIRECT but cannot necessarily generate 150 * the data following the header if an unrecognized compat feature is 151 * active. Therefore, first read the sectors containing the header, update 152 * them, and write back. 153 */ 154 155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) / 156 BDRV_SECTOR_SIZE; 157 size_t len = nsectors * BDRV_SECTOR_SIZE; 158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb), 159 cb, opaque); 160 161 write_header_cb->s = s; 162 write_header_cb->nsectors = nsectors; 163 write_header_cb->buf = qemu_blockalign(s->bs, len); 164 write_header_cb->iov.iov_base = write_header_cb->buf; 165 write_header_cb->iov.iov_len = len; 166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1); 167 168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors, 169 qed_write_header_read_cb, write_header_cb); 170 } 171 172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 173 { 174 uint64_t table_entries; 175 uint64_t l2_size; 176 177 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 178 l2_size = table_entries * cluster_size; 179 180 return l2_size * table_entries; 181 } 182 183 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 184 { 185 if (cluster_size < QED_MIN_CLUSTER_SIZE || 186 cluster_size > QED_MAX_CLUSTER_SIZE) { 187 return false; 188 } 189 if (cluster_size & (cluster_size - 1)) { 190 return false; /* not power of 2 */ 191 } 192 return true; 193 } 194 195 static bool qed_is_table_size_valid(uint32_t table_size) 196 { 197 if (table_size < QED_MIN_TABLE_SIZE || 198 table_size > QED_MAX_TABLE_SIZE) { 199 return false; 200 } 201 if (table_size & (table_size - 1)) { 202 return false; /* not power of 2 */ 203 } 204 return true; 205 } 206 207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 208 uint32_t table_size) 209 { 210 if (image_size % BDRV_SECTOR_SIZE != 0) { 211 return false; /* not multiple of sector size */ 212 } 213 if (image_size > qed_max_image_size(cluster_size, table_size)) { 214 return false; /* image is too large */ 215 } 216 return true; 217 } 218 219 /** 220 * Read a string of known length from the image file 221 * 222 * @file: Image file 223 * @offset: File offset to start of string, in bytes 224 * @n: String length in bytes 225 * @buf: Destination buffer 226 * @buflen: Destination buffer length in bytes 227 * @ret: 0 on success, -errno on failure 228 * 229 * The string is NUL-terminated. 230 */ 231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n, 232 char *buf, size_t buflen) 233 { 234 int ret; 235 if (n >= buflen) { 236 return -EINVAL; 237 } 238 ret = bdrv_pread(file, offset, buf, n); 239 if (ret < 0) { 240 return ret; 241 } 242 buf[n] = '\0'; 243 return 0; 244 } 245 246 /** 247 * Allocate new clusters 248 * 249 * @s: QED state 250 * @n: Number of contiguous clusters to allocate 251 * @ret: Offset of first allocated cluster 252 * 253 * This function only produces the offset where the new clusters should be 254 * written. It updates BDRVQEDState but does not make any changes to the image 255 * file. 256 */ 257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 258 { 259 uint64_t offset = s->file_size; 260 s->file_size += n * s->header.cluster_size; 261 return offset; 262 } 263 264 QEDTable *qed_alloc_table(BDRVQEDState *s) 265 { 266 /* Honor O_DIRECT memory alignment requirements */ 267 return qemu_blockalign(s->bs, 268 s->header.cluster_size * s->header.table_size); 269 } 270 271 /** 272 * Allocate a new zeroed L2 table 273 */ 274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 275 { 276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 277 278 l2_table->table = qed_alloc_table(s); 279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 280 281 memset(l2_table->table->offsets, 0, 282 s->header.cluster_size * s->header.table_size); 283 return l2_table; 284 } 285 286 static void qed_aio_next_io(void *opaque, int ret); 287 288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s) 289 { 290 assert(!s->allocating_write_reqs_plugged); 291 292 s->allocating_write_reqs_plugged = true; 293 } 294 295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 296 { 297 QEDAIOCB *acb; 298 299 assert(s->allocating_write_reqs_plugged); 300 301 s->allocating_write_reqs_plugged = false; 302 303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 304 if (acb) { 305 qed_aio_next_io(acb, 0); 306 } 307 } 308 309 static void qed_finish_clear_need_check(void *opaque, int ret) 310 { 311 /* Do nothing */ 312 } 313 314 static void qed_flush_after_clear_need_check(void *opaque, int ret) 315 { 316 BDRVQEDState *s = opaque; 317 318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s); 319 320 /* No need to wait until flush completes */ 321 qed_unplug_allocating_write_reqs(s); 322 } 323 324 static void qed_clear_need_check(void *opaque, int ret) 325 { 326 BDRVQEDState *s = opaque; 327 328 if (ret) { 329 qed_unplug_allocating_write_reqs(s); 330 return; 331 } 332 333 s->header.features &= ~QED_F_NEED_CHECK; 334 qed_write_header(s, qed_flush_after_clear_need_check, s); 335 } 336 337 static void qed_need_check_timer_cb(void *opaque) 338 { 339 BDRVQEDState *s = opaque; 340 341 /* The timer should only fire when allocating writes have drained */ 342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs)); 343 344 trace_qed_need_check_timer_cb(s); 345 346 qed_plug_allocating_write_reqs(s); 347 348 /* Ensure writes are on disk before clearing flag */ 349 bdrv_aio_flush(s->bs, qed_clear_need_check, s); 350 } 351 352 static void qed_start_need_check_timer(BDRVQEDState *s) 353 { 354 trace_qed_start_need_check_timer(s); 355 356 /* Use vm_clock so we don't alter the image file while suspended for 357 * migration. 