1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/timer.h" 16 #include "trace.h" 17 #include "qed.h" 18 #include "qapi/qmp/qerror.h" 19 #include "migration/migration.h" 20 21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb) 22 { 23 QEDAIOCB *acb = (QEDAIOCB *)blockacb; 24 bool finished = false; 25 26 /* Wait for the request to finish */ 27 acb->finished = &finished; 28 while (!finished) { 29 qemu_aio_wait(); 30 } 31 } 32 33 static const AIOCBInfo qed_aiocb_info = { 34 .aiocb_size = sizeof(QEDAIOCB), 35 .cancel = qed_aio_cancel, 36 }; 37 38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 39 const char *filename) 40 { 41 const QEDHeader *header = (const QEDHeader *)buf; 42 43 if (buf_size < sizeof(*header)) { 44 return 0; 45 } 46 if (le32_to_cpu(header->magic) != QED_MAGIC) { 47 return 0; 48 } 49 return 100; 50 } 51 52 /** 53 * Check whether an image format is raw 54 * 55 * @fmt: Backing file format, may be NULL 56 */ 57 static bool qed_fmt_is_raw(const char *fmt) 58 { 59 return fmt && strcmp(fmt, "raw") == 0; 60 } 61 62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 63 { 64 cpu->magic = le32_to_cpu(le->magic); 65 cpu->cluster_size = le32_to_cpu(le->cluster_size); 66 cpu->table_size = le32_to_cpu(le->table_size); 67 cpu->header_size = le32_to_cpu(le->header_size); 68 cpu->features = le64_to_cpu(le->features); 69 cpu->compat_features = le64_to_cpu(le->compat_features); 70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 72 cpu->image_size = le64_to_cpu(le->image_size); 73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 75 } 76 77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 78 { 79 le->magic = cpu_to_le32(cpu->magic); 80 le->cluster_size = cpu_to_le32(cpu->cluster_size); 81 le->table_size = cpu_to_le32(cpu->table_size); 82 le->header_size = cpu_to_le32(cpu->header_size); 83 le->features = cpu_to_le64(cpu->features); 84 le->compat_features = cpu_to_le64(cpu->compat_features); 85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 87 le->image_size = cpu_to_le64(cpu->image_size); 88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 90 } 91 92 int qed_write_header_sync(BDRVQEDState *s) 93 { 94 QEDHeader le; 95 int ret; 96 97 qed_header_cpu_to_le(&s->header, &le); 98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 99 if (ret != sizeof(le)) { 100 return ret; 101 } 102 return 0; 103 } 104 105 typedef struct { 106 GenericCB gencb; 107 BDRVQEDState *s; 108 struct iovec iov; 109 QEMUIOVector qiov; 110 int nsectors; 111 uint8_t *buf; 112 } QEDWriteHeaderCB; 113 114 static void qed_write_header_cb(void *opaque, int ret) 115 { 116 QEDWriteHeaderCB *write_header_cb = opaque; 117 118 qemu_vfree(write_header_cb->buf); 119 gencb_complete(write_header_cb, ret); 120 } 121 122 static void qed_write_header_read_cb(void *opaque, int ret) 123 { 124 QEDWriteHeaderCB *write_header_cb = opaque; 125 BDRVQEDState *s = write_header_cb->s; 126 127 if (ret) { 128 qed_write_header_cb(write_header_cb, ret); 129 return; 130 } 131 132 /* Update header */ 133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf); 134 135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov, 136 write_header_cb->nsectors, qed_write_header_cb, 137 write_header_cb); 138 } 139 140 /** 141 * Update header in-place (does not rewrite backing filename or other strings) 142 * 143 * This function only updates known header fields in-place and does not affect 144 * extra data after the QED header. 145 */ 146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb, 147 void *opaque) 148 { 149 /* We must write full sectors for O_DIRECT but cannot necessarily generate 150 * the data following the header if an unrecognized compat feature is 151 * active. Therefore, first read the sectors containing the header, update 152 * them, and write back. 153 */ 154 155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) / 156 BDRV_SECTOR_SIZE; 157 size_t len = nsectors * BDRV_SECTOR_SIZE; 158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb), 159 cb, opaque); 160 161 write_header_cb->s = s; 162 write_header_cb->nsectors = nsectors; 163 write_header_cb->buf = qemu_blockalign(s->bs, len); 164 write_header_cb->iov.iov_base = write_header_cb->buf; 165 write_header_cb->iov.iov_len = len; 166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1); 167 168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors, 169 qed_write_header_read_cb, write_header_cb); 170 } 171 172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 173 { 174 uint64_t table_entries; 175 uint64_t l2_size; 176 177 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 178 l2_size = table_entries * cluster_size; 179 180 return l2_size * table_entries; 181 } 182 183 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 184 { 185 if (cluster_size < QED_MIN_CLUSTER_SIZE || 186 cluster_size > QED_MAX_CLUSTER_SIZE) { 187 return false; 188 } 189 if (cluster_size & (cluster_size - 1)) { 190 return false; /* not power of 2 */ 191 } 192 return true; 193 } 194 195 static bool qed_is_table_size_valid(uint32_t table_size) 196 { 197 if (table_size < QED_MIN_TABLE_SIZE || 198 table_size > QED_MAX_TABLE_SIZE) { 199 return false; 200 } 201 if (table_size & (table_size - 1)) { 202 return false; /* not power of 2 */ 203 } 204 return true; 205 } 206 207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 208 uint32_t table_size) 209 { 210 if (image_size % BDRV_SECTOR_SIZE != 0) { 211 return false; /* not multiple of sector size */ 212 } 213 if (image_size > qed_max_image_size(cluster_size, table_size)) { 214 return false; /* image is too large */ 215 } 216 return true; 217 } 218 219 /** 220 * Read a string of known length from the image file 221 * 222 * @file: Image file 223 * @offset: File offset to start of string, in bytes 224 * @n: String length in bytes 225 * @buf: Destination buffer 226 * @buflen: Destination buffer length in bytes 227 * @ret: 0 on success, -errno on failure 228 * 229 * The string is NUL-terminated. 