xref: /openbmc/qemu/block/qed.c (revision 62be393423eac3d2fcb8313dc441db4e76f44c78)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "migration/migration.h"
23 #include "sysemu/block-backend.h"
24 
25 static const AIOCBInfo qed_aiocb_info = {
26     .aiocb_size         = sizeof(QEDAIOCB),
27 };
28 
29 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
30                           const char *filename)
31 {
32     const QEDHeader *header = (const QEDHeader *)buf;
33 
34     if (buf_size < sizeof(*header)) {
35         return 0;
36     }
37     if (le32_to_cpu(header->magic) != QED_MAGIC) {
38         return 0;
39     }
40     return 100;
41 }
42 
43 /**
44  * Check whether an image format is raw
45  *
46  * @fmt:    Backing file format, may be NULL
47  */
48 static bool qed_fmt_is_raw(const char *fmt)
49 {
50     return fmt && strcmp(fmt, "raw") == 0;
51 }
52 
53 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
54 {
55     cpu->magic = le32_to_cpu(le->magic);
56     cpu->cluster_size = le32_to_cpu(le->cluster_size);
57     cpu->table_size = le32_to_cpu(le->table_size);
58     cpu->header_size = le32_to_cpu(le->header_size);
59     cpu->features = le64_to_cpu(le->features);
60     cpu->compat_features = le64_to_cpu(le->compat_features);
61     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
62     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
63     cpu->image_size = le64_to_cpu(le->image_size);
64     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
65     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
66 }
67 
68 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
69 {
70     le->magic = cpu_to_le32(cpu->magic);
71     le->cluster_size = cpu_to_le32(cpu->cluster_size);
72     le->table_size = cpu_to_le32(cpu->table_size);
73     le->header_size = cpu_to_le32(cpu->header_size);
74     le->features = cpu_to_le64(cpu->features);
75     le->compat_features = cpu_to_le64(cpu->compat_features);
76     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
77     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
78     le->image_size = cpu_to_le64(cpu->image_size);
79     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
80     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
81 }
82 
83 int qed_write_header_sync(BDRVQEDState *s)
84 {
85     QEDHeader le;
86     int ret;
87 
88     qed_header_cpu_to_le(&s->header, &le);
89     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
90     if (ret != sizeof(le)) {
91         return ret;
92     }
93     return 0;
94 }
95 
96 typedef struct {
97     GenericCB gencb;
98     BDRVQEDState *s;
99     struct iovec iov;
100     QEMUIOVector qiov;
101     int nsectors;
102     uint8_t *buf;
103 } QEDWriteHeaderCB;
104 
105 static void qed_write_header_cb(void *opaque, int ret)
106 {
107     QEDWriteHeaderCB *write_header_cb = opaque;
108 
109     qemu_vfree(write_header_cb->buf);
110     gencb_complete(write_header_cb, ret);
111 }
112 
113 static void qed_write_header_read_cb(void *opaque, int ret)
114 {
115     QEDWriteHeaderCB *write_header_cb = opaque;
116     BDRVQEDState *s = write_header_cb->s;
117 
118     if (ret) {
119         qed_write_header_cb(write_header_cb, ret);
120         return;
121     }
122 
123     /* Update header */
124     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
125 
126     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
127                     write_header_cb->nsectors, qed_write_header_cb,
128                     write_header_cb);
129 }
130 
131 /**
132  * Update header in-place (does not rewrite backing filename or other strings)
133  *
134  * This function only updates known header fields in-place and does not affect
135  * extra data after the QED header.
136  */
137 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
138                              void *opaque)
139 {
140     /* We must write full sectors for O_DIRECT but cannot necessarily generate
141      * the data following the header if an unrecognized compat feature is
142      * active.  Therefore, first read the sectors containing the header, update
143      * them, and write back.
144      */
145 
146     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
147     size_t len = nsectors * BDRV_SECTOR_SIZE;
148     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
149                                                     cb, opaque);
150 
151     write_header_cb->s = s;
152     write_header_cb->nsectors = nsectors;
153     write_header_cb->buf = qemu_blockalign(s->bs, len);
154     write_header_cb->iov.iov_base = write_header_cb->buf;
155     write_header_cb->iov.iov_len = len;
156     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
157 
158     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
159                    qed_write_header_read_cb, write_header_cb);
160 }
161 
162 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
163 {
164     uint64_t table_entries;
165     uint64_t l2_size;
166 
167     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
168     l2_size = table_entries * cluster_size;
169 
170     return l2_size * table_entries;
171 }
172 
173 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
174 {
175     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
176         cluster_size > QED_MAX_CLUSTER_SIZE) {
177         return false;
178     }
179     if (cluster_size & (cluster_size - 1)) {
180         return false; /* not power of 2 */
181     }
182     return true;
183 }
184 
185 static bool qed_is_table_size_valid(uint32_t table_size)
186 {
187     if (table_size < QED_MIN_TABLE_SIZE ||
188         table_size > QED_MAX_TABLE_SIZE) {
189         return false;
190     }
191     if (table_size & (table_size - 1)) {
192         return false; /* not power of 2 */
193     }
194     return true;
195 }
196 
197 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
198                                     uint32_t table_size)
199 {
200     if (image_size % BDRV_SECTOR_SIZE != 0) {
201         return false; /* not multiple of sector size */
202     }
203     if (image_size > qed_max_image_size(cluster_size, table_size)) {
204         return false; /* image is too large */
205     }
206     return true;
207 }
208 
209 /**
210  * Read a string of known length from the image file
211  *
212  * @file:       Image file
213  * @offset:     File offset to start of string, in bytes
214  * @n:          String length in bytes
215  * @buf:        Destination buffer
216  * @buflen:     Destination buffer length in bytes
217  * @ret:        0 on success, -errno on failure
218  *
219  * The string is NUL-terminated.
220  */
221 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
222                            char *buf, size_t buflen)
223 {
224     int ret;
225     if (n >= buflen) {
226         return -EINVAL;
227     }
228     ret = bdrv_pread(file, offset, buf, n);
229     if (ret < 0) {
230         return ret;
231     }
232     buf[n] = '\0';
233     return 0;
234 }
235 
236 /**
237  * Allocate new clusters
238  *
239  * @s:          QED state
240  * @n:          Number of contiguous clusters to allocate
241  * @ret:        Offset of first allocated cluster
242  *
243  * This function only produces the offset where the new clusters should be
244  * written.  It updates BDRVQEDState but does not make any changes to the image
245  * file.