358 */ 359 qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) + 360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT); 361 } 362 363 /* It's okay to call this multiple times or when no timer is started */ 364 static void qed_cancel_need_check_timer(BDRVQEDState *s) 365 { 366 trace_qed_cancel_need_check_timer(s); 367 qemu_del_timer(s->need_check_timer); 368 } 369 370 static int bdrv_qed_open(BlockDriverState *bs, int flags) 371 { 372 BDRVQEDState *s = bs->opaque; 373 QEDHeader le_header; 374 int64_t file_size; 375 int ret; 376 377 s->bs = bs; 378 QSIMPLEQ_INIT(&s->allocating_write_reqs); 379 380 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 381 if (ret < 0) { 382 return ret; 383 } 384 qed_header_le_to_cpu(&le_header, &s->header); 385 386 if (s->header.magic != QED_MAGIC) { 387 return -EINVAL; 388 } 389 if (s->header.features & ~QED_FEATURE_MASK) { 390 /* image uses unsupported feature bits */ 391 char buf[64]; 392 snprintf(buf, sizeof(buf), "%" PRIx64, 393 s->header.features & ~QED_FEATURE_MASK); 394 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE, 395 bs->device_name, "QED", buf); 396 return -ENOTSUP; 397 } 398 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 399 return -EINVAL; 400 } 401 402 /* Round down file size to the last cluster */ 403 file_size = bdrv_getlength(bs->file); 404 if (file_size < 0) { 405 return file_size; 406 } 407 s->file_size = qed_start_of_cluster(s, file_size); 408 409 if (!qed_is_table_size_valid(s->header.table_size)) { 410 return -EINVAL; 411 } 412 if (!qed_is_image_size_valid(s->header.image_size, 413 s->header.cluster_size, 414 s->header.table_size)) { 415 return -EINVAL; 416 } 417 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 418 return -EINVAL; 419 } 420 421 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 422 sizeof(uint64_t); 423 s->l2_shift = ffs(s->header.cluster_size) - 1; 424 s->l2_mask = s->table_nelems - 1; 425 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1; 426 427 if ((s->header.features & QED_F_BACKING_FILE)) { 428 if ((uint64_t)s->header.backing_filename_offset + 429 s->header.backing_filename_size > 430 s->header.cluster_size * s->header.header_size) { 431 return -EINVAL; 432 } 433 434 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 435 s->header.backing_filename_size, bs->backing_file, 436 sizeof(bs->backing_file)); 437 if (ret < 0) { 438 return ret; 439 } 440 441 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 442 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 443 } 444 } 445 446 /* Reset unknown autoclear feature bits. This is a backwards 447 * compatibility mechanism that allows images to be opened by older 448 * programs, which "knock out" unknown feature bits. When an image is 449 * opened by a newer program again it can detect that the autoclear 450 * feature is no longer valid. 451 */ 452 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 453 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) { 454 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 455 456 ret = qed_write_header_sync(s); 457 if (ret) { 458 return ret; 459 } 460 461 /* From here on only known autoclear feature bits are valid */ 462 bdrv_flush(bs->file); 463 } 464 465 s->l1_table = qed_alloc_table(s); 466 qed_init_l2_cache(&s->l2_cache); 467 468 ret = qed_read_l1_table_sync(s); 469 if (ret) { 470 goto out; 471 } 472 473 /* If image was not closed cleanly, check consistency */ 474 if (s->header.features & QED_F_NEED_CHECK) { 475 /* Read-only images cannot be fixed. There is no risk of corruption 476 * since write operations are not possible. Therefore, allow 477 * potentially inconsistent images to be opened read-only. This can 478 * aid data recovery from an otherwise inconsistent image. 479 */ 480 if (!bdrv_is_read_only(bs->file) && 481 !