xref: /openbmc/qemu/block/qed.c (revision 52f91c37)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20 
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23     QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24     bool finished = false;
25 
26     /* Wait for the request to finish */
27     acb->finished = &finished;
28     while (!finished) {
29         qemu_aio_wait();
30     }
31 }
32 
33 static const AIOCBInfo qed_aiocb_info = {
34     .aiocb_size         = sizeof(QEDAIOCB),
35     .cancel             = qed_aio_cancel,
36 };
37 
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39                           const char *filename)
40 {
41     const QEDHeader *header = (const QEDHeader *)buf;
42 
43     if (buf_size < sizeof(*header)) {
44         return 0;
45     }
46     if (le32_to_cpu(header->magic) != QED_MAGIC) {
47         return 0;
48     }
49     return 100;
50 }
51 
52 /**
53  * Check whether an image format is raw
54  *
55  * @fmt:    Backing file format, may be NULL
56  */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59     return fmt && strcmp(fmt, "raw") == 0;
60 }
61 
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64     cpu->magic = le32_to_cpu(le->magic);
65     cpu->cluster_size = le32_to_cpu(le->cluster_size);
66     cpu->table_size = le32_to_cpu(le->table_size);
67     cpu->header_size = le32_to_cpu(le->header_size);
68     cpu->features = le64_to_cpu(le->features);
69     cpu->compat_features = le64_to_cpu(le->compat_features);
70     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72     cpu->image_size = le64_to_cpu(le->image_size);
73     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76 
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79     le->magic = cpu_to_le32(cpu->magic);
80     le->cluster_size = cpu_to_le32(cpu->cluster_size);
81     le->table_size = cpu_to_le32(cpu->table_size);
82     le->header_size = cpu_to_le32(cpu->header_size);
83     le->features = cpu_to_le64(cpu->features);
84     le->compat_features = cpu_to_le64(cpu->compat_features);
85     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87     le->image_size = cpu_to_le64(cpu->image_size);
88     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91 
92 int qed_write_header_sync(BDRVQEDState *s)
93 {
94     QEDHeader le;
95     int ret;
96 
97     qed_header_cpu_to_le(&s->header, &le);
98     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99     if (ret != sizeof(le)) {
100         return ret;
101     }
102     return 0;
103 }
104 
105 typedef struct {
106     GenericCB gencb;
107     BDRVQEDState *s;
108     struct iovec iov;
109     QEMUIOVector qiov;
110     int nsectors;
111     uint8_t *buf;
112 } QEDWriteHeaderCB;
113 
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116     QEDWriteHeaderCB *write_header_cb = opaque;
117 
118     qemu_vfree(write_header_cb->buf);
119     gencb_complete(write_header_cb, ret);
120 }
121 
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124     QEDWriteHeaderCB *write_header_cb = opaque;
125     BDRVQEDState *s = write_header_cb->s;
126 
127     if (ret) {
128         qed_write_header_cb(write_header_cb, ret);
129         return;
130     }
131 
132     /* Update header */
133     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134 
135     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136                     write_header_cb->nsectors, qed_write_header_cb,
137                     write_header_cb);
138 }
139 
140 /**
141  * Update header in-place (does not rewrite backing filename or other strings)
142  *
143  * This function only updates known header fields in-place and does not affect
144  * extra data after the QED header.
145  */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147                              void *opaque)
148 {
149     /* We must write full sectors for O_DIRECT but cannot necessarily generate
150      * the data following the header if an unrecognized compat feature is
151      * active.  Therefore, first read the sectors containing the header, update
152      * them, and write back.