246  */
247 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
248 {
249     uint64_t offset = s->file_size;
250     s->file_size += n * s->header.cluster_size;
251     return offset;
252 }
253 
254 QEDTable *qed_alloc_table(BDRVQEDState *s)
255 {
256     /* Honor O_DIRECT memory alignment requirements */
257     return qemu_blockalign(s->bs,
258                            s->header.cluster_size * s->header.table_size);
259 }
260 
261 /**
262  * Allocate a new zeroed L2 table
263  */
264 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
265 {
266     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
267 
268     l2_table->table = qed_alloc_table(s);
269     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
270 
271     memset(l2_table->table->offsets, 0,
272            s->header.cluster_size * s->header.table_size);
273     return l2_table;
274 }
275 
276 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
277 
278 static void qed_aio_start_io(QEDAIOCB *acb)
279 {
280     qed_aio_next_io(acb, 0);
281 }
282 
283 static void qed_aio_next_io_cb(void *opaque, int ret)
284 {
285     QEDAIOCB *acb = opaque;
286 
287     qed_aio_next_io(acb, ret);
288 }
289 
290 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
291 {
292     assert(!s->allocating_write_reqs_plugged);
293 
294     s->allocating_write_reqs_plugged = true;
295 }
296 
297 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
298 {
299     QEDAIOCB *acb;
300 
301     assert(s->allocating_write_reqs_plugged);
302 
303     s->allocating_write_reqs_plugged = false;
304 
305     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
306     if (acb) {
307         qed_aio_start_io(acb);
308     }
309 }
310 
311 static void qed_finish_clear_need_check(void *opaque, int ret)
312 {
313     /* Do nothing */
314 }
315 
316 static void qed_flush_after_clear_need_check(void *opaque, int ret)
317 {
318     BDRVQEDState *s = opaque;
319 
320     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
321 
322     /* No need to wait until flush completes */
323     qed_unplug_allocating_write_reqs(s);
324 }
325 
326 static void qed_clear_need_check(void *opaque, int ret)
327 {
328     BDRVQEDState *s = opaque;
329 
330     if (ret) {
331         qed_unplug_allocating_write_reqs(s);
332         return;
333     }
334 
335     s->header.features &= ~QED_F_NEED_CHECK;
336     qed_write_header(s, qed_flush_after_clear_need_check, s);
337 }
338 
339 static void qed_need_check_timer_cb(void *opaque)
340 {
341     BDRVQEDState *s = opaque;
342 
343     /* The timer should only fire when allocating writes have drained */
344     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
345 
346     trace_qed_need_check_timer_cb(s);
347 
348     qed_acquire(s);
349     qed_plug_allocating_write_reqs(s);
350 
351     /* Ensure writes are on disk before clearing flag */
352     bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
353     qed_release(s);
354 }
355 
356 void qed_acquire(BDRVQEDState *s)
357 {
358     aio_context_acquire(bdrv_get_aio_context(s->bs));
359 }
360 
361 void qed_release(BDRVQEDState *s)
362 {
363     aio_context_release(bdrv_get_aio_context(s->bs));
364 }
365 
366 static void qed_start_need_check_timer(BDRVQEDState *s)
367 {
368     trace_qed_start_need_check_timer(s);
369 
370     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
371      * migration.
372      */
373     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
374                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
375 }
376 
377 /* It's okay to call this multiple times or when no timer is started */
378 static void qed_cancel_need_check_timer(BDRVQEDState *s)
379 {
380     trace_qed_cancel_need_check_timer(s);
381     timer_del(s->need_check_timer);
382 }
383 
384 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
385 {
386     BDRVQEDState *s = bs->opaque;
387 
388     qed_cancel_need_check_timer(s);
389     timer_free(s->need_check_timer);
390 }
391 
392 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
393                                         AioContext *new_context)
394 {
395     BDRVQEDState *s = bs->opaque;
396 
397     s->need_check_timer = aio_timer_new(new_context,
398                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
399                                         qed_need_check_timer_cb, s);
400     if (s->header.features & QED_F_NEED_CHECK) {
401         qed_start_need_check_timer(s);
402     }
403 }
404 
405 static void bdrv_qed_drain(BlockDriverState *bs)
406 {
407     BDRVQEDState *s = bs->opaque;
408 
409     /* Fire the timer immediately in order to start doing I/O as soon as the
410      * header is flushed.
411      */
412     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
413         qed_cancel_need_check_timer(s);
414         qed_need_check_timer_cb(s);
415     }
416 }
417 
418 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
419                          Error **errp)
420 {
421     BDRVQEDState *s = bs->opaque;
422     QEDHeader le_header;
423     int64_t file_size;
424     int ret;
425 
426     s->bs = bs;
427     QSIMPLEQ_INIT(&s->allocating_write_reqs);
428 
429     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
430     if (ret < 0) {
431         return ret;
432     }
433     qed_header_le_to_cpu(&le_header, &s->header);
434 
435     if (s->header.magic != QED_MAGIC) {
436         error_setg(errp, "Image not in QED format");
437         return -EINVAL;
438     }
439     if (s->header.features & ~QED_FEATURE_MASK) {
440         /* image uses unsupported feature bits */
441         error_setg(errp, "Unsupported QED features: %" PRIx64,
442                    s->header.features & ~QED_FEATURE_MASK);
443         return -ENOTSUP;
444     }
445     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
446         return -EINVAL;
447     }
448 
449     /* Round down file size to the last cluster */
450     file_size = bdrv_getlength(bs->file->bs);
451     if (file_size < 0) {
452         return file_size;
453     }
454     s->file_size = qed_start_of_cluster(s, file_size);
455 
456     if (!qed_is_table_size_valid(s->header.table_size)) {
457         return -EINVAL;
458     }
459     if (!qed_is_image_size_valid(s->header.image_size,
460                                  s->header.cluster_size,
461                                  s->header.table_size)) {
462         return -EINVAL;
463     }
464     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
465         return -EINVAL;
466     }
467 
468     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
469                       sizeof(uint64_t);
470     s->l2_shift = ctz32(s->header.cluster_size);
471     s->l2_mask = s->table_nelems - 1;
472     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
473 
474     /* Header size calculation must not overflow uint32_t */
475     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
476         return -EINVAL;
477     }
478 
479     if ((s->header.features & QED_F_BACKING_FILE)) {
480         if ((uint64_t)s->header.backing_filename_offset +
481             s->header.backing_filename_size >
482             s->header.cluster_size * s->header.header_size) {
483             return -EINVAL;
484         }
485 
486         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
487                               s->header.backing_filename_size, bs->backing_file,
488                               sizeof(bs->backing_file));
489         if (ret < 0) {
490             return ret;
491         }
492 
493         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
494             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
495         }
496     }
497 
498     /* Reset unknown autoclear feature bits.  This is a backwards
499      * compatibility mechanism that allows images to be opened by older
500      * programs, which "knock out" unknown feature bits.  When an image is
501      * opened by a newer program again it can detect that the autoclear
502      * feature is no longer valid.