(flags & BDRV_O_INCOMING)) { 482 BdrvCheckResult result = {0}; 483 484 ret = qed_check(s, &result, true); 485 if (ret) { 486 goto out; 487 } 488 if (!result.corruptions && !result.check_errors) { 489 /* Ensure fixes reach storage before clearing check bit */ 490 bdrv_flush(s->bs); 491 492 s->header.features &= ~QED_F_NEED_CHECK; 493 qed_write_header_sync(s); 494 } 495 } 496 } 497 498 s->need_check_timer = qemu_new_timer_ns(vm_clock, 499 qed_need_check_timer_cb, s); 500 501 out: 502 if (ret) { 503 qed_free_l2_cache(&s->l2_cache); 504 qemu_vfree(s->l1_table); 505 } 506 return ret; 507 } 508 509 static void bdrv_qed_close(BlockDriverState *bs) 510 { 511 BDRVQEDState *s = bs->opaque; 512 513 qed_cancel_need_check_timer(s); 514 qemu_free_timer(s->need_check_timer); 515 516 /* Ensure writes reach stable storage */ 517 bdrv_flush(bs->file); 518 519 /* Clean shutdown, no check required on next open */ 520 if (s->header.features & QED_F_NEED_CHECK) { 521 s->header.features &= ~QED_F_NEED_CHECK; 522 qed_write_header_sync(s); 523 } 524 525 qed_free_l2_cache(&s->l2_cache); 526 qemu_vfree(s->l1_table); 527 } 528 529 static int qed_create(const char *filename, uint32_t cluster_size, 530 uint64_t image_size, uint32_t table_size, 531 const char *backing_file, const char *backing_fmt) 532 { 533 QEDHeader header = { 534 .magic = QED_MAGIC, 535 .cluster_size = cluster_size, 536 .table_size = table_size, 537 .header_size = 1, 538 .features = 0, 539 .compat_features = 0, 540 .l1_table_offset = cluster_size, 541 .image_size = image_size, 542 }; 543 QEDHeader le_header; 544 uint8_t *l1_table = NULL; 545 size_t l1_size = header.cluster_size * header.table_size; 546 int ret = 0; 547 BlockDriverState *bs = NULL; 548 549 ret = bdrv_create_file(filename, NULL); 550 if (ret < 0) { 551 return ret; 552 } 553 554 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB); 555 if (ret < 0) { 556 return ret; 557 } 558 559 /* File must start empty and grow, check truncate is supported */ 560 ret = bdrv_truncate(bs, 0); 561 if (ret < 0) { 562 goto out; 563 } 564 565 if (backing_file) { 566 header.features |= QED_F_BACKING_FILE; 567 header.backing_filename_offset = sizeof(le_header); 568 header.backing_filename_size = strlen(backing_file); 569 570 if (qed_fmt_is_raw(backing_fmt)) { 571 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 572 } 573 } 574 575 qed_header_cpu_to_le(&header, &le_header); 576 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header)); 577 if (ret < 0) { 578 goto out; 579 } 580 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file, 581 header.backing_filename_size); 582 if (ret < 0) { 583 goto out; 584 } 585 586 l1_table = g_malloc0(l1_size); 587 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size); 588 if (ret < 0) { 589 goto out; 590 } 591 592 ret = 0; /* success */ 593 out: 594 g_free(l1_table); 595 bdrv_delete(bs); 596 return ret; 597 } 598 599 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options) 600 { 601 uint64_t image_size = 0; 602 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 603 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 604 const char *backing_file = NULL; 605 const char *backing_fmt = NULL; 606 607 while (options && options->name) { 608 if (!strcmp(options->name, BLOCK_OPT_SIZE)) { 609 image_size = options->value.n; 610 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) { 611 backing_file = options->value.s; 612 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) { 613 backing_fmt = options->value.s; 614 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) { 615 if (options->value.n) { 616 cluster_size = options->value.n; 617 } 618 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) { 619 if (options->value.n) { 620 table_size = options->value.n; 621 } 622 } 623 options++; 624 } 625 626 if (!qed_is_cluster_size_valid(cluster_size)) { 627 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n", 628 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 629 return -EINVAL; 630 } 631 if (!qed_is_table_size_valid(table_size)) { 632 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n", 633 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 634 return -EINVAL; 635 } 636 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 637 fprintf(stderr, "QED image size must be a non-zero multiple of " 638 "cluster size and less than %" PRIu64 " bytes\n", 639 qed_max_image_size(cluster_size, table_size)); 640 return -EINVAL; 641 } 642 643 return qed_create(filename, cluster_size, image_size, table_size, 644 backing_file, backing_fmt); 645 } 646 647 typedef struct { 648 Coroutine *co; 649 int is_allocated; 650 int *pnum; 651 } QEDIsAllocatedCB; 652 653 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 654 { 655 QEDIsAllocatedCB *cb = opaque; 656 *cb->pnum = len / BDRV_SECTOR_SIZE; 657 cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO); 658 if (cb->co) { 659 qemu_coroutine_enter(cb->co, NULL); 660 } 661 } 662 663 static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs, 664 int64_t sector_num, 665 int nb_sectors, int *pnum) 666 { 667 BDRVQEDState *s = bs->opaque; 668 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; 669 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 670 QEDIsAllocatedCB cb = { 671 .is_allocated = -1, 672 .pnum = pnum, 673 }; 674 QEDRequest request = { .l2_table = NULL }; 675 676 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb); 677 678 /* Now sleep if the callback wasn't invoked immediately */ 679 while (cb.is_allocated == -1) { 680 cb.co = qemu_coroutine_self(); 681 qemu_coroutine_yield(); 682 } 