153      */
154 
155     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156                    BDRV_SECTOR_SIZE;
157     size_t len = nsectors * BDRV_SECTOR_SIZE;
158     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159                                                     cb, opaque);
160 
161     write_header_cb->s = s;
162     write_header_cb->nsectors = nsectors;
163     write_header_cb->buf = qemu_blockalign(s->bs, len);
164     write_header_cb->iov.iov_base = write_header_cb->buf;
165     write_header_cb->iov.iov_len = len;
166     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167 
168     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169                    qed_write_header_read_cb, write_header_cb);
170 }
171 
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174     uint64_t table_entries;
175     uint64_t l2_size;
176 
177     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178     l2_size = table_entries * cluster_size;
179 
180     return l2_size * table_entries;
181 }
182 
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186         cluster_size > QED_MAX_CLUSTER_SIZE) {
187         return false;
188     }
189     if (cluster_size & (cluster_size - 1)) {
190         return false; /* not power of 2 */
191     }
192     return true;
193 }
194 
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197     if (table_size < QED_MIN_TABLE_SIZE ||
198         table_size > QED_MAX_TABLE_SIZE) {
199         return false;
200     }
201     if (table_size & (table_size - 1)) {
202         return false; /* not power of 2 */
203     }
204     return true;
205 }
206 
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208                                     uint32_t table_size)
209 {
210     if (image_size % BDRV_SECTOR_SIZE != 0) {
211         return false; /* not multiple of sector size */
212     }
213     if (image_size > qed_max_image_size(cluster_size, table_size)) {
214         return false; /* image is too large */
215     }
216     return true;
217 }
218 
219 /**
220  * Read a string of known length from the image file
221  *
222  * @file:       Image file
223  * @offset:     File offset to start of string, in bytes
224  * @n:          String length in bytes
225  * @buf:        Destination buffer
226  * @buflen:     Destination buffer length in bytes
227  * @ret:        0 on success, -errno on failure
228  *
229  * The string is NUL-terminated.
230  */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232                            char *buf, size_t buflen)
233 {
234     int ret;
235     if (n >= buflen) {
236         return -EINVAL;
237     }
238     ret = bdrv_pread(file, offset, buf, n);
239     if (ret < 0) {
240         return ret;
241     }
242     buf[n] = '\0';
243     return 0;
244 }
245 
246 /**
247  * Allocate new clusters
248  *
249  * @s:          QED state
250  * @n:          Number of contiguous clusters to allocate
251  * @ret:        Offset of first allocated cluster
252  *
253  * This function only produces the offset where the new clusters should be
254  * written.  It updates BDRVQEDState but does not make any changes to the image
255  * file.
256  */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259     uint64_t offset = s->file_size;
260     s->file_size += n * s->header.cluster_size;
261     return offset;
262 }
263 
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266     /* Honor O_DIRECT memory alignment requirements */
267     return qemu_blockalign(s->bs,
268                            s->header.cluster_size * s->header.table_size);
269 }
270 
271 /**
272  * Allocate a new zeroed L2 table
273  */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277 
278     l2_table->table = qed_alloc_table(s);
279     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280 
281     memset(l2_table->table->offsets, 0,
282            s->header.cluster_size * s->header.table_size);
283     return l2_table;
284 }
285 
286 static void qed_aio_next_io(void *opaque, int ret);
287 
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290     assert(!s->allocating_write_reqs_plugged);
291 
292     s->allocating_write_reqs_plugged = true;
293 }
294 
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297     QEDAIOCB *acb;
298 
299     assert(s->allocating_write_reqs_plugged);
300 
301     s->allocating_write_reqs_plugged = false;
302 
303     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304     if (acb) {
305         qed_aio_next_io(acb, 0);
306     }
307 }
308 
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311     /* Do nothing */
312 }
313 
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316     BDRVQEDState *s = opaque;
317 
318     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319 
320     /* No need to wait until flush completes */
321     qed_unplug_allocating_write_reqs(s);
322 }
323 
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326     BDRVQEDState *s = opaque;
327 
328     if (ret) {
329         qed_unplug_allocating_write_reqs(s);
330         return;
331     }
332 
333     s->header.features &= ~QED_F_NEED_CHECK;
334     qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336 
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339     BDRVQEDState *s = opaque;
340 
341     /* The timer should only fire when allocating writes have drained */
342     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343 
344     trace_qed_need_check_timer_cb(s);
345 
346     qed_plug_allocating_write_reqs(s);
347 
348     /* Ensure writes are on disk before clearing flag */
349     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351 
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354     trace_qed_start_need_check_timer(s);
355 
356     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357      * migration.