503      */
504     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
505         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
506         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
507 
508         ret = qed_write_header_sync(s);
509         if (ret) {
510             return ret;
511         }
512 
513         /* From here on only known autoclear feature bits are valid */
514         bdrv_flush(bs->file->bs);
515     }
516 
517     s->l1_table = qed_alloc_table(s);
518     qed_init_l2_cache(&s->l2_cache);
519 
520     ret = qed_read_l1_table_sync(s);
521     if (ret) {
522         goto out;
523     }
524 
525     /* If image was not closed cleanly, check consistency */
526     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
527         /* Read-only images cannot be fixed.  There is no risk of corruption
528          * since write operations are not possible.  Therefore, allow
529          * potentially inconsistent images to be opened read-only.  This can
530          * aid data recovery from an otherwise inconsistent image.
531          */
532         if (!bdrv_is_read_only(bs->file->bs) &&
533             !(flags & BDRV_O_INACTIVE)) {
534             BdrvCheckResult result = {0};
535 
536             ret = qed_check(s, &result, true);
537             if (ret) {
538                 goto out;
539             }
540         }
541     }
542 
543     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
544 
545 out:
546     if (ret) {
547         qed_free_l2_cache(&s->l2_cache);
548         qemu_vfree(s->l1_table);
549     }
550     return ret;
551 }
552 
553 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
554 {
555     BDRVQEDState *s = bs->opaque;
556 
557     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
558 }
559 
560 /* We have nothing to do for QED reopen, stubs just return
561  * success */
562 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
563                                    BlockReopenQueue *queue, Error **errp)
564 {
565     return 0;
566 }
567 
568 static void bdrv_qed_close(BlockDriverState *bs)
569 {
570     BDRVQEDState *s = bs->opaque;
571 
572     bdrv_qed_detach_aio_context(bs);
573 
574     /* Ensure writes reach stable storage */
575     bdrv_flush(bs->file->bs);
576 
577     /* Clean shutdown, no check required on next open */
578     if (s->header.features & QED_F_NEED_CHECK) {
579         s->header.features &= ~QED_F_NEED_CHECK;
580         qed_write_header_sync(s);
581     }
582 
583     qed_free_l2_cache(&s->l2_cache);
584     qemu_vfree(s->l1_table);
585 }
586 
587 static int qed_create(const char *filename, uint32_t cluster_size,
588                       uint64_t image_size, uint32_t table_size,
589                       const char *backing_file, const char *backing_fmt,
590                       QemuOpts *opts, Error **errp)
591 {
592     QEDHeader header = {
593         .magic = QED_MAGIC,
594         .cluster_size = cluster_size,
595         .table_size = table_size,
596         .header_size = 1,
597         .features = 0,
598         .compat_features = 0,
599         .l1_table_offset = cluster_size,
600         .image_size = image_size,
601     };
602     QEDHeader le_header;
603     uint8_t *l1_table = NULL;
604     size_t l1_size = header.cluster_size * header.table_size;
605     Error *local_err = NULL;
606     int ret = 0;
607     BlockBackend *blk;
608 
609     ret = bdrv_create_file(filename, opts, &local_err);
610     if (ret < 0) {
611         error_propagate(errp, local_err);
612         return ret;
613     }
614 
615     blk = blk_new_open(filename, NULL, NULL,
616                        BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err);
617     if (blk == NULL) {
618         error_propagate(errp, local_err);
619         return -EIO;
620     }
621 
622     blk_set_allow_write_beyond_eof(blk, true);
623 
624     /* File must start empty and grow, check truncate is supported */
625     ret = blk_truncate(blk, 0);
626     if (ret < 0) {
627         goto out;
628     }
629 
630     if (backing_file) {
631         header.features |= QED_F_BACKING_FILE;
632         header.backing_filename_offset = sizeof(le_header);
633         header.backing_filename_size = strlen(backing_file);
634 
635         if (qed_fmt_is_raw(backing_fmt)) {
636             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
637         }
638     }
639 
640     qed_header_cpu_to_le(&header, &le_header);
641     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
642     if (ret < 0) {
643         goto out;
644     }
645     ret = blk_pwrite(blk, sizeof(le_header), backing_file,
646                      header.backing_filename_size, 0);
647     if (ret < 0) {
648         goto out;
649     }
650 
651     l1_table = g_malloc0(l1_size);
652     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
653     if (ret < 0) {
654         goto out;
655     }
656 
657     ret = 0; /* success */
658 out:
659     g_free(l1_table);
660     blk_unref(blk);
661     return ret;
662 }
663 
664 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
665 {
666     uint64_t image_size = 0;
667     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
668     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
669     char *backing_file = NULL;
670     char *backing_fmt = NULL;
671     int ret;
672 
673     image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
674                           BDRV_SECTOR_SIZE);
675     backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
676     backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
677     cluster_size = qemu_opt_get_size_del(opts,
678                                          BLOCK_OPT_CLUSTER_SIZE,
679                                          QED_DEFAULT_CLUSTER_SIZE);
680     table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
681                                        QED_DEFAULT_TABLE_SIZE);
682 
683     if (!qed_is_cluster_size_valid(cluster_size)) {
684         error_setg(errp, "QED cluster size must be within range [%u, %u] "
685                          "and power of 2",
686                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
687         ret = -EINVAL;
688         goto finish;
689     }
690     if (!qed_is_table_size_valid(table_size)) {
691         error_setg(errp, "QED table size must be within range [%u, %u] "
692                          "and power of 2",
693                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
694         ret = -EINVAL;
695         goto finish;
696     }
697     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
698         error_setg(errp, "QED image size must be a non-zero multiple of "
699                          "cluster size and less than %" PRIu64 " bytes",
700                    qed_max_image_size(cluster_size, table_size));
701         ret = -EINVAL;
702         goto finish;
703     }
704 
705     ret = qed_create(filename, cluster_size, image_size, table_size,
706                      backing_file, backing_fmt, opts, errp);
707 
708 finish:
709     g_free(backing_file);
710     g_free(backing_fmt);
711     return ret;
712 }
713 
714 typedef struct {
715     BlockDriverState *bs;