683 684 qed_unref_l2_cache_entry(request.l2_table); 685 686 return cb.is_allocated; 687 } 688 689 static int bdrv_qed_make_empty(BlockDriverState *bs) 690 { 691 return -ENOTSUP; 692 } 693 694 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 695 { 696 return acb->common.bs->opaque; 697 } 698 699 /** 700 * Read from the backing file or zero-fill if no backing file 701 * 702 * @s: QED state 703 * @pos: Byte position in device 704 * @qiov: Destination I/O vector 705 * @cb: Completion function 706 * @opaque: User data for completion function 707 * 708 * This function reads qiov->size bytes starting at pos from the backing file. 709 * If there is no backing file then zeroes are read. 710 */ 711 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 712 QEMUIOVector *qiov, 713 BlockDriverCompletionFunc *cb, void *opaque) 714 { 715 uint64_t backing_length = 0; 716 size_t size; 717 718 /* If there is a backing file, get its length. Treat the absence of a 719 * backing file like a zero length backing file. 720 */ 721 if (s->bs->backing_hd) { 722 int64_t l = bdrv_getlength(s->bs->backing_hd); 723 if (l < 0) { 724 cb(opaque, l); 725 return; 726 } 727 backing_length = l; 728 } 729 730 /* Zero all sectors if reading beyond the end of the backing file */ 731 if (pos >= backing_length || 732 pos + qiov->size > backing_length) { 733 qemu_iovec_memset(qiov, 0, qiov->size); 734 } 735 736 /* Complete now if there are no backing file sectors to read */ 737 if (pos >= backing_length) { 738 cb(opaque, 0); 739 return; 740 } 741 742 /* If the read straddles the end of the backing file, shorten it */ 743 size = MIN((uint64_t)backing_length - pos, qiov->size); 744 745 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING); 746 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE, 747 qiov, size / BDRV_SECTOR_SIZE, cb, opaque); 748 } 749 750 typedef struct { 751 GenericCB gencb; 752 BDRVQEDState *s; 753 QEMUIOVector qiov; 754 struct iovec iov; 755 uint64_t offset; 756 } CopyFromBackingFileCB; 757 758 static void qed_copy_from_backing_file_cb(void *opaque, int ret) 759 { 760 CopyFromBackingFileCB *copy_cb = opaque; 761 qemu_vfree(copy_cb->iov.iov_base); 762 gencb_complete(©_cb->gencb, ret); 763 } 764 765 static void qed_copy_from_backing_file_write(void *opaque, int ret) 766 { 767 CopyFromBackingFileCB *copy_cb = opaque; 768 BDRVQEDState *s = copy_cb->s; 769 770 if (ret) { 771 qed_copy_from_backing_file_cb(copy_cb, ret); 772 return; 773 } 774 775 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 776 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE, 777 ©_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE, 778 qed_copy_from_backing_file_cb, copy_cb); 779 } 780 781 /** 782 * Copy data from backing file into the image 783 * 784 * @s: QED state 785 * @pos: Byte position in device 786 * @len: Number of bytes 787 * @offset: Byte offset in image file 788 * @cb: Completion function 789 * @opaque: User data for completion function 790 */ 791 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, 792 uint64_t len, uint64_t offset, 793 BlockDriverCompletionFunc *cb, 794 void *opaque) 795 { 796 CopyFromBackingFileCB *copy_cb; 797 798 /* Skip copy entirely if there is no work to do */ 799 if (len == 0) { 800 cb(opaque, 0); 801 return; 802 } 803 804 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque); 805 copy_cb->s = s; 806 copy_cb->offset = offset; 807 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len); 808 copy_cb->iov.iov_len = len; 809 qemu_iovec_init_external(©_cb->qiov, ©_cb->iov, 1); 810 811 qed_read_backing_file(s, pos, ©_cb->qiov, 812 qed_copy_from_backing_file_write, copy_cb); 813 } 814 815 /** 816 * Link one or more contiguous clusters into a table 817 * 818 * @s: QED state 819 * @table: L2 table 820 * @index: First cluster index 821 * @n: Number of contiguous clusters 822 * @cluster: First cluster offset 823 * 824 * The cluster offset may be an allocated byte offset in the image file, the 825 * zero cluster marker, or the unallocated cluster marker. 826 */ 827 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index, 828 unsigned int n, uint64_t cluster) 829 { 830 int i; 831 for (i = index; i < index + n; i++) { 832 table->offsets[i] = cluster; 833 if (!qed_offset_is_unalloc_cluster(cluster) && 834 !qed_offset_is_zero_cluster(cluster)) { 835 cluster += s->header.cluster_size; 836 } 837 } 838 } 839 840 static void qed_aio_complete_bh(void *opaque) 841 { 842 QEDAIOCB *acb = opaque; 843 BlockDriverCompletionFunc *cb = acb->common.cb; 844 void *user_opaque = acb->common.opaque; 845 int ret = acb->bh_ret; 846 bool *finished = acb->finished; 847 848 qemu_bh_delete(acb->bh); 849 qemu_aio_release(acb); 850 851 /* Invoke callback */ 852 cb(user_opaque, ret); 853 854 /* Signal cancel completion */ 855 if (finished) { 856 *finished = true; 857 } 858 } 859 860 static void qed_aio_complete(QEDAIOCB *acb, int ret) 861 { 862 BDRVQEDState *s = acb_to_s(acb); 863 864 trace_qed_aio_complete(s, acb, ret); 865 866 /* Free resources */ 867 qemu_iovec_destroy(&acb->cur_qiov); 868 qed_unref_l2_cache_entry(acb->request.l2_table); 869 870 /* Free the buffer we may have allocated for zero writes */ 871 if (acb->flags & QED_AIOCB_ZERO) { 872 qemu_vfree(acb->qiov->iov[0].iov_base); 873 acb->qiov->iov[0].iov_base = NULL; 874 } 875 876 /* Arrange for a bh to invoke the completion function */ 877 acb->bh_ret = ret; 878 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb); 879 qemu_bh_schedule(acb->bh); 880 881 /* Start next allocating write request waiting behind this one. Note that 882 * requests enqueue themselves when they first hit an unallocated cluster 883 * but they wait until the entire request is finished before waking up the 884 * next request in the queue. This ensures that we don't cycle through 885 * requests multiple times but rather finish one at a time completely. 886 */ 887 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 888 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next); 889 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 890 if (acb) { 891 qed_aio_next_io(acb, 0); 892 } else if (s->header.features & QED_F_NEED_CHECK) { 893 qed_start_need_check_timer(s); 894 } 895 } 896 } 897 898 /** 899 * Commit the current L2 table to the cache 900 */ 901 static void qed_commit_l2_update(void *opaque, int ret) 902 { 903 QEDAIOCB *acb = opaque; 904 BDRVQEDState *s = acb_to_s(acb); 905 CachedL2Table *l2_table = acb->request.l2_table; 906 uint64_t l2_offset = l2_table->offset; 907 908 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 909 910 /* This is guaranteed to succeed because we just committed the entry to the 911 * cache. 912 */ 913 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 914 assert(acb->request.l2_table != NULL); 915 916 qed_aio_next_io(opaque, ret); 917 } 918 919 /** 920 * Update L1 table with new L2 table offset and write it out 921 */ 922 static void qed_aio_write_l1_update(void *opaque, int ret) 923 { 924 QEDAIOCB *acb = opaque; 925 BDRVQEDState *s = acb_to_s(acb); 926 int index; 927 928 if (ret) { 929 qed_aio_complete(acb, ret); 930 return; 931 } 932 933 index = qed_l1_index(s, acb->cur_pos); 934 s->l1_table->offsets[index] = acb->request.l2_table->offset; 935 936 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb); 937 } 938 939 /** 940 * Update L2 table with new cluster offsets and write them out 941 */ 942 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset) 943 { 944 BDRVQEDState *s = acb_to_s(acb); 945 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 946 int index; 947 948 if (ret) { 949 goto err; 950 } 951 952 if (need_alloc) { 953 qed_unref_l2_cache_entry(acb->request.l2_table); 954 acb->request.l2_table = qed_new_l2_table(s); 955 } 956 957 index = qed_l2_index(s, acb->cur_pos); 958 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 959 offset); 960 961 if (need_alloc) { 962 /* Write out the whole new L2 table */ 963 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true, 964 qed_aio_write_l1_update, acb); 965 } else { 966 /* Write out only the updated part of the L2 table */ 967 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false, 968 qed_aio_next_io, acb); 969 } 970 return; 971 972 err: 973 qed_aio_complete(acb, ret); 974 } 975 976 static void qed_aio_write_l2_update_cb(void *opaque, int ret) 977 { 978 QEDAIOCB *acb = opaque; 979 qed_aio_write_l2_update(acb, ret, acb->cur_cluster); 980 } 981 982 /** 983 * Flush new data clusters before updating the L2 table 984 * 985 * This flush is necessary when a backing file is in use. A crash during an 986 * allocating write could result in empty clusters in the image. If the write 987 * only touched a subregion of the cluster, then backing image sectors have 988 * been lost in the untouched region. The solution is to flush after writing a 989 * new data cluster and before updating the L2 table. 990 */ 991 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret) 992 { 993 QEDAIOCB *acb = opaque; 994 BDRVQEDState *s = acb_to_s(acb); 995 996 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) { 997 qed_aio_complete(acb, -EIO); 998 } 999 } 1000 1001 /** 1002 * Write data to the image file 1003 */ 1004 static void qed_aio_write_main(void *opaque, int ret) 1005 { 1006 QEDAIOCB *acb = opaque; 1007 BDRVQEDState *s = acb_to_s(acb); 1008 uint64_t offset = acb->cur_cluster + 1009 qed_offset_into_cluster(s, acb->cur_pos); 1010 BlockDriverCompletionFunc *next_fn; 1011 1012 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size); 1013 1014 if (ret) { 1015 qed_aio_complete(acb, ret); 1016 return; 1017 } 1018 1019 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) { 1020 next_fn = qed_aio_next_io; 1021 } else { 1022 if (s->bs->backing_hd) { 1023 next_fn = qed_aio_write_flush_before_l2_update; 1024 } else { 1025 next_fn = qed_aio_write_l2_update_cb; 1026 } 1027 } 1028 1029 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1030 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE, 1031 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1032 