358      */
359     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362 
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366     trace_qed_cancel_need_check_timer(s);
367     timer_del(s->need_check_timer);
368 }
369 
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372     BDRVQEDState *s = bs->opaque;
373     s->bs = bs;
374 }
375 
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377                          Error **errp)
378 {
379     BDRVQEDState *s = bs->opaque;
380     QEDHeader le_header;
381     int64_t file_size;
382     int ret;
383 
384     s->bs = bs;
385     QSIMPLEQ_INIT(&s->allocating_write_reqs);
386 
387     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388     if (ret < 0) {
389         return ret;
390     }
391     qed_header_le_to_cpu(&le_header, &s->header);
392 
393     if (s->header.magic != QED_MAGIC) {
394         error_setg(errp, "Image not in QED format");
395         return -EINVAL;
396     }
397     if (s->header.features & ~QED_FEATURE_MASK) {
398         /* image uses unsupported feature bits */
399         char buf[64];
400         snprintf(buf, sizeof(buf), "%" PRIx64,
401             s->header.features & ~QED_FEATURE_MASK);
402         error_set(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403             bs->device_name, "QED", buf);
404         return -ENOTSUP;
405     }
406     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407         return -EINVAL;
408     }
409 
410     /* Round down file size to the last cluster */
411     file_size = bdrv_getlength(bs->file);
412     if (file_size < 0) {
413         return file_size;
414     }
415     s->file_size = qed_start_of_cluster(s, file_size);
416 
417     if (!qed_is_table_size_valid(s->header.table_size)) {
418         return -EINVAL;
419     }
420     if (!qed_is_image_size_valid(s->header.image_size,
421                                  s->header.cluster_size,
422                                  s->header.table_size)) {
423         return -EINVAL;
424     }
425     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426         return -EINVAL;
427     }
428 
429     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430                       sizeof(uint64_t);
431     s->l2_shift = ffs(s->header.cluster_size) - 1;
432     s->l2_mask = s->table_nelems - 1;
433     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 
435     if ((s->header.features & QED_F_BACKING_FILE)) {
436         if ((uint64_t)s->header.backing_filename_offset +
437             s->header.backing_filename_size >
438             s->header.cluster_size * s->header.header_size) {
439             return -EINVAL;
440         }
441 
442         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443                               s->header.backing_filename_size, bs->backing_file,
444                               sizeof(bs->backing_file));
445         if (ret < 0) {
446             return ret;
447         }
448 
449         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451         }
452     }
453 
454     /* Reset unknown autoclear feature bits.  This is a backwards
455      * compatibility mechanism that allows images to be opened by older
456      * programs, which "knock out" unknown feature bits.  When an image is
457      * opened by a newer program again it can detect that the autoclear
458      * feature is no longer valid.
459      */
460     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461         !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
462         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 
464         ret = qed_write_header_sync(s);
465         if (ret) {
466             return ret;
467         }
468 
469         /* From here on only known autoclear feature bits are valid */
470         bdrv_flush(bs->file);
471     }
472 
473     s->l1_table = qed_alloc_table(s);
474     qed_init_l2_cache(&s->l2_cache);
475 
476     ret = qed_read_l1_table_sync(s);
477     if (ret) {
478         goto out;
479     }
480 
481     /* If image was not closed cleanly, check consistency */
482     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
483         /* Read-only images cannot be fixed.  There is no risk of corruption
484          * since write operations are not possible.  Therefore, allow
485          * potentially inconsistent images to be opened read-only.  This can
486          * aid data recovery from an otherwise inconsistent image.