716     Coroutine *co;
717     uint64_t pos;
718     int64_t status;
719     int *pnum;
720     BlockDriverState **file;
721 } QEDIsAllocatedCB;
722 
723 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
724 {
725     QEDIsAllocatedCB *cb = opaque;
726     BDRVQEDState *s = cb->bs->opaque;
727     *cb->pnum = len / BDRV_SECTOR_SIZE;
728     switch (ret) {
729     case QED_CLUSTER_FOUND:
730         offset |= qed_offset_into_cluster(s, cb->pos);
731         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
732         *cb->file = cb->bs->file->bs;
733         break;
734     case QED_CLUSTER_ZERO:
735         cb->status = BDRV_BLOCK_ZERO;
736         break;
737     case QED_CLUSTER_L2:
738     case QED_CLUSTER_L1:
739         cb->status = 0;
740         break;
741     default:
742         assert(ret < 0);
743         cb->status = ret;
744         break;
745     }
746 
747     if (cb->co) {
748         aio_co_wake(cb->co);
749     }
750 }
751 
752 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
753                                                  int64_t sector_num,
754                                                  int nb_sectors, int *pnum,
755                                                  BlockDriverState **file)
756 {
757     BDRVQEDState *s = bs->opaque;
758     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
759     QEDIsAllocatedCB cb = {
760         .bs = bs,
761         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
762         .status = BDRV_BLOCK_OFFSET_MASK,
763         .pnum = pnum,
764         .file = file,
765     };
766     QEDRequest request = { .l2_table = NULL };
767 
768     qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
769 
770     /* Now sleep if the callback wasn't invoked immediately */
771     while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
772         cb.co = qemu_coroutine_self();
773         qemu_coroutine_yield();
774     }
775 
776     qed_unref_l2_cache_entry(request.l2_table);
777 
778     return cb.status;
779 }
780 
781 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
782 {
783     return acb->common.bs->opaque;
784 }
785 
786 /**
787  * Read from the backing file or zero-fill if no backing file
788  *
789  * @s:              QED state
790  * @pos:            Byte position in device
791  * @qiov:           Destination I/O vector
792  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
793  * @cb:             Completion function
794  * @opaque:         User data for completion function
795  *
796  * This function reads qiov->size bytes starting at pos from the backing file.
797  * If there is no backing file then zeroes are read.
798  */
799 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
800                                   QEMUIOVector *qiov,
801                                   QEMUIOVector **backing_qiov,
802                                   BlockCompletionFunc *cb, void *opaque)
803 {
804     uint64_t backing_length = 0;
805     size_t size;
806 
807     /* If there is a backing file, get its length.  Treat the absence of a
808      * backing file like a zero length backing file.
809      */
810     if (s->bs->backing) {
811         int64_t l = bdrv_getlength(s->bs->backing->bs);
812         if (l < 0) {
813             cb(opaque, l);
814             return;
815         }
816         backing_length = l;
817     }
818 
819     /* Zero all sectors if reading beyond the end of the backing file */
820     if (pos >= backing_length ||
821         pos + qiov->size > backing_length) {
822         qemu_iovec_memset(qiov, 0, 0, qiov->size);
823     }
824 
825     /* Complete now if there are no backing file sectors to read */
826     if (pos >= backing_length) {
827         cb(opaque, 0);
828         return;
829     }
830 
831     /* If the read straddles the end of the backing file, shorten it */
832     size = MIN((uint64_t)backing_length - pos, qiov->size);
833 
834     assert(*backing_qiov == NULL);
835     *backing_qiov = g_new(QEMUIOVector, 1);
836     qemu_iovec_init(*backing_qiov, qiov->niov);
837     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
838 
839     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
840     bdrv_aio_readv(s->bs->backing, pos / BDRV_SECTOR_SIZE,
841                    *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
842 }
843 
844 typedef struct {
845     GenericCB gencb;
846     BDRVQEDState *s;
847     QEMUIOVector qiov;
848     QEMUIOVector *backing_qiov;
849     struct iovec iov;
850     uint64_t offset;
851 } CopyFromBackingFileCB;
852 
853 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
854 {
855     CopyFromBackingFileCB *copy_cb = opaque;
856     qemu_vfree(copy_cb->iov.iov_base);
857     gencb_complete(&copy_cb->gencb, ret);
858 }
859 
860 static void qed_copy_from_backing_file_write(void *opaque, int ret)
861 {
862     CopyFromBackingFileCB *copy_cb = opaque;
863     BDRVQEDState *s = copy_cb->s;
864 
865     if (copy_cb->backing_qiov) {
866         qemu_iovec_destroy(copy_cb->backing_qiov);
867         g_free(copy_cb->backing_qiov);
868         copy_cb->backing_qiov = NULL;
869     }
870 
871     if (ret) {
872         qed_copy_from_backing_file_cb(copy_cb, ret);
873         return;
874     }
875 
876     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
877     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
878                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
879                     qed_copy_from_backing_file_cb, copy_cb);
880 }
881 
882 /**
883  * Copy data from backing file into the image
884  *
885  * @s:          QED state
886  * @pos:        Byte position in device
887  * @len:        Number of bytes
888  * @offset:     Byte offset in image file
889  * @cb:         Completion function
890  * @opaque:     User data for completion function
891  */
892 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
893                                        uint64_t len, uint64_t offset,
894                                        BlockCompletionFunc *cb,
895                                        void *opaque)
896 {
897     CopyFromBackingFileCB *copy_cb;
898 
899     /* Skip copy entirely if there is no work to do */
900     if (len == 0) {
901         cb(opaque, 0);
902         return;
903     }
904 
905     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
906     copy_cb->s = s;
907     copy_cb->offset = offset;
908     copy_cb->backing_qiov = NULL;
909     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
910     copy_cb->iov.iov_len = len;
911     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
912 
913     qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
914                           qed_copy_from_backing_file_write, copy_cb);
915 }
916 
917 /**
918  * Link one or more contiguous clusters into a table
919  *
920  * @s:              QED state
921  * @table:          L2 table
922  * @index:          First cluster index
923  * @n:              Number of contiguous clusters
924  * @cluster:        First cluster offset
925  *
926  * The cluster offset may be an allocated byte offset in the image file, the
927  * zero cluster marker, or the unallocated cluster marker.