next_fn, acb); 1033 } 1034 1035 /** 1036 * Populate back untouched region of new data cluster 1037 */ 1038 static void qed_aio_write_postfill(void *opaque, int ret) 1039 { 1040 QEDAIOCB *acb = opaque; 1041 BDRVQEDState *s = acb_to_s(acb); 1042 uint64_t start = acb->cur_pos + acb->cur_qiov.size; 1043 uint64_t len = 1044 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1045 uint64_t offset = acb->cur_cluster + 1046 qed_offset_into_cluster(s, acb->cur_pos) + 1047 acb->cur_qiov.size; 1048 1049 if (ret) { 1050 qed_aio_complete(acb, ret); 1051 return; 1052 } 1053 1054 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1055 qed_copy_from_backing_file(s, start, len, offset, 1056 qed_aio_write_main, acb); 1057 } 1058 1059 /** 1060 * Populate front untouched region of new data cluster 1061 */ 1062 static void qed_aio_write_prefill(void *opaque, int ret) 1063 { 1064 QEDAIOCB *acb = opaque; 1065 BDRVQEDState *s = acb_to_s(acb); 1066 uint64_t start = qed_start_of_cluster(s, acb->cur_pos); 1067 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos); 1068 1069 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1070 qed_copy_from_backing_file(s, start, len, acb->cur_cluster, 1071 qed_aio_write_postfill, acb); 1072 } 1073 1074 /** 1075 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1076 */ 1077 static bool qed_should_set_need_check(BDRVQEDState *s) 1078 { 1079 /* The flush before L2 update path ensures consistency */ 1080 if (s->bs->backing_hd) { 1081 return false; 1082 } 1083 1084 return !(s->header.features & QED_F_NEED_CHECK); 1085 } 1086 1087 static void qed_aio_write_zero_cluster(void *opaque, int ret) 1088 { 1089 QEDAIOCB *acb = opaque; 1090 1091 if (ret) { 1092 qed_aio_complete(acb, ret); 1093 return; 1094 } 1095 1096 qed_aio_write_l2_update(acb, 0, 1); 1097 } 1098 1099 /** 1100 * Write new data cluster 1101 * 1102 * @acb: Write request 1103 * @len: Length in bytes 1104 * 1105 * This path is taken when writing to previously unallocated clusters. 1106 */ 1107 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1108 { 1109 BDRVQEDState *s = acb_to_s(acb); 1110 BlockDriverCompletionFunc *cb; 1111 1112 /* Cancel timer when the first allocating request comes in */ 1113 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) { 1114 qed_cancel_need_check_timer(s); 1115 } 1116 1117 /* Freeze this request if another allocating write is in progress */ 1118 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 1119 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next); 1120 } 1121 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) || 1122 s->allocating_write_reqs_plugged) { 1123 return; /* wait for existing request to finish */ 1124 } 1125 1126 acb->cur_nclusters = qed_bytes_to_clusters(s, 1127 qed_offset_into_cluster(s, acb->cur_pos) + len); 1128 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1129 1130 if (acb->flags & QED_AIOCB_ZERO) { 1131 /* Skip ahead if the clusters are already zero */ 1132 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1133 qed_aio_next_io(acb, 0); 1134 return; 1135 } 1136 1137 cb = qed_aio_write_zero_cluster; 1138 } else { 1139 cb = qed_aio_write_prefill; 1140 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1141 } 1142 1143 if (qed_should_set_need_check(s)) { 1144 s->header.features |= QED_F_NEED_CHECK; 1145 qed_write_header(s, cb, acb); 1146 } else { 1147 cb(acb, 0); 1148 } 1149 } 1150 1151 /** 1152 * Write data cluster in place 1153 * 1154 * @acb: Write request 1155 * @offset: Cluster offset in bytes 1156 * @len: Length in bytes 1157 * 1158 * This path is taken when writing to already allocated clusters. 1159 */ 1160 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1161 { 1162 /* Allocate buffer for zero writes */ 1163 if (acb->flags & QED_AIOCB_ZERO) { 1164 struct iovec *iov = acb->qiov->iov; 1165 1166 if (!iov->iov_base) { 1167 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len); 1168 memset(iov->iov_base, 0, iov->iov_len); 1169 } 1170 } 1171 1172 /* Calculate the I/O vector */ 1173 acb->cur_cluster = offset; 1174 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1175 1176 /* Do the actual write */ 1177 qed_aio_write_main(acb, 0); 1178 } 1179 1180 /** 1181 * Write data cluster 1182 * 1183 * @opaque: Write request 1184 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1185 * or -errno 1186 * @offset: Cluster offset in bytes 1187 * @len: Length in bytes 1188 * 1189 * Callback from qed_find_cluster(). 1190 */ 1191 static void qed_aio_write_data(void *opaque, int ret, 1192 uint64_t offset, size_t len) 1193 { 1194 QEDAIOCB *acb = opaque; 1195 1196 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1197 1198 acb->find_cluster_ret = ret; 1199 1200 switch (ret) { 1201 case QED_CLUSTER_FOUND: 1202 qed_aio_write_inplace(acb, offset, len); 1203 break; 1204 1205 case QED_CLUSTER_L2: 1206 case QED_CLUSTER_L1: 1207 case QED_CLUSTER_ZERO: 1208 qed_aio_write_alloc(acb, len); 1209 break; 1210 1211 default: 1212 qed_aio_complete(acb, ret); 1213 break; 1214 } 1215 } 1216 1217 /** 1218 * Read data cluster 1219 * 1220 * @opaque: Read request 1221 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1222 * or -errno 1223 * @offset: Cluster offset in bytes 1224 * @len: Length in bytes 1225 * 1226 * Callback from qed_find_cluster(). 