487          */
488         if (!bdrv_is_read_only(bs->file) &&
489             !(flags & BDRV_O_INCOMING)) {
490             BdrvCheckResult result = {0};
491 
492             ret = qed_check(s, &result, true);
493             if (ret) {
494                 goto out;
495             }
496         }
497     }
498 
499     s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
500                                             qed_need_check_timer_cb, s);
501 
502 out:
503     if (ret) {
504         qed_free_l2_cache(&s->l2_cache);
505         qemu_vfree(s->l1_table);
506     }
507     return ret;
508 }
509 
510 static int bdrv_qed_refresh_limits(BlockDriverState *bs)
511 {
512     BDRVQEDState *s = bs->opaque;
513 
514     bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
515 
516     return 0;
517 }
518 
519 /* We have nothing to do for QED reopen, stubs just return
520  * success */
521 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
522                                    BlockReopenQueue *queue, Error **errp)
523 {
524     return 0;
525 }
526 
527 static void bdrv_qed_close(BlockDriverState *bs)
528 {
529     BDRVQEDState *s = bs->opaque;
530 
531     qed_cancel_need_check_timer(s);
532     timer_free(s->need_check_timer);
533 
534     /* Ensure writes reach stable storage */
535     bdrv_flush(bs->file);
536 
537     /* Clean shutdown, no check required on next open */
538     if (s->header.features & QED_F_NEED_CHECK) {
539         s->header.features &= ~QED_F_NEED_CHECK;
540         qed_write_header_sync(s);
541     }
542 
543     qed_free_l2_cache(&s->l2_cache);
544     qemu_vfree(s->l1_table);
545 }
546 
547 static int qed_create(const char *filename, uint32_t cluster_size,
548                       uint64_t image_size, uint32_t table_size,
549                       const char *backing_file, const char *backing_fmt,
550                       Error **errp)
551 {
552     QEDHeader header = {
553         .magic = QED_MAGIC,
554         .cluster_size = cluster_size,
555         .table_size = table_size,
556         .header_size = 1,
557         .features = 0,
558         .compat_features = 0,
559         .l1_table_offset = cluster_size,
560         .image_size = image_size,
561     };
562     QEDHeader le_header;
563     uint8_t *l1_table = NULL;
564     size_t l1_size = header.cluster_size * header.table_size;
565     Error *local_err = NULL;
566     int ret = 0;
567     BlockDriverState *bs;
568 
569     ret = bdrv_create_file(filename, NULL, &local_err);
570     if (ret < 0) {
571         error_propagate(errp, local_err);
572         return ret;
573     }
574 
575     bs = NULL;
576     ret = bdrv_open(&bs, filename, NULL, NULL,
577                     BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL, NULL,
578                     &local_err);
579     if (ret < 0) {
580         error_propagate(errp, local_err);
581         return ret;
582     }
583 
584     /* File must start empty and grow, check truncate is supported */
585     ret = bdrv_truncate(bs, 0);
586     if (ret < 0) {
587         goto out;
588     }
589 
590     if (backing_file) {
591         header.features |= QED_F_BACKING_FILE;
592         header.backing_filename_offset = sizeof(le_header);
593         header.backing_filename_size = strlen(backing_file);
594 
595         if (qed_fmt_is_raw(backing_fmt)) {
596             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
597         }
598     }
599 
600     qed_header_cpu_to_le(&header, &le_header);
601     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
602     if (ret < 0) {
603         goto out;
604     }
605     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
606                       header.backing_filename_size);
607     if (ret < 0) {
608         goto out;
609     }
610 
611     l1_table = g_malloc0(l1_size);
612     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
613     if (ret < 0) {
614         goto out;
615     }
616 
617     ret = 0; /* success */
618 out:
619     g_free(l1_table);
620     bdrv_unref(bs);
621     return ret;
622 }
623 
624 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
625                            Error **errp)
626 {
627     uint64_t image_size = 0;
628     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
629     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
630     const char *backing_file = NULL;
631     const char *backing_fmt = NULL;
632 
633     while (options && options->name) {
634         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
635             image_size = options->value.n;
636         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
637             backing_file = options->value.s;
638         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
639             backing_fmt = options->value.s;
640         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
641             if (options->value.n) {
642                 cluster_size = options->value.n;
643             }
644         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
645             if (options->value.n) {
646                 table_size = options->value.n;
647             }
648         }
649         options++;
650     }
651 
652     if (!qed_is_cluster_size_valid(cluster_size)) {
653         error_setg(errp, "QED cluster size must be within range [%u, %u] "
654                          "and power of 2",
655                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
656         return -EINVAL;
657     }
658     if (!qed_is_table_size_valid(table_size)) {
659         error_setg(errp, "QED table size must be within range [%u, %u] "
660                          "and power of 2",
661                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
662         return -EINVAL;
663     }
664     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
665         error_setg(errp, "QED image size must be a non-zero multiple of "
666                          "cluster size and less than %" PRIu64 " bytes",
667                    qed_max_image_size(cluster_size, table_size));
668         return -EINVAL;
669     }
670 
671     return qed_create(filename, cluster_size, image_size, table_size,
672                       backing_file, backing_fmt, errp);
673 }
674 
675 typedef struct {
676     BlockDriverState *bs;
677     Coroutine *co;
678     uint64_t pos;