928  */
929 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
930                                 unsigned int n, uint64_t cluster)
931 {
932     int i;
933     for (i = index; i < index + n; i++) {
934         table->offsets[i] = cluster;
935         if (!qed_offset_is_unalloc_cluster(cluster) &&
936             !qed_offset_is_zero_cluster(cluster)) {
937             cluster += s->header.cluster_size;
938         }
939     }
940 }
941 
942 static void qed_aio_complete_bh(void *opaque)
943 {
944     QEDAIOCB *acb = opaque;
945     BDRVQEDState *s = acb_to_s(acb);
946     BlockCompletionFunc *cb = acb->common.cb;
947     void *user_opaque = acb->common.opaque;
948     int ret = acb->bh_ret;
949 
950     qemu_aio_unref(acb);
951 
952     /* Invoke callback */
953     qed_acquire(s);
954     cb(user_opaque, ret);
955     qed_release(s);
956 }
957 
958 static void qed_aio_complete(QEDAIOCB *acb, int ret)
959 {
960     BDRVQEDState *s = acb_to_s(acb);
961 
962     trace_qed_aio_complete(s, acb, ret);
963 
964     /* Free resources */
965     qemu_iovec_destroy(&acb->cur_qiov);
966     qed_unref_l2_cache_entry(acb->request.l2_table);
967 
968     /* Free the buffer we may have allocated for zero writes */
969     if (acb->flags & QED_AIOCB_ZERO) {
970         qemu_vfree(acb->qiov->iov[0].iov_base);
971         acb->qiov->iov[0].iov_base = NULL;
972     }
973 
974     /* Arrange for a bh to invoke the completion function */
975     acb->bh_ret = ret;
976     aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
977                             qed_aio_complete_bh, acb);
978 
979     /* Start next allocating write request waiting behind this one.  Note that
980      * requests enqueue themselves when they first hit an unallocated cluster
981      * but they wait until the entire request is finished before waking up the
982      * next request in the queue.  This ensures that we don't cycle through
983      * requests multiple times but rather finish one at a time completely.
984      */
985     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
986         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
987         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
988         if (acb) {
989             qed_aio_start_io(acb);
990         } else if (s->header.features & QED_F_NEED_CHECK) {
991             qed_start_need_check_timer(s);
992         }
993     }
994 }
995 
996 /**
997  * Commit the current L2 table to the cache
998  */
999 static void qed_commit_l2_update(void *opaque, int ret)
1000 {
1001     QEDAIOCB *acb = opaque;
1002     BDRVQEDState *s = acb_to_s(acb);
1003     CachedL2Table *l2_table = acb->request.l2_table;
1004     uint64_t l2_offset = l2_table->offset;
1005 
1006     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1007 
1008     /* This is guaranteed to succeed because we just committed the entry to the
1009      * cache.
1010      */
1011     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1012     assert(acb->request.l2_table != NULL);
1013 
1014     qed_aio_next_io(acb, ret);
1015 }
1016 
1017 /**
1018  * Update L1 table with new L2 table offset and write it out
1019  */
1020 static void qed_aio_write_l1_update(void *opaque, int ret)
1021 {
1022     QEDAIOCB *acb = opaque;
1023     BDRVQEDState *s = acb_to_s(acb);
1024     int index;
1025 
1026     if (ret) {
1027         qed_aio_complete(acb, ret);
1028         return;
1029     }
1030 
1031     index = qed_l1_index(s, acb->cur_pos);
1032     s->l1_table->offsets[index] = acb->request.l2_table->offset;
1033 
1034     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1035 }
1036 
1037 /**
1038  * Update L2 table with new cluster offsets and write them out
1039  */
1040 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1041 {
1042     BDRVQEDState *s = acb_to_s(acb);
1043     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1044     int index;
1045 
1046     if (ret) {
1047         goto err;
1048     }
1049 
1050     if (need_alloc) {
1051         qed_unref_l2_cache_entry(acb->request.l2_table);
1052         acb->request.l2_table = qed_new_l2_table(s);
1053     }
1054 
1055     index = qed_l2_index(s, acb->cur_pos);
1056     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1057                          offset);
1058 
1059     if (need_alloc) {
1060         /* Write out the whole new L2 table */
1061         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1062                            qed_aio_write_l1_update, acb);
1063     } else {
1064         /* Write out only the updated part of the L2 table */
1065         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1066                            qed_aio_next_io_cb, acb);
1067     }
1068     return;
1069 
1070 err:
1071     qed_aio_complete(acb, ret);
1072 }
1073 
1074 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1075 {
1076     QEDAIOCB *acb = opaque;
1077     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1078 }
1079 
1080 /**
1081  * Flush new data clusters before updating the L2 table
1082  *
1083  * This flush is necessary when a backing file is in use.  A crash during an
1084  * allocating write could result in empty clusters in the image.  If the write
1085  * only touched a subregion of the cluster, then backing image sectors have
1086  * been lost in the untouched region.  The solution is to flush after writing a
1087  * new data cluster and before updating the L2 table.