1227 */ 1228 static void qed_aio_read_data(void *opaque, int ret, 1229 uint64_t offset, size_t len) 1230 { 1231 QEDAIOCB *acb = opaque; 1232 BDRVQEDState *s = acb_to_s(acb); 1233 BlockDriverState *bs = acb->common.bs; 1234 1235 /* Adjust offset into cluster */ 1236 offset += qed_offset_into_cluster(s, acb->cur_pos); 1237 1238 trace_qed_aio_read_data(s, acb, ret, offset, len); 1239 1240 if (ret < 0) { 1241 goto err; 1242 } 1243 1244 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1245 1246 /* Handle zero cluster and backing file reads */ 1247 if (ret == QED_CLUSTER_ZERO) { 1248 qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size); 1249 qed_aio_next_io(acb, 0); 1250 return; 1251 } else if (ret != QED_CLUSTER_FOUND) { 1252 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1253 qed_aio_next_io, acb); 1254 return; 1255 } 1256 1257 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1258 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE, 1259 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1260 qed_aio_next_io, acb); 1261 return; 1262 1263 err: 1264 qed_aio_complete(acb, ret); 1265 } 1266 1267 /** 1268 * Begin next I/O or complete the request 1269 */ 1270 static void qed_aio_next_io(void *opaque, int ret) 1271 { 1272 QEDAIOCB *acb = opaque; 1273 BDRVQEDState *s = acb_to_s(acb); 1274 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ? 1275 qed_aio_write_data : qed_aio_read_data; 1276 1277 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size); 1278 1279 /* Handle I/O error */ 1280 if (ret) { 1281 qed_aio_complete(acb, ret); 1282 return; 1283 } 1284 1285 acb->qiov_offset += acb->cur_qiov.size; 1286 acb->cur_pos += acb->cur_qiov.size; 1287 qemu_iovec_reset(&acb->cur_qiov); 1288 1289 /* Complete request */ 1290 if (acb->cur_pos >= acb->end_pos) { 1291 qed_aio_complete(acb, 0); 1292 return; 1293 } 1294 1295 /* Find next cluster and start I/O */ 1296 qed_find_cluster(s, &acb->request, 1297 acb->cur_pos, acb->end_pos - acb->cur_pos, 1298 io_fn, acb); 1299 } 1300 1301 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs, 1302 int64_t sector_num, 1303 QEMUIOVector *qiov, int nb_sectors, 1304 BlockDriverCompletionFunc *cb, 1305 void *opaque, int flags) 1306 { 1307 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque); 1308 1309 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, 1310 opaque, flags); 1311 1312 acb->flags = flags; 1313 acb->finished = NULL; 1314 acb->qiov = qiov; 1315 acb->qiov_offset = 0; 1316 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; 1317 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE; 1318 acb->request.l2_table = NULL; 1319 qemu_iovec_init(&acb->cur_qiov, qiov->niov); 1320 1321 /* Start request */ 1322 qed_aio_next_io(acb, 0); 1323 return &acb->common; 1324 } 1325 1326 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs, 1327 int64_t sector_num, 1328 QEMUIOVector *qiov, int nb_sectors, 1329 BlockDriverCompletionFunc *cb, 1330 void *opaque) 1331 { 1332 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 1333 } 1334 1335 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs, 1336 int64_t sector_num, 1337 QEMUIOVector *qiov, int nb_sectors, 1338 BlockDriverCompletionFunc *cb, 1339 void *opaque) 1340 { 1341 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, 1342 opaque, QED_AIOCB_WRITE); 1343 } 1344 1345 typedef struct { 1346 Coroutine *co; 1347 int ret; 1348 bool done; 1349 } QEDWriteZeroesCB; 1350 1351 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret) 1352 { 1353 QEDWriteZeroesCB *cb = opaque; 1354 1355 cb->done = true; 1356 cb->ret = ret; 1357 if (cb->co) { 1358 qemu_coroutine_enter(cb->co, NULL); 1359 } 1360 } 1361 1362 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs, 1363 int64_t sector_num, 1364 int nb_sectors) 1365 { 1366 BlockDriverAIOCB *blockacb; 1367 QEDWriteZeroesCB cb = { .done = false }; 1368 QEMUIOVector qiov; 1369 struct iovec iov; 1370 1371 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1372 * then it will be allocated during request processing. 