230 */ 231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n, 232 char *buf, size_t buflen) 233 { 234 int ret; 235 if (n >= buflen) { 236 return -EINVAL; 237 } 238 ret = bdrv_pread(file, offset, buf, n); 239 if (ret < 0) { 240 return ret; 241 } 242 buf[n] = '\0'; 243 return 0; 244 } 245 246 /** 247 * Allocate new clusters 248 * 249 * @s: QED state 250 * @n: Number of contiguous clusters to allocate 251 * @ret: Offset of first allocated cluster 252 * 253 * This function only produces the offset where the new clusters should be 254 * written. It updates BDRVQEDState but does not make any changes to the image 255 * file. 256 */ 257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 258 { 259 uint64_t offset = s->file_size; 260 s->file_size += n * s->header.cluster_size; 261 return offset; 262 } 263 264 QEDTable *qed_alloc_table(BDRVQEDState *s) 265 { 266 /* Honor O_DIRECT memory alignment requirements */ 267 return qemu_blockalign(s->bs, 268 s->header.cluster_size * s->header.table_size); 269 } 270 271 /** 272 * Allocate a new zeroed L2 table 273 */ 274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 275 { 276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 277 278 l2_table->table = qed_alloc_table(s); 279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 280 281 memset(l2_table->table->offsets, 0, 282 s->header.cluster_size * s->header.table_size); 283 return l2_table; 284 } 285 286 static void qed_aio_next_io(void *opaque, int ret); 287 288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s) 289 { 290 assert(!s->allocating_write_reqs_plugged); 291 292 s->allocating_write_reqs_plugged = true; 293 } 294 295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 296 { 297 QEDAIOCB *acb; 298 299 assert(s->allocating_write_reqs_plugged); 300 301 s->allocating_write_reqs_plugged = false; 302 303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 304 if (acb) { 305 qed_aio_next_io(acb, 0); 306 } 307 } 308 309 static void qed_finish_clear_need_check(void *opaque, int ret) 310 { 311 /* Do nothing */ 312 } 313 314 static void qed_flush_after_clear_need_check(void *opaque, int ret) 315 { 316 BDRVQEDState *s = opaque; 317 318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s); 319 320 /* No need to wait until flush completes */ 321 qed_unplug_allocating_write_reqs(s); 322 } 323 324 static void qed_clear_need_check(void *opaque, int ret) 325 { 326 BDRVQEDState *s = opaque; 327 328 if (ret) { 329 qed_unplug_allocating_write_reqs(s); 330 return; 331 } 332 333 s->header.features &= ~QED_F_NEED_CHECK; 334 qed_write_header(s, qed_flush_after_clear_need_check, s); 335 } 336 337 static void qed_need_check_timer_cb(void *opaque) 338 { 339 BDRVQEDState *s = opaque; 340 341 /* The timer should only fire when allocating writes have drained */ 342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs)); 343 344 trace_qed_need_check_timer_cb(s); 345 346 qed_plug_allocating_write_reqs(s); 347 348 /* Ensure writes are on disk before clearing flag */ 349 bdrv_aio_flush(s->bs, qed_clear_need_check, s); 350 } 351 352 static void qed_start_need_check_timer(BDRVQEDState *s) 353 { 354 trace_qed_start_need_check_timer(s); 355 356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 357 * migration. 358 */ 359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT); 361 } 362 363 /* It's okay to call this multiple times or when no timer is started */ 364 static void qed_cancel_need_check_timer(BDRVQEDState *s) 365 { 366 trace_qed_cancel_need_check_timer(s); 367 timer_del(s->need_check_timer); 368 } 369 370 static void bdrv_qed_rebind(BlockDriverState *bs) 371 { 372 BDRVQEDState *s = bs->opaque; 373 s->bs = bs; 374 } 375 376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags) 377 { 378 BDRVQEDState *s = bs->opaque; 379 QEDHeader le_header; 380 int64_t file_size; 381 int ret; 382 383 s->bs = bs; 384 QSIMPLEQ_INIT(&s->allocating_write_reqs); 385 386 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 387 if (ret < 0) { 388 return ret; 389 } 390 qed_header_le_to_cpu(&le_header, &s->header); 391 392 if (s->header.magic != QED_MAGIC) { 393 return -EMEDIUMTYPE; 394 } 395 if (s->header.features & ~QED_FEATURE_MASK) { 396 /* image uses unsupported feature bits */ 397 char buf[64]; 398 snprintf(buf, sizeof(buf), "%" PRIx64, 399 s->header.features & ~QED_FEATURE_MASK); 400 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE, 401 bs->device_name, "QED", buf); 402 return -ENOTSUP; 403 } 404 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 405 return -EINVAL; 406 } 407 408 /* Round down file size to the last cluster */ 409 file_size = bdrv_getlength(bs->file); 410 if (file_size < 0) { 411 return file_size; 412 } 413 s->file_size = qed_start_of_cluster(s, file_size); 414 415 if (!qed_is_table_size_valid(s->header.table_size)) { 416 return -EINVAL; 417 } 418 if (!qed_is_image_size_valid(s->header.image_size, 419 s->header.cluster_size, 420 s->header.table_size)) { 421 return -EINVAL; 422 } 423 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 424 return -EINVAL; 425 } 426 427 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 428 sizeof(uint64_t); 429 s->l2_shift = ffs(s->header.cluster_size) - 1; 430 s->l2_mask = s->table_nelems - 1; 431 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1; 432 433 if ((s->header.features & QED_F_BACKING_FILE)) { 434 if ((uint64_t)s->header.backing_filename_offset + 435 s->header.backing_filename_size > 436 s->header.cluster_size * s->header.header_size) { 437 return -EINVAL; 438 } 439 440 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 441 s->header.backing_filename_size, bs->backing_file, 442 sizeof(bs->backing_file)); 443 if (ret < 0) { 444 return ret; 445 } 446 447 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 448 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 449 } 450 } 451 452 /* Reset unknown autoclear feature bits. This is a backwards 453 * compatibility mechanism that allows images to be opened by older 454 * programs, which "knock out" unknown feature bits. When an image is 455 * opened by a newer program again it can detect that the autoclear 456 * feature is no longer valid. 457 */ 458 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 459 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) { 460 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 461 462 ret = qed_write_header_sync(s); 463 if (ret) { 464 return ret; 465 } 466 467 /* From here on only known autoclear feature bits are valid */ 468 bdrv_flush(bs->file); 469 } 470 471 s->l1_table = qed_alloc_table(s); 472 qed_init_l2_cache(&s->l2_cache); 473 474 ret = qed_read_l1_table_sync(s); 475 if (ret) { 476 goto out; 477 } 478 479 /* If image was not closed cleanly, check consistency */ 480 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 481 /* Read-only images cannot be fixed. There is no risk of corruption 482 * since write operations are not possible. Therefore, allow 483 * potentially inconsistent images to be opened read-only. This can 484 * aid data recovery from an otherwise inconsistent image. 485 */ 486 if (!bdrv_is_read_only(bs->file) && 487 !(flags & BDRV_O_INCOMING)) { 488 BdrvCheckResult result = {0}; 489 490 ret = qed_check(s, &result, true); 491 if (ret) { 492 goto out; 493 } 494 } 495 } 496 497 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 498 qed_need_check_timer_cb, s); 499 500 out: 501 if (ret) { 502 qed_free_l2_cache(&s->l2_cache); 503 qemu_vfree(s->l1_table); 504 } 505 return ret; 506 } 507 508 /* We have nothing to do for QED reopen, stubs just return 509 * success */ 510 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 511 BlockReopenQueue *queue, Error **errp) 512 { 513 return 0; 514 } 515 516 static void bdrv_qed_close(BlockDriverState *bs) 517 { 518 BDRVQEDState *s = bs->opaque; 519 520 qed_cancel_need_check_timer(s); 521 timer_free(s->need_check_timer); 522 523 /* Ensure writes reach stable storage */ 524 bdrv_flush(bs->file); 525 526 /* Clean shutdown, no check required on next open */ 527 if (s->header.features & QED_F_NEED_CHECK) { 528 s->header.features &= ~QED_F_NEED_CHECK; 529 qed_write_header_sync(s); 530 } 531 532 qed_free_l2_cache(&s->l2_cache); 533 qemu_vfree(s->l1_table); 534 } 535 536 static int qed_create(const char *filename, uint32_t cluster_size, 537 uint64_t image_size, uint32_t table_size, 538 const char *backing_file, const char *backing_fmt) 539 { 540 QEDHeader header = { 541 .magic = QED_MAGIC, 542 .cluster_size = cluster_size, 543 .table_size = table_size, 544 .header_size = 1, 545 .features = 0, 546 .compat_features = 0, 547 .l1_table_offset = cluster_size, 548 .image_size = image_size, 549 }; 550 QEDHeader le_header; 551 uint8_t *l1_table = NULL; 552 size_t l1_size = header.cluster_size * header.table_size; 553 int ret = 0; 554 BlockDriverState *bs = NULL; 555 556 ret = bdrv_create_file(filename, NULL); 557 if (ret < 0) { 558 return ret; 559 } 560 561 ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB); 562 if (ret < 0) { 563 return ret; 564 } 565 566 /* File must start empty and grow, check truncate is supported */ 567 ret = bdrv_truncate(bs, 0); 568 if (ret < 0) { 569 goto out; 570 } 571 572 if (backing_file) { 573 header.features |= QED_F_BACKING_FILE; 574 header.backing_filename_offset = sizeof(le_header); 575 header.backing_filename_size = strlen(backing_file); 576 577 if (qed_fmt_is_raw(backing_fmt)) { 578 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 579 } 580 } 581 582 qed_header_cpu_to_le(&header, &le_header); 583 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header)); 584 if (ret < 0) { 585 goto out; 586 } 587 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file, 588 header.backing_filename_size); 589 if (ret < 0) { 590 goto out; 591 } 592 593 l1_table = g_malloc0(l1_size); 594 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size); 595 if (ret < 0) { 596 goto out; 597 } 598 599 ret = 0; /* success */ 600 out: 601 g_free(l1_table); 602 bdrv_unref(bs); 603 return ret; 604 } 605 606 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options) 607 { 608 uint64_t image_size = 0; 609 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 610 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 611 const char *backing_file = NULL; 612 const char *backing_fmt = NULL; 613 614 while (options && options->name) { 615 if (!strcmp(options->name, BLOCK_OPT_SIZE)) { 616 image_size = options->value.n; 617 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) { 618 backing_file = options->value.s; 619 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) { 620 backing_fmt = options->value.s; 621 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) { 622 if (options->value.n) { 623 cluster_size = options->value.n; 624 } 625 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) { 