1088  */
1089 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1090 {
1091     QEDAIOCB *acb = opaque;
1092     BDRVQEDState *s = acb_to_s(acb);
1093 
1094     if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1095         qed_aio_complete(acb, -EIO);
1096     }
1097 }
1098 
1099 /**
1100  * Write data to the image file
1101  */
1102 static void qed_aio_write_main(void *opaque, int ret)
1103 {
1104     QEDAIOCB *acb = opaque;
1105     BDRVQEDState *s = acb_to_s(acb);
1106     uint64_t offset = acb->cur_cluster +
1107                       qed_offset_into_cluster(s, acb->cur_pos);
1108     BlockCompletionFunc *next_fn;
1109 
1110     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1111 
1112     if (ret) {
1113         qed_aio_complete(acb, ret);
1114         return;
1115     }
1116 
1117     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1118         next_fn = qed_aio_next_io_cb;
1119     } else {
1120         if (s->bs->backing) {
1121             next_fn = qed_aio_write_flush_before_l2_update;
1122         } else {
1123             next_fn = qed_aio_write_l2_update_cb;
1124         }
1125     }
1126 
1127     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1128     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1129                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1130                     next_fn, acb);
1131 }
1132 
1133 /**
1134  * Populate back untouched region of new data cluster
1135  */
1136 static void qed_aio_write_postfill(void *opaque, int ret)
1137 {
1138     QEDAIOCB *acb = opaque;
1139     BDRVQEDState *s = acb_to_s(acb);
1140     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1141     uint64_t len =
1142         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1143     uint64_t offset = acb->cur_cluster +
1144                       qed_offset_into_cluster(s, acb->cur_pos) +
1145                       acb->cur_qiov.size;
1146 
1147     if (ret) {
1148         qed_aio_complete(acb, ret);
1149         return;
1150     }
1151 
1152     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1153     qed_copy_from_backing_file(s, start, len, offset,
1154                                 qed_aio_write_main, acb);
1155 }
1156 
1157 /**
1158  * Populate front untouched region of new data cluster
1159  */
1160 static void qed_aio_write_prefill(void *opaque, int ret)
1161 {
1162     QEDAIOCB *acb = opaque;
1163     BDRVQEDState *s = acb_to_s(acb);
1164     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1165     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1166 
1167     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1168     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1169                                 qed_aio_write_postfill, acb);
1170 }
1171 
1172 /**
1173  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1174  */
1175 static bool qed_should_set_need_check(BDRVQEDState *s)
1176 {
1177     /* The flush before L2 update path ensures consistency */
1178     if (s->bs->backing) {
1179         return false;
1180     }
1181 
1182     return !(s->header.features & QED_F_NEED_CHECK);
1183 }
1184 
1185 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1186 {
1187     QEDAIOCB *acb = opaque;
1188 
1189     if (ret) {
1190         qed_aio_complete(acb, ret);
1191         return;
1192     }
1193 
1194     qed_aio_write_l2_update(acb, 0, 1);
1195 }
1196 
1197 /**
1198  * Write new data cluster
1199  *
1200  * @acb:        Write request
1201  * @len:        Length in bytes
1202  *
1203  * This path is taken when writing to previously unallocated clusters.
1204  */
1205 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1206 {
1207     BDRVQEDState *s = acb_to_s(acb);
1208     BlockCompletionFunc *cb;
1209 
1210     /* Cancel timer when the first allocating request comes in */
1211     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1212         qed_cancel_need_check_timer(s);
1213     }
1214 
1215     /* Freeze this request if another allocating write is in progress */
1216     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1217         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1218     }
1219     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1220         s->allocating_write_reqs_plugged) {
1221         return; /* wait for existing request to finish */
1222     }
1223 
1224     acb->cur_nclusters = qed_bytes_to_clusters(s,
1225             qed_offset_into_cluster(s, acb->cur_pos) + len);
1226     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1227 
1228     if (acb->flags & QED_AIOCB_ZERO) {
1229         /* Skip ahead if the clusters are already zero */
1230         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1231             qed_aio_start_io(acb);
1232             return;
1233         }
1234 
1235         cb = qed_aio_write_zero_cluster;
1236     } else {
1237         cb = qed_aio_write_prefill;
1238         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1239     }
1240 
1241     if (qed_should_set_need_check(s)) {
1242         s->header.features |= QED_F_NEED_CHECK;
1243         qed_write_header(s, cb, acb);
1244     } else {
1245         cb(acb, 0);
1246     }
1247 }
1248 
1249 /**
1250  * Write data cluster in place
1251  *
1252  * @acb:        Write request
1253  * @offset:     Cluster offset in bytes
1254  * @len:        Length in bytes
1255  *
1256  * This path is taken when writing to already allocated clusters.
1257  */
1258 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1259 {
1260     /* Allocate buffer for zero writes */
1261     if (acb->flags & QED_AIOCB_ZERO) {
1262         struct iovec *iov = acb->qiov->iov;
1263 
1264         if (!iov->iov_base) {
1265             iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1266             if (iov->iov_base == NULL) {
1267                 qed_aio_complete(acb, -ENOMEM);
1268                 return;
1269             }
1270             memset(iov->iov_base, 0, iov->iov_len);
1271         }
1272     }
1273 
1274     /* Calculate the I/O vector */
1275     acb->cur_cluster = offset;
1276     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1277 
1278     /* Do the actual write */
1279     qed_aio_write_main(acb, 0);
1280 }
1281 
1282 /**
1283  * Write data cluster
1284  *
1285  * @opaque:     Write request
1286  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1287  *              or -errno
1288  * @offset:     Cluster offset in bytes
1289  * @len:        Length in bytes
1290  *
1291  * Callback from qed_find_cluster().