1373 */ 1374 iov.iov_base = NULL, 1375 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1376 1377 qemu_iovec_init_external(&qiov, &iov, 1); 1378 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors, 1379 qed_co_write_zeroes_cb, &cb, 1380 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1381 if (!blockacb) { 1382 return -EIO; 1383 } 1384 if (!cb.done) { 1385 cb.co = qemu_coroutine_self(); 1386 qemu_coroutine_yield(); 1387 } 1388 assert(cb.done); 1389 return cb.ret; 1390 } 1391 1392 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset) 1393 { 1394 BDRVQEDState *s = bs->opaque; 1395 uint64_t old_image_size; 1396 int ret; 1397 1398 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1399 s->header.table_size)) { 1400 return -EINVAL; 1401 } 1402 1403 /* Shrinking is currently not supported */ 1404 if ((uint64_t)offset < s->header.image_size) { 1405 return -ENOTSUP; 1406 } 1407 1408 old_image_size = s->header.image_size; 1409 s->header.image_size = offset; 1410 ret = qed_write_header_sync(s); 1411 if (ret < 0) { 1412 s->header.image_size = old_image_size; 1413 } 1414 return ret; 1415 } 1416 1417 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1418 { 1419 BDRVQEDState *s = bs->opaque; 1420 return s->header.image_size; 1421 } 1422 1423 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1424 { 1425 BDRVQEDState *s = bs->opaque; 1426 1427 memset(bdi, 0, sizeof(*bdi)); 1428 bdi->cluster_size = s->header.cluster_size; 1429 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1430 return 0; 1431 } 1432 1433 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1434 const char *backing_file, 1435 const char *backing_fmt) 1436 { 1437 BDRVQEDState *s = bs->opaque; 1438 QEDHeader new_header, le_header; 1439 void *buffer; 1440 size_t buffer_len, backing_file_len; 1441 int ret; 1442 1443 /* Refuse to set backing filename if unknown compat feature bits are 1444 * active. If the image uses an unknown compat feature then we may not 1445 * know the layout of data following the header structure and cannot safely 1446 * add a new string. 1447 */ 1448 if (backing_file && (s->header.compat_features & 1449 ~QED_COMPAT_FEATURE_MASK)) { 1450 return -ENOTSUP; 1451 } 1452 1453 memcpy(&new_header, &s->header, sizeof(new_header)); 1454 1455 new_header.features &= ~(QED_F_BACKING_FILE | 1456 QED_F_BACKING_FORMAT_NO_PROBE); 1457 1458 /* Adjust feature flags */ 1459 if (backing_file) { 1460 new_header.features |= QED_F_BACKING_FILE; 1461 1462 if (qed_fmt_is_raw(backing_fmt)) { 1463 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1464 } 1465 } 1466 1467 /* Calculate new header size */ 1468 backing_file_len = 0; 1469 1470 if (backing_file) { 1471 backing_file_len = strlen(backing_file); 1472 } 1473 1474 buffer_len = sizeof(new_header); 1475 new_header.backing_filename_offset = buffer_len; 1476 new_header.backing_filename_size = backing_file_len; 1477 buffer_len += backing_file_len; 1478 1479 /* Make sure we can rewrite header without failing */ 1480 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1481 return -ENOSPC; 1482 } 1483 1484 /* Prepare new header */ 1485 buffer = g_malloc(buffer_len); 1486 1487 qed_header_cpu_to_le(&new_header, &le_header); 1488 memcpy(buffer, &le_header, sizeof(le_header)); 1489 buffer_len = sizeof(le_header); 1490 1491 if (backing_file) { 1492 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1493 buffer_len += backing_file_len; 1494 } 1495 1496 /* Write new header */ 1497 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1498 g_free(buffer); 1499 if (ret == 0) { 1500 memcpy(&s->header, &new_header, sizeof(new_header)); 1501 } 1502 return ret; 1503 } 1504 1505 static void bdrv_qed_invalidate_cache(BlockDriverState *bs) 1506 { 1507 BDRVQEDState *s = bs->opaque; 1508 1509 bdrv_qed_close(bs); 1510 memset(s, 0, sizeof(BDRVQEDState)); 1511 bdrv_qed_open(bs, bs->open_flags); 1512 } 1513 1514 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result) 1515 { 1516 BDRVQEDState *s = bs->opaque; 1517 1518 return qed_check(s, result, false); 1519 } 1520 1521 static QEMUOptionParameter qed_create_options[] = { 1522 { 1523 .name = BLOCK_OPT_SIZE, 1524 .type = OPT_SIZE, 1525 .help = "Virtual disk size (in bytes)" 1526 }, { 1527 .name = BLOCK_OPT_BACKING_FILE, 1528 .type = OPT_STRING, 1529 .help = "File name of a base image" 1530 }, { 1531 .name = BLOCK_OPT_BACKING_FMT, 1532 .type = OPT_STRING, 1533 .help = "Image format of the base image" 1534 }, { 1535 .name = BLOCK_OPT_CLUSTER_SIZE, 1536 .type = OPT_SIZE, 1537 .help = "Cluster size (in bytes)", 1538 .value = { .n = QED_DEFAULT_CLUSTER_SIZE }, 1539 }, { 1540 .name = BLOCK_OPT_TABLE_SIZE, 1541 .type = OPT_SIZE, 1542 .help = "L1/L2 table size (in clusters)" 1543 }, 1544 { /* end of list */ } 1545 }; 1546 1547 static BlockDriver bdrv_qed = { 1548 .format_name = "qed", 1549 .instance_size = sizeof(BDRVQEDState), 1550 .create_options = qed_create_options, 1551 1552 .bdrv_probe = bdrv_qed_probe, 1553 .bdrv_open = bdrv_qed_open, 1554 .bdrv_close = bdrv_qed_close, 1555 .bdrv_create = bdrv_qed_create, 1556 .bdrv_co_is_allocated = bdrv_qed_co_is_allocated, 1557 .bdrv_make_empty = bdrv_qed_make_empty, 1558 .bdrv_aio_readv = bdrv_qed_aio_readv, 1559 .bdrv_aio_writev = bdrv_qed_aio_writev, 1560 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes, 1561 .bdrv_truncate = bdrv_qed_truncate, 1562 .bdrv_getlength = bdrv_qed_getlength, 1563 .bdrv_get_info = bdrv_qed_get_info, 1564 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1565 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1566 .bdrv_check = bdrv_qed_check, 1567 }; 1568 1569 static void bdrv_qed_init(void) 1570 { 1571 bdrv_register(&bdrv_qed); 1572 } 1573 1574 block_init(bdrv_qed_init); 1575