626 if (options->value.n) { 627 table_size = options->value.n; 628 } 629 } 630 options++; 631 } 632 633 if (!qed_is_cluster_size_valid(cluster_size)) { 634 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n", 635 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 636 return -EINVAL; 637 } 638 if (!qed_is_table_size_valid(table_size)) { 639 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n", 640 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 641 return -EINVAL; 642 } 643 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 644 fprintf(stderr, "QED image size must be a non-zero multiple of " 645 "cluster size and less than %" PRIu64 " bytes\n", 646 qed_max_image_size(cluster_size, table_size)); 647 return -EINVAL; 648 } 649 650 return qed_create(filename, cluster_size, image_size, table_size, 651 backing_file, backing_fmt); 652 } 653 654 typedef struct { 655 BlockDriverState *bs; 656 Coroutine *co; 657 uint64_t pos; 658 int64_t status; 659 int *pnum; 660 } QEDIsAllocatedCB; 661 662 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 663 { 664 QEDIsAllocatedCB *cb = opaque; 665 BDRVQEDState *s = cb->bs->opaque; 666 *cb->pnum = len / BDRV_SECTOR_SIZE; 667 switch (ret) { 668 case QED_CLUSTER_FOUND: 669 offset |= qed_offset_into_cluster(s, cb->pos); 670 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset; 671 break; 672 case QED_CLUSTER_ZERO: 673 cb->status = BDRV_BLOCK_ZERO; 674 break; 675 case QED_CLUSTER_L2: 676 case QED_CLUSTER_L1: 677 cb->status = 0; 678 break; 679 default: 680 assert(ret < 0); 681 cb->status = ret; 682 break; 683 } 684 685 if (cb->co) { 686 qemu_coroutine_enter(cb->co, NULL); 687 } 688 } 689 690 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, 691 int64_t sector_num, 692 int nb_sectors, int *pnum) 693 { 694 BDRVQEDState *s = bs->opaque; 695 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 696 QEDIsAllocatedCB cb = { 697 .bs = bs, 698 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, 699 .status = BDRV_BLOCK_OFFSET_MASK, 700 .pnum = pnum, 701 }; 702 QEDRequest request = { .l2_table = NULL }; 703 704 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb); 705 706 /* Now sleep if the callback wasn't invoked immediately */ 707 while (cb.status == BDRV_BLOCK_OFFSET_MASK) { 708 cb.co = qemu_coroutine_self(); 709 qemu_coroutine_yield(); 710 } 711 712 qed_unref_l2_cache_entry(request.l2_table); 713 714 return cb.status; 715 } 716 717 static int bdrv_qed_make_empty(BlockDriverState *bs) 718 { 719 return -ENOTSUP; 720 } 721 722 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 723 { 724 return acb->common.bs->opaque; 725 } 726 727 /** 728 * Read from the backing file or zero-fill if no backing file 729 * 730 * @s: QED state 731 * @pos: Byte position in device 732 * @qiov: Destination I/O vector 733 * @cb: Completion function 734 * @opaque: User data for completion function 735 * 736 * This function reads qiov->size bytes starting at pos from the backing file. 737 * If there is no backing file then zeroes are read. 738 */ 739 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 740 QEMUIOVector *qiov, 741 BlockDriverCompletionFunc *cb, void *opaque) 742 { 743 uint64_t backing_length = 0; 744 size_t size; 745 746 /* If there is a backing file, get its length. Treat the absence of a 747 * backing file like a zero length backing file. 748 */ 749 if (s->bs->backing_hd) { 750 int64_t l = bdrv_getlength(s->bs->backing_hd); 751 if (l < 0) { 752 cb(opaque, l); 753 return; 754 } 755 backing_length = l; 756 } 757 758 /* Zero all sectors if reading beyond the end of the backing file */ 759 if (pos >= backing_length || 760 pos + qiov->size > backing_length) { 761 qemu_iovec_memset(qiov, 0, 0, qiov->size); 762 } 763 764 /* Complete now if there are no backing file sectors to read */ 765 if (pos >= backing_length) { 766 cb(opaque, 0); 767 return; 768 } 769 770 /* If the read straddles the end of the backing file, shorten it */ 771 size = MIN((uint64_t)backing_length - pos, qiov->size); 772 773 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 774 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE, 775 qiov, size / BDRV_SECTOR_SIZE, cb, opaque); 776 } 777 778 typedef struct { 779 GenericCB gencb; 780 BDRVQEDState *s; 781 QEMUIOVector qiov; 782 struct iovec iov; 783 uint64_t offset; 784 } CopyFromBackingFileCB; 785 786 static void qed_copy_from_backing_file_cb(void *opaque, int ret) 787 { 788 CopyFromBackingFileCB *copy_cb = opaque; 789 qemu_vfree(copy_cb->iov.iov_base); 790 gencb_complete(©_cb->gencb, ret); 791 } 792 793 static void qed_copy_from_backing_file_write(void *opaque, int ret) 794 { 795 CopyFromBackingFileCB *copy_cb = opaque; 796 BDRVQEDState *s = copy_cb->s; 797 798 if (ret) { 799 qed_copy_from_backing_file_cb(copy_cb, ret); 800 return; 801 } 802 803 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 804 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE, 805 ©_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE, 806 qed_copy_from_backing_file_cb, copy_cb); 807 } 808 809 /** 810 * Copy data from backing file into the image 811 * 812 * @s: QED state 813 * @pos: Byte position in device 814 * @len: Number of bytes 815 * @offset: Byte offset in image file 816 * @cb: Completion function 817 * @opaque: User data for completion function 818 */ 819 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, 820 uint64_t len, uint64_t offset, 821 BlockDriverCompletionFunc *cb, 822 void *opaque) 823 { 824 CopyFromBackingFileCB *copy_cb; 825 826 /* Skip copy entirely if there is no work to do */ 827 if (len == 0) { 828 cb(opaque, 0); 829 return; 830 } 831 832 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque); 833 copy_cb->s = s; 834 copy_cb->offset = offset; 835 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len); 836 copy_cb->iov.iov_len = len; 837 qemu_iovec_init_external(©_cb->qiov, ©_cb->iov, 1); 838 839 qed_read_backing_file(s, pos, ©_cb->qiov, 840 qed_copy_from_backing_file_write, copy_cb); 841 } 842 843 /** 844 * Link one or more contiguous clusters into a table 845 * 846 * @s: QED state 847 * @table: L2 table 848 * @index: First cluster index 849 * @n: Number of contiguous clusters 850 * @cluster: First cluster offset 851 * 852 * The cluster offset may be an allocated byte offset in the image file, the 853 * zero cluster marker, or the unallocated cluster marker. 