679     int64_t status;
680     int *pnum;
681 } QEDIsAllocatedCB;
682 
683 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
684 {
685     QEDIsAllocatedCB *cb = opaque;
686     BDRVQEDState *s = cb->bs->opaque;
687     *cb->pnum = len / BDRV_SECTOR_SIZE;
688     switch (ret) {
689     case QED_CLUSTER_FOUND:
690         offset |= qed_offset_into_cluster(s, cb->pos);
691         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
692         break;
693     case QED_CLUSTER_ZERO:
694         cb->status = BDRV_BLOCK_ZERO;
695         break;
696     case QED_CLUSTER_L2:
697     case QED_CLUSTER_L1:
698         cb->status = 0;
699         break;
700     default:
701         assert(ret < 0);
702         cb->status = ret;
703         break;
704     }
705 
706     if (cb->co) {
707         qemu_coroutine_enter(cb->co, NULL);
708     }
709 }
710 
711 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
712                                                  int64_t sector_num,
713                                                  int nb_sectors, int *pnum)
714 {
715     BDRVQEDState *s = bs->opaque;
716     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
717     QEDIsAllocatedCB cb = {
718         .bs = bs,
719         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
720         .status = BDRV_BLOCK_OFFSET_MASK,
721         .pnum = pnum,
722     };
723     QEDRequest request = { .l2_table = NULL };
724 
725     qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
726 
727     /* Now sleep if the callback wasn't invoked immediately */
728     while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
729         cb.co = qemu_coroutine_self();
730         qemu_coroutine_yield();
731     }
732 
733     qed_unref_l2_cache_entry(request.l2_table);
734 
735     return cb.status;
736 }
737 
738 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
739 {
740     return acb->common.bs->opaque;
741 }
742 
743 /**
744  * Read from the backing file or zero-fill if no backing file
745  *
746  * @s:          QED state
747  * @pos:        Byte position in device
748  * @qiov:       Destination I/O vector
749  * @cb:         Completion function
750  * @opaque:     User data for completion function
751  *
752  * This function reads qiov->size bytes starting at pos from the backing file.
753  * If there is no backing file then zeroes are read.
754  */
755 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
756                                   QEMUIOVector *qiov,
757                                   BlockDriverCompletionFunc *cb, void *opaque)
758 {
759     uint64_t backing_length = 0;
760     size_t size;
761 
762     /* If there is a backing file, get its length.  Treat the absence of a
763      * backing file like a zero length backing file.
764      */
765     if (s->bs->backing_hd) {
766         int64_t l = bdrv_getlength(s->bs->backing_hd);
767         if (l < 0) {
768             cb(opaque, l);
769             return;
770         }
771         backing_length = l;
772     }
773 
774     /* Zero all sectors if reading beyond the end of the backing file */
775     if (pos >= backing_length ||
776         pos + qiov->size > backing_length) {
777         qemu_iovec_memset(qiov, 0, 0, qiov->size);
778     }
779 
780     /* Complete now if there are no backing file sectors to read */
781     if (pos >= backing_length) {
782         cb(opaque, 0);
783         return;
784     }
785 
786     /* If the read straddles the end of the backing file, shorten it */
787     size = MIN((uint64_t)backing_length - pos, qiov->size);
788 
789     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
790     bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
791                    qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
792 }
793 
794 typedef struct {
795     GenericCB gencb;
796     BDRVQEDState *s;
797     QEMUIOVector qiov;
798     struct iovec iov;
799     uint64_t offset;
800 } CopyFromBackingFileCB;
801 
802 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
803 {
804     CopyFromBackingFileCB *copy_cb = opaque;
805     qemu_vfree(copy_cb->iov.iov_base);
806     gencb_complete(&copy_cb->gencb, ret);
807 }
808 
809 static void qed_copy_from_backing_file_write(void *opaque, int ret)
810 {
811     CopyFromBackingFileCB *copy_cb = opaque;
812     BDRVQEDState *s = copy_cb->s;
813 
814     if (ret) {
815         qed_copy_from_backing_file_cb(copy_cb, ret);
816         return;
817     }
818 
819     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
820     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
821                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
822                     qed_copy_from_backing_file_cb, copy_cb);
823 }
824 
825 /**
826  * Copy data from backing file into the image
827  *
828  * @s:          QED state
829  * @pos:        Byte position in device
830  * @len:        Number of bytes
831  * @offset:     Byte offset in image file
832  * @cb:         Completion function
833  * @opaque:     User data for completion function
834  */
835 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
836                                        uint64_t len, uint64_t offset,
837                                        BlockDriverCompletionFunc *cb,
838                                        void *opaque)
839 {
840     CopyFromBackingFileCB *copy_cb;
841 
842     /* Skip copy entirely if there is no work to do */
843     if (len == 0) {
844         cb(opaque, 0);
845         return;
846     }
847 
848     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
849     copy_cb->s = s;
850     copy_cb->offset = offset;
851     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
852     copy_cb->iov.iov_len = len;
853     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
854 
855     qed_read_backing_file(s, pos, &copy_cb->qiov,
856                           qed_copy_from_backing_file_write, copy_cb);
857 }
858 
859 /**
860  * Link one or more contiguous clusters into a table
861  *
862  * @s:              QED state
863  * @table:          L2 table
864  * @index:          First cluster index
865  * @n:              Number of contiguous clusters
866  * @cluster:        First cluster offset
867  *
868  * The cluster offset may be an allocated byte offset in the image file, the
869  * zero cluster marker, or the unallocated cluster marker.