1292  */
1293 static void qed_aio_write_data(void *opaque, int ret,
1294                                uint64_t offset, size_t len)
1295 {
1296     QEDAIOCB *acb = opaque;
1297 
1298     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1299 
1300     acb->find_cluster_ret = ret;
1301 
1302     switch (ret) {
1303     case QED_CLUSTER_FOUND:
1304         qed_aio_write_inplace(acb, offset, len);
1305         break;
1306 
1307     case QED_CLUSTER_L2:
1308     case QED_CLUSTER_L1:
1309     case QED_CLUSTER_ZERO:
1310         qed_aio_write_alloc(acb, len);
1311         break;
1312 
1313     default:
1314         qed_aio_complete(acb, ret);
1315         break;
1316     }
1317 }
1318 
1319 /**
1320  * Read data cluster
1321  *
1322  * @opaque:     Read request
1323  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1324  *              or -errno
1325  * @offset:     Cluster offset in bytes
1326  * @len:        Length in bytes
1327  *
1328  * Callback from qed_find_cluster().
1329  */
1330 static void qed_aio_read_data(void *opaque, int ret,
1331                               uint64_t offset, size_t len)
1332 {
1333     QEDAIOCB *acb = opaque;
1334     BDRVQEDState *s = acb_to_s(acb);
1335     BlockDriverState *bs = acb->common.bs;
1336 
1337     /* Adjust offset into cluster */
1338     offset += qed_offset_into_cluster(s, acb->cur_pos);
1339 
1340     trace_qed_aio_read_data(s, acb, ret, offset, len);
1341 
1342     if (ret < 0) {
1343         goto err;
1344     }
1345 
1346     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1347 
1348     /* Handle zero cluster and backing file reads */
1349     if (ret == QED_CLUSTER_ZERO) {
1350         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1351         qed_aio_start_io(acb);
1352         return;
1353     } else if (ret != QED_CLUSTER_FOUND) {
1354         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1355                               &acb->backing_qiov, qed_aio_next_io_cb, acb);
1356         return;
1357     }
1358 
1359     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1360     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1361                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1362                    qed_aio_next_io_cb, acb);
1363     return;
1364 
1365 err:
1366     qed_aio_complete(acb, ret);
1367 }
1368 
1369 /**
1370  * Begin next I/O or complete the request
1371  */
1372 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1373 {
1374     BDRVQEDState *s = acb_to_s(acb);
1375     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1376                                 qed_aio_write_data : qed_aio_read_data;
1377 
1378     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1379 
1380     if (acb->backing_qiov) {
1381         qemu_iovec_destroy(acb->backing_qiov);
1382         g_free(acb->backing_qiov);
1383         acb->backing_qiov = NULL;
1384     }
1385 
1386     /* Handle I/O error */
1387     if (ret) {
1388         qed_aio_complete(acb, ret);
1389         return;
1390     }
1391 
1392     acb->qiov_offset += acb->cur_qiov.size;
1393     acb->cur_pos += acb->cur_qiov.size;
1394     qemu_iovec_reset(&acb->cur_qiov);
1395 
1396     /* Complete request */
1397     if (acb->cur_pos >= acb->end_pos) {
1398         qed_aio_complete(acb, 0);
1399         return;
1400     }
1401 
1402     /* Find next cluster and start I/O */
1403     qed_find_cluster(s, &acb->request,
1404                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1405                       io_fn, acb);
1406 }
1407 
1408 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1409                                  int64_t sector_num,
1410                                  QEMUIOVector *qiov, int nb_sectors,
1411                                  BlockCompletionFunc *cb,
1412                                  void *opaque, int flags)
1413 {
1414     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1415 
1416     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1417                         opaque, flags);
1418 
1419     acb->flags = flags;
1420     acb->qiov = qiov;
1421     acb->qiov_offset = 0;
1422     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1423     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1424     acb->backing_qiov = NULL;
1425     acb->request.l2_table = NULL;
1426     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1427 
1428     /* Start request */
1429     qed_aio_start_io(acb);
1430     return &acb->common;
1431 }
1432 
1433 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1434                                       int64_t sector_num,
1435                                       QEMUIOVector *qiov, int nb_sectors,
1436                                       BlockCompletionFunc *cb,
1437                                       void *opaque)
1438 {
1439     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1440 }
1441 
1442 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1443                                        int64_t sector_num,
1444                                        QEMUIOVector *qiov, int nb_sectors,
1445                                        BlockCompletionFunc *cb,
1446                                        void *opaque)
1447 {
1448     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1449                          opaque, QED_AIOCB_WRITE);
1450 }
1451 
1452 typedef struct {
1453     Coroutine *co;
1454     int ret;
1455     bool done;
1456 } QEDWriteZeroesCB;
1457 
1458 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1459 {
1460     QEDWriteZeroesCB *cb = opaque;
1461 
1462     cb->done = true;
1463     cb->ret = ret;
1464     if (cb->co) {
1465         aio_co_wake(cb->co);
1466     }
1467 }
1468 
1469 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1470                                                   int64_t offset,
1471                                                   int count,
1472                                                   BdrvRequestFlags flags)
1473 {
1474     BlockAIOCB *blockacb;
1475     BDRVQEDState *s = bs->opaque;
1476     QEDWriteZeroesCB cb = { .done = false };
1477     QEMUIOVector qiov;
1478     struct iovec iov;
1479 
1480     /* Fall back if the request is not aligned */
1481     if (qed_offset_into_cluster(s, offset) ||
1482         qed_offset_into_cluster(s, count)) {
1483         return -ENOTSUP;
1484     }
1485 
1486     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1487      * then it will be allocated during request processing.