854 */ 855 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index, 856 unsigned int n, uint64_t cluster) 857 { 858 int i; 859 for (i = index; i < index + n; i++) { 860 table->offsets[i] = cluster; 861 if (!qed_offset_is_unalloc_cluster(cluster) && 862 !qed_offset_is_zero_cluster(cluster)) { 863 cluster += s->header.cluster_size; 864 } 865 } 866 } 867 868 static void qed_aio_complete_bh(void *opaque) 869 { 870 QEDAIOCB *acb = opaque; 871 BlockDriverCompletionFunc *cb = acb->common.cb; 872 void *user_opaque = acb->common.opaque; 873 int ret = acb->bh_ret; 874 bool *finished = acb->finished; 875 876 qemu_bh_delete(acb->bh); 877 qemu_aio_release(acb); 878 879 /* Invoke callback */ 880 cb(user_opaque, ret); 881 882 /* Signal cancel completion */ 883 if (finished) { 884 *finished = true; 885 } 886 } 887 888 static void qed_aio_complete(QEDAIOCB *acb, int ret) 889 { 890 BDRVQEDState *s = acb_to_s(acb); 891 892 trace_qed_aio_complete(s, acb, ret); 893 894 /* Free resources */ 895 qemu_iovec_destroy(&acb->cur_qiov); 896 qed_unref_l2_cache_entry(acb->request.l2_table); 897 898 /* Free the buffer we may have allocated for zero writes */ 899 if (acb->flags & QED_AIOCB_ZERO) { 900 qemu_vfree(acb->qiov->iov[0].iov_base); 901 acb->qiov->iov[0].iov_base = NULL; 902 } 903 904 /* Arrange for a bh to invoke the completion function */ 905 acb->bh_ret = ret; 906 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb); 907 qemu_bh_schedule(acb->bh); 908 909 /* Start next allocating write request waiting behind this one. Note that 910 * requests enqueue themselves when they first hit an unallocated cluster 911 * but they wait until the entire request is finished before waking up the 912 * next request in the queue. This ensures that we don't cycle through 913 * requests multiple times but rather finish one at a time completely. 914 */ 915 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 916 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next); 917 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 918 if (acb) { 919 qed_aio_next_io(acb, 0); 920 } else if (s->header.features & QED_F_NEED_CHECK) { 921 qed_start_need_check_timer(s); 922 } 923 } 924 } 925 926 /** 927 * Commit the current L2 table to the cache 928 */ 929 static void qed_commit_l2_update(void *opaque, int ret) 930 { 931 QEDAIOCB *acb = opaque; 932 BDRVQEDState *s = acb_to_s(acb); 933 CachedL2Table *l2_table = acb->request.l2_table; 934 uint64_t l2_offset = l2_table->offset; 935 936 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 937 938 /* This is guaranteed to succeed because we just committed the entry to the 939 * cache. 940 */ 941 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 942 assert(acb->request.l2_table != NULL); 943 944 qed_aio_next_io(opaque, ret); 945 } 946 947 /** 948 * Update L1 table with new L2 table offset and write it out 949 */ 950 static void qed_aio_write_l1_update(void *opaque, int ret) 951 { 952 QEDAIOCB *acb = opaque; 953 BDRVQEDState *s = acb_to_s(acb); 954 int index; 955 956 if (ret) { 957 qed_aio_complete(acb, ret); 958 return; 959 } 960 961 index = qed_l1_index(s, acb->cur_pos); 962 s->l1_table->offsets[index] = acb->request.l2_table->offset; 963 964 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb); 965 } 966 967 /** 968 * Update L2 table with new cluster offsets and write them out 969 */ 970 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset) 971 { 972 BDRVQEDState *s = acb_to_s(acb); 973 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 974 int index; 975 976 if (ret) { 977 goto err; 978 } 979 980 if (need_alloc) { 981 qed_unref_l2_cache_entry(acb->request.l2_table); 982 acb->request.l2_table = qed_new_l2_table(s); 983 } 984 985 index = qed_l2_index(s, acb->cur_pos); 986 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 987 offset); 988 989 if (need_alloc) { 990 /* Write out the whole new L2 table */ 991 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true, 992 qed_aio_write_l1_update, acb); 993 } else { 994 /* Write out only the updated part of the L2 table */ 995 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false, 996 qed_aio_next_io, acb); 997 } 998 return; 999 1000 err: 1001 qed_aio_complete(acb, ret); 1002 } 1003 1004 static void qed_aio_write_l2_update_cb(void *opaque, int ret) 1005 { 1006 QEDAIOCB *acb = opaque; 1007 qed_aio_write_l2_update(acb, ret, acb->cur_cluster); 1008 } 1009 1010 /** 1011 * Flush new data clusters before updating the L2 table 1012 * 1013 * This flush is necessary when a backing file is in use. A crash during an 1014 * allocating write could result in empty clusters in the image. If the write 1015 * only touched a subregion of the cluster, then backing image sectors have 1016 * been lost in the untouched region. The solution is to flush after writing a 1017 * new data cluster and before updating the L2 table. 