870  */
871 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
872                                 unsigned int n, uint64_t cluster)
873 {
874     int i;
875     for (i = index; i < index + n; i++) {
876         table->offsets[i] = cluster;
877         if (!qed_offset_is_unalloc_cluster(cluster) &&
878             !qed_offset_is_zero_cluster(cluster)) {
879             cluster += s->header.cluster_size;
880         }
881     }
882 }
883 
884 static void qed_aio_complete_bh(void *opaque)
885 {
886     QEDAIOCB *acb = opaque;
887     BlockDriverCompletionFunc *cb = acb->common.cb;
888     void *user_opaque = acb->common.opaque;
889     int ret = acb->bh_ret;
890     bool *finished = acb->finished;
891 
892     qemu_bh_delete(acb->bh);
893     qemu_aio_release(acb);
894 
895     /* Invoke callback */
896     cb(user_opaque, ret);
897 
898     /* Signal cancel completion */
899     if (finished) {
900         *finished = true;
901     }
902 }
903 
904 static void qed_aio_complete(QEDAIOCB *acb, int ret)
905 {
906     BDRVQEDState *s = acb_to_s(acb);
907 
908     trace_qed_aio_complete(s, acb, ret);
909 
910     /* Free resources */
911     qemu_iovec_destroy(&acb->cur_qiov);
912     qed_unref_l2_cache_entry(acb->request.l2_table);
913 
914     /* Free the buffer we may have allocated for zero writes */
915     if (acb->flags & QED_AIOCB_ZERO) {
916         qemu_vfree(acb->qiov->iov[0].iov_base);
917         acb->qiov->iov[0].iov_base = NULL;
918     }
919 
920     /* Arrange for a bh to invoke the completion function */
921     acb->bh_ret = ret;
922     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
923     qemu_bh_schedule(acb->bh);
924 
925     /* Start next allocating write request waiting behind this one.  Note that
926      * requests enqueue themselves when they first hit an unallocated cluster
927      * but they wait until the entire request is finished before waking up the
928      * next request in the queue.  This ensures that we don't cycle through
929      * requests multiple times but rather finish one at a time completely.
930      */
931     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
932         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
933         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
934         if (acb) {
935             qed_aio_next_io(acb, 0);
936         } else if (s->header.features & QED_F_NEED_CHECK) {
937             qed_start_need_check_timer(s);
938         }
939     }
940 }
941 
942 /**
943  * Commit the current L2 table to the cache
944  */
945 static void qed_commit_l2_update(void *opaque, int ret)
946 {
947     QEDAIOCB *acb = opaque;
948     BDRVQEDState *s = acb_to_s(acb);
949     CachedL2Table *l2_table = acb->request.l2_table;
950     uint64_t l2_offset = l2_table->offset;
951 
952     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
953 
954     /* This is guaranteed to succeed because we just committed the entry to the
955      * cache.
956      */
957     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
958     assert(acb->request.l2_table != NULL);
959 
960     qed_aio_next_io(opaque, ret);
961 }
962 
963 /**
964  * Update L1 table with new L2 table offset and write it out
965  */
966 static void qed_aio_write_l1_update(void *opaque, int ret)
967 {
968     QEDAIOCB *acb = opaque;