1488      */
1489     iov.iov_base = NULL;
1490     iov.iov_len = count;
1491 
1492     qemu_iovec_init_external(&qiov, &iov, 1);
1493     blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1494                              count >> BDRV_SECTOR_BITS,
1495                              qed_co_pwrite_zeroes_cb, &cb,
1496                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1497     if (!blockacb) {
1498         return -EIO;
1499     }
1500     if (!cb.done) {
1501         cb.co = qemu_coroutine_self();
1502         qemu_coroutine_yield();
1503     }
1504     assert(cb.done);
1505     return cb.ret;
1506 }
1507 
1508 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1509 {
1510     BDRVQEDState *s = bs->opaque;
1511     uint64_t old_image_size;
1512     int ret;
1513 
1514     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1515                                  s->header.table_size)) {
1516         return -EINVAL;
1517     }
1518 
1519     /* Shrinking is currently not supported */
1520     if ((uint64_t)offset < s->header.image_size) {
1521         return -ENOTSUP;
1522     }
1523 
1524     old_image_size = s->header.image_size;
1525     s->header.image_size = offset;
1526     ret = qed_write_header_sync(s);
1527     if (ret < 0) {
1528         s->header.image_size = old_image_size;
1529     }
1530     return ret;
1531 }
1532 
1533 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1534 {
1535     BDRVQEDState *s = bs->opaque;
1536     return s->header.image_size;
1537 }
1538 
1539 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1540 {
1541     BDRVQEDState *s = bs->opaque;
1542 
1543     memset(bdi, 0, sizeof(*bdi));
1544     bdi->cluster_size = s->header.cluster_size;
1545     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1546     bdi->unallocated_blocks_are_zero = true;
1547     bdi->can_write_zeroes_with_unmap = true;
1548     return 0;
1549 }
1550 
1551 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1552                                         const char *backing_file,
1553                                         const char *backing_fmt)
1554 {
1555     BDRVQEDState *s = bs->opaque;
1556     QEDHeader new_header, le_header;
1557     void *buffer;
1558     size_t buffer_len, backing_file_len;
1559     int ret;
1560 
1561     /* Refuse to set backing filename if unknown compat feature bits are
1562      * active.  If the image uses an unknown compat feature then we may not
1563      * know the layout of data following the header structure and cannot safely
1564      * add a new string.
1565      */
1566     if (backing_file && (s->header.compat_features &
1567                          ~QED_COMPAT_FEATURE_MASK)) {
1568         return -ENOTSUP;
1569     }
1570 
1571     memcpy(&new_header, &s->header, sizeof(new_header));
1572 
1573     new_header.features &= ~(QED_F_BACKING_FILE |
1574                              QED_F_BACKING_FORMAT_NO_PROBE);
1575 
1576     /* Adjust feature flags */
1577     if (backing_file) {
1578         new_header.features |= QED_F_BACKING_FILE;
1579 
1580         if (qed_fmt_is_raw(backing_fmt)) {
1581             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1582         }
1583     }
1584 
1585     /* Calculate new header size */
1586     backing_file_len = 0;
1587 
1588     if (backing_file) {
1589         backing_file_len = strlen(backing_file);
1590     }
1591 
1592     buffer_len = sizeof(new_header);
1593     new_header.backing_filename_offset = buffer_len;
1594     new_header.backing_filename_size = backing_file_len;
1595     buffer_len += backing_file_len;
1596 
1597     /* Make sure we can rewrite header without failing */
1598     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1599         return -ENOSPC;
1600     }
1601 
1602     /* Prepare new header */
1603     buffer = g_malloc(buffer_len);
1604 
1605     qed_header_cpu_to_le(&new_header, &le_header);
1606     memcpy(buffer, &le_header, sizeof(le_header));
1607     buffer_len = sizeof(le_header);
1608 
1609     if (backing_file) {
1610         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1611         buffer_len += backing_file_len;
1612     }
1613 
1614     /* Write new header */
1615     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1616     g_free(buffer);
1617     if (ret == 0) {
1618         memcpy(&s->header, &new_header, sizeof(new_header));
1619     }
1620     return ret;
1621 }
1622 
1623 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1624 {
1625     BDRVQEDState *s = bs->opaque;
1626     Error *local_err = NULL;
1627     int ret;
1628 
1629     bdrv_qed_close(bs);
1630 
1631     memset(s, 0, sizeof(BDRVQEDState));
1632     ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1633     if (local_err) {
1634         error_propagate(errp, local_err);
1635         error_prepend(errp, "Could not reopen qed layer: ");
1636         return;
1637     } else if (ret < 0) {
1638         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1639         return;
1640     }
1641 }
1642 
1643 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1644                           BdrvCheckMode fix)
1645 {
1646     BDRVQEDState *s = bs->opaque;
1647 
1648     return qed_check(s, result, !!fix);
1649 }
1650 
1651 static QemuOptsList qed_create_opts = {
1652     .name = "qed-create-opts",
1653     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1654     .desc = {
1655         {
1656             .name = BLOCK_OPT_SIZE,
1657             .type = QEMU_OPT_SIZE,
1658             .help = "Virtual disk size"
1659         },
1660         {
1661             .name = BLOCK_OPT_BACKING_FILE,
1662             .type = QEMU_OPT_STRING,
1663             .help = "File name of a base image"
1664         },
1665         {
1666             .name = BLOCK_OPT_BACKING_FMT,
1667             .type = QEMU_OPT_STRING,
1668             .help = "Image format of the base image"
1669         },
1670         {
1671             .name = BLOCK_OPT_CLUSTER_SIZE,
1672             .type = QEMU_OPT_SIZE,
1673             .help = "Cluster size (in bytes)",
1674             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1675         },
1676         {
1677             .name = BLOCK_OPT_TABLE_SIZE,
1678             .type = QEMU_OPT_SIZE,
1679             .help = "L1/L2 table size (in clusters)"
1680         },
1681         { /* end of list */ }
1682     }
1683 };
1684 
1685 static BlockDriver bdrv_qed = {
1686     .format_name              = "qed",
1687     .instance_size            = sizeof(BDRVQEDState),
1688     .create_opts              = &qed_create_opts,
1689     .supports_backing         = true,
1690 
1691     .bdrv_probe               = bdrv_qed_probe,
1692     .bdrv_open                = bdrv_qed_open,
1693     .bdrv_close               = bdrv_qed_close,
1694     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1695     .bdrv_create              = bdrv_qed_create,
1696     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1697     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1698     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1699     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1700     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1701     .bdrv_truncate            = bdrv_qed_truncate,
1702     .bdrv_getlength           = bdrv_qed_getlength,
1703     .bdrv_get_info            = bdrv_qed_get_info,
1704     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1705     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1706     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1707     .bdrv_check               = bdrv_qed_check,
1708     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1709     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1710     .bdrv_drain               = bdrv_qed_drain,
1711 };
1712 
1713 static void bdrv_qed_init(void)
1714 {
1715     bdrv_register(&bdrv_qed);
1716 }
1717 
1718 block_init(bdrv_qed_init);
1719