1018 */ 1019 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret) 1020 { 1021 QEDAIOCB *acb = opaque; 1022 BDRVQEDState *s = acb_to_s(acb); 1023 1024 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) { 1025 qed_aio_complete(acb, -EIO); 1026 } 1027 } 1028 1029 /** 1030 * Write data to the image file 1031 */ 1032 static void qed_aio_write_main(void *opaque, int ret) 1033 { 1034 QEDAIOCB *acb = opaque; 1035 BDRVQEDState *s = acb_to_s(acb); 1036 uint64_t offset = acb->cur_cluster + 1037 qed_offset_into_cluster(s, acb->cur_pos); 1038 BlockDriverCompletionFunc *next_fn; 1039 1040 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size); 1041 1042 if (ret) { 1043 qed_aio_complete(acb, ret); 1044 return; 1045 } 1046 1047 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) { 1048 next_fn = qed_aio_next_io; 1049 } else { 1050 if (s->bs->backing_hd) { 1051 next_fn = qed_aio_write_flush_before_l2_update; 1052 } else { 1053 next_fn = qed_aio_write_l2_update_cb; 1054 } 1055 } 1056 1057 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1058 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE, 1059 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1060 next_fn, acb); 1061 } 1062 1063 /** 1064 * Populate back untouched region of new data cluster 1065 */ 1066 static void qed_aio_write_postfill(void *opaque, int ret) 1067 { 1068 QEDAIOCB *acb = opaque; 1069 BDRVQEDState *s = acb_to_s(acb); 1070 uint64_t start = acb->cur_pos + acb->cur_qiov.size; 1071 uint64_t len = 1072 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1073 uint64_t offset = acb->cur_cluster + 1074 qed_offset_into_cluster(s, acb->cur_pos) + 1075 acb->cur_qiov.size; 1076 1077 if (ret) { 1078 qed_aio_complete(acb, ret); 1079 return; 1080 } 1081 1082 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1083 qed_copy_from_backing_file(s, start, len, offset, 1084 qed_aio_write_main, acb); 1085 } 1086 1087 /** 1088 * Populate front untouched region of new data cluster 1089 */ 1090 static void qed_aio_write_prefill(void *opaque, int ret) 1091 { 1092 QEDAIOCB *acb = opaque; 1093 BDRVQEDState *s = acb_to_s(acb); 1094 uint64_t start = qed_start_of_cluster(s, acb->cur_pos); 1095 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos); 1096 1097 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1098 qed_copy_from_backing_file(s, start, len, acb->cur_cluster, 1099 qed_aio_write_postfill, acb); 1100 } 1101 1102 /** 1103 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1104 */ 1105 static bool qed_should_set_need_check(BDRVQEDState *s) 1106 { 1107 /* The flush before L2 update path ensures consistency */ 1108 if (s->bs->backing_hd) { 1109 return false; 1110 } 1111 1112 return !(s->header.features & QED_F_NEED_CHECK); 1113 } 1114 1115 static void qed_aio_write_zero_cluster(void *opaque, int ret) 1116 { 1117 QEDAIOCB *acb = opaque; 1118 1119 if (ret) { 1120 qed_aio_complete(acb, ret); 1121 return; 1122 } 1123 1124 qed_aio_write_l2_update(acb, 0, 1); 1125 } 1126 1127 /** 1128 * Write new data cluster 1129 * 1130 * @acb: Write request 1131 * @len: Length in bytes 1132 * 1133 * This path is taken when writing to previously unallocated clusters. 1134 */ 1135 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1136 { 1137 BDRVQEDState *s = acb_to_s(acb); 1138 BlockDriverCompletionFunc *cb; 1139 1140 /* Cancel timer when the first allocating request comes in */ 1141 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) { 1142 qed_cancel_need_check_timer(s); 1143 } 1144 1145 /* Freeze this request if another allocating write is in progress */ 1146 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 1147 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next); 1148 } 1149 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) || 1150 s->allocating_write_reqs_plugged) { 1151 return; /* wait for existing request to finish */ 1152 } 1153 1154 acb->cur_nclusters = qed_bytes_to_clusters(s, 1155 qed_offset_into_cluster(s, acb->cur_pos) + len); 1156 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1157 1158 if (acb->flags & QED_AIOCB_ZERO) { 1159 /* Skip ahead if the clusters are already zero */ 1160 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1161 qed_aio_next_io(acb, 0); 1162 return; 1163 } 1164 1165 cb = qed_aio_write_zero_cluster; 1166 } else { 1167 cb = qed_aio_write_prefill; 1168 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1169 } 1170 1171 if (qed_should_set_need_check(s)) { 1172 s->header.features |= QED_F_NEED_CHECK; 1173 qed_write_header(s, cb, acb); 1174 } else { 1175 cb(acb, 0); 1176 } 1177 } 1178 1179 /** 1180 * Write data cluster in place 1181 * 1182 * @acb: Write request 1183 * @offset: Cluster offset in bytes 1184 * @len: Length in bytes 1185 * 1186 * This path is taken when writing to already allocated clusters. 1187 */ 1188 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1189 { 1190 /* Allocate buffer for zero writes */ 1191 if (acb->flags & QED_AIOCB_ZERO) { 1192 struct iovec *iov = acb->qiov->iov; 1193 1194 if (!iov->iov_base) { 1195 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len); 1196 memset(iov->iov_base, 0, iov->iov_len); 1197 } 1198 } 1199 1200 /* Calculate the I/O vector */ 1201 acb->cur_cluster = offset; 1202 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1203 1204 /* Do the actual write */ 1205 qed_aio_write_main(acb, 0); 1206 } 1207 1208 /** 1209 * Write data cluster 1210 * 1211 * @opaque: Write request 1212 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1213 * or -errno 1214 * @offset: Cluster offset in bytes 1215 * @len: Length in bytes 1216 * 1217 * Callback from qed_find_cluster(). 1218 */ 1219 static void qed_aio_write_data(void *opaque, int ret, 1220 uint64_t offset, size_t len) 1221 { 1222 QEDAIOCB *acb = opaque; 1223 1224 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1225 1226 acb->find_cluster_ret = ret; 1227 1228 switch (ret) { 1229 case QED_CLUSTER_FOUND: 1230 qed_aio_write_inplace(acb, offset, len); 1231 break; 1232 1233 case QED_CLUSTER_L2: 1234 case QED_CLUSTER_L1: 1235 case QED_CLUSTER_ZERO: 1236 qed_aio_write_alloc(acb, len); 1237 break; 1238 1239 default: 1240 qed_aio_complete(acb, ret); 1241 break; 1242 } 1243 } 1244 1245 /** 1246 * Read data cluster 1247 * 1248 * @opaque: Read request 1249 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1250 * or -errno 1251 * @offset: Cluster offset in bytes 1252 * @len: Length in bytes 1253 * 1254 * Callback from qed_find_cluster(). 1255 */ 1256 static void qed_aio_read_data(void *opaque, int ret, 1257 uint64_t offset, size_t len) 1258 { 1259 QEDAIOCB *acb = opaque; 1260 BDRVQEDState *s = acb_to_s(acb); 1261 BlockDriverState *bs = acb->common.bs; 1262 1263 /* Adjust offset into cluster */ 1264 offset += qed_offset_into_cluster(s, acb->cur_pos); 1265 1266 trace_qed_aio_read_data(s, acb, ret, offset, len); 1267 1268 if (ret < 0) { 1269 goto err; 1270 } 1271 1272 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1273 1274 /* Handle zero cluster and backing file reads */ 1275 if (ret == QED_CLUSTER_ZERO) { 1276 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1277 qed_aio_next_io(acb, 0); 1278 return; 1279 } else if (ret != QED_CLUSTER_FOUND) { 1280 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1281 qed_aio_next_io, acb); 1282 return; 1283 } 1284 1285 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1286 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE, 1287 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1288 qed_aio_next_io, acb); 1289 return; 1290 1291 err: 1292 qed_aio_complete(acb, ret); 1293 } 1294 1295 /** 1296 * Begin next I/O or complete the request 1297 */ 1298 static void qed_aio_next_io(void *opaque, int ret) 1299 { 1300 QEDAIOCB *acb = opaque; 1301 BDRVQEDState *s = acb_to_s(acb); 1302 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ? 1303 qed_aio_write_data : qed_aio_read_data; 1304 1305 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size); 1306 1307 /* Handle I/O error */ 1308 if (ret) { 1309 qed_aio_complete(acb, ret); 1310 return; 1311 } 1312 1313 acb->qiov_offset += acb->cur_qiov.size; 1314 acb->cur_pos += acb->cur_qiov.size; 1315 qemu_iovec_reset(&acb->cur_qiov); 1316 1317 /* Complete request */ 1318 if (acb->cur_pos >= acb->end_pos) { 1319 qed_aio_complete(acb, 0); 1320 return; 1321 } 1322 1323 /* Find next cluster and start I/O */ 1324 qed_find_cluster(s, &acb->request, 1325 acb->cur_pos, acb->end_pos - acb->cur_pos, 1326 io_fn, acb); 1327 } 1328 1329 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs, 1330 int64_t sector_num, 1331 QEMUIOVector *qiov, int nb_sectors, 1332 BlockDriverCompletionFunc *cb, 1333 void *opaque, int flags) 1334 { 1335 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque); 1336 1337 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, 1338 opaque, flags); 1339 1340 acb->flags = flags; 1341 acb->finished = NULL; 1342 acb->qiov = qiov; 1343 acb->qiov_offset = 0; 1344 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; 1345 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE; 1346 acb->request.l2_table = NULL; 1347 qemu_iovec_init(&acb->cur_qiov, qiov->niov); 1348 1349 /* Start request */ 1350 qed_aio_next_io(acb, 0); 1351 return &acb->common; 1352 } 1353 1354 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs, 1355 int64_t sector_num, 1356 QEMUIOVector *qiov, int nb_sectors, 1357 BlockDriverCompletionFunc *cb, 1358 void *opaque) 1359 { 1360 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 1361 } 1362 1363 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs, 1364 int64_t sector_num, 1365 QEMUIOVector *qiov, int nb_sectors, 1366 BlockDriverCompletionFunc *cb, 1367 void *opaque) 1368 { 1369 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, 1370 opaque, QED_AIOCB_WRITE); 1371 } 1372 1373 typedef struct { 1374 Coroutine *co; 1375 int ret; 1376 bool done; 1377 } QEDWriteZeroesCB; 1378 1379 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret) 1380 { 1381 QEDWriteZeroesCB *cb = opaque; 1382 1383 cb->done = true; 1384 cb->ret = ret; 1385 if (cb->co) { 1386 qemu_coroutine_enter(cb->co, NULL); 1387 } 1388 } 1389 1390 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs, 1391 int64_t sector_num, 1392 int nb_sectors) 1393 { 1394 BlockDriverAIOCB *blockacb; 1395 BDRVQEDState *s = bs->opaque; 1396 QEDWriteZeroesCB cb = { .done = false }; 1397 QEMUIOVector qiov; 1398 struct iovec iov; 1399 1400 /* Refuse if there are untouched backing file sectors */ 1401 if (bs->backing_hd) { 1402 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) { 1403 return -ENOTSUP; 1404 } 1405 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) { 1406 return -ENOTSUP; 1407 } 1408 } 1409 1410 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1411 * then it will be allocated during request processing. 1412 */ 1413 iov.iov_base = NULL, 1414 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1415 1416 qemu_iovec_init_external(&qiov, &iov, 1); 1417 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors, 1418 qed_co_write_zeroes_cb, &cb, 1419 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1420 if (!blockacb) { 1421 return -EIO; 1422 } 1423 if (!cb.done) { 1424 cb.co = qemu_coroutine_self(); 1425 qemu_coroutine_yield(); 1426 } 1427 assert(cb.done); 1428 return cb.ret; 1429 } 1430 1431 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset) 1432 { 1433 BDRVQEDState *s = bs->opaque; 1434 uint64_t old_image_size; 1435 int ret; 1436 1437 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1438 s->header.table_size)) { 1439 return -EINVAL; 1440 } 1441 1442 /* Shrinking is currently not supported */ 1443 if ((uint64_t)offset < s->header.image_size) { 1444 return -ENOTSUP; 1445 } 1446 1447 old_image_size = s->header.image_size; 1448 s->header.image_size = offset; 1449 ret = qed_write_header_sync(s); 1450 if (ret < 0) { 1451 s->header.image_size = old_image_size; 1452 } 1453 return ret; 1454 } 1455 1456 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1457 { 1458 BDRVQEDState *s = bs->opaque; 1459 return s->header.image_size; 1460 } 1461 1462 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1463 { 1464 BDRVQEDState *s = bs->opaque; 1465 1466 memset(bdi, 0, sizeof(*bdi)); 1467 bdi->cluster_size = s->header.cluster_size; 1468 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1469 return 0; 1470 } 1471 1472 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1473 const char *backing_file, 1474 const char *backing_fmt) 1475 { 1476 BDRVQEDState *s = bs->opaque; 1477 QEDHeader new_header, le_header; 1478 void *buffer; 1479 size_t buffer_len, backing_file_len; 1480 int ret; 1481 1482 /* Refuse to set backing filename if unknown compat feature bits are 1483 * active. If the image uses an unknown compat feature then we may not 1484 * know the layout of data following the header structure and cannot safely 1485 * add a new string. 1486 */ 1487 if (backing_file && (s->header.compat_features & 1488 ~QED_COMPAT_FEATURE_MASK)) { 1489 return -ENOTSUP; 1490 } 1491 1492 memcpy(&new_header, &s->header, sizeof(new_header)); 1493 1494 new_header.features &= ~(QED_F_BACKING_FILE | 1495 QED_F_BACKING_FORMAT_NO_PROBE); 1496 1497 /* Adjust feature flags */ 1498 if (backing_file) { 1499 new_header.features |= QED_F_BACKING_FILE; 1500 1501 if (qed_fmt_is_raw(backing_fmt)) { 1502 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1503 } 1504 } 1505 1506 /* Calculate new header size */ 1507 backing_file_len = 0; 1508 1509 if (backing_file) { 1510 backing_file_len = strlen(backing_file); 1511 } 1512 1513 buffer_len = sizeof(new_header); 1514 new_header.backing_filename_offset = buffer_len; 1515 new_header.backing_filename_size = backing_file_len; 1516 buffer_len += backing_file_len; 1517 1518 /* Make sure we can rewrite header without failing */ 1519 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1520 return -ENOSPC; 1521 } 1522 1523 /* Prepare new header */ 1524 buffer = g_malloc(buffer_len); 1525 1526 qed_header_cpu_to_le(&new_header, &le_header); 1527 memcpy(buffer, &le_header, sizeof(le_header)); 1528 buffer_len = sizeof(le_header); 1529 1530 if (backing_file) { 1531 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1532 buffer_len += backing_file_len; 1533 } 1534 1535 /* Write new header */ 1536 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1537 g_free(buffer); 1538 if (ret == 0) { 1539 memcpy(&s->header, &new_header, sizeof(new_header)); 1540 } 1541 return ret; 1542 } 1543 1544 static void bdrv_qed_invalidate_cache(BlockDriverState *bs) 1545 { 1546 BDRVQEDState *s = bs->opaque; 1547 1548 bdrv_qed_close(bs); 1549 memset(s, 0, sizeof(BDRVQEDState)); 1550 bdrv_qed_open(bs, NULL, bs->open_flags); 1551 } 1552 1553 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1554 BdrvCheckMode fix) 1555 { 1556 BDRVQEDState *s = bs->opaque; 1557 1558 return qed_check(s, result, !!fix); 1559 } 1560 1561 static QEMUOptionParameter qed_create_options[] = { 1562 { 1563 .name = BLOCK_OPT_SIZE, 1564 .type = OPT_SIZE, 1565 .help = "Virtual disk size (in bytes)" 1566 }, { 1567 .name = BLOCK_OPT_BACKING_FILE, 1568 .type = OPT_STRING, 1569 .help = "File name of a base image" 1570 }, { 1571 .name = BLOCK_OPT_BACKING_FMT, 1572 .type = OPT_STRING, 1573 .help = "Image format of the base image" 1574 }, { 1575 .name = BLOCK_OPT_CLUSTER_SIZE, 1576 .type = OPT_SIZE, 1577 .help = "Cluster size (in bytes)", 1578 .value = { .n = QED_DEFAULT_CLUSTER_SIZE }, 1579 }, { 1580 .name = BLOCK_OPT_TABLE_SIZE, 1581 .type = OPT_SIZE, 1582 .help = "L1/L2 table size (in clusters)" 1583 }, 1584 { /* end of list */ } 1585 }; 1586 1587 static BlockDriver bdrv_qed = { 1588 .format_name = "qed", 1589 .instance_size = sizeof(BDRVQEDState), 1590 .create_options = qed_create_options, 1591 1592 .bdrv_probe = bdrv_qed_probe, 1593 .bdrv_rebind = bdrv_qed_rebind, 1594 .bdrv_open = bdrv_qed_open, 1595 .bdrv_close = bdrv_qed_close, 1596 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1597 .bdrv_create = bdrv_qed_create, 1598 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1599 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status, 1600 .bdrv_make_empty = bdrv_qed_make_empty, 1601 .bdrv_aio_readv = bdrv_qed_aio_readv, 1602 .bdrv_aio_writev = bdrv_qed_aio_writev, 1603 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes, 1604 .bdrv_truncate = bdrv_qed_truncate, 1605 .bdrv_getlength = bdrv_qed_getlength, 1606 .bdrv_get_info = bdrv_qed_get_info, 1607 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1608 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1609 .bdrv_check = bdrv_qed_check, 1610 }; 1611 1612 static void bdrv_qed_init(void) 1613 { 1614 bdrv_register(&bdrv_qed); 1615 } 1616 1617 block_init(bdrv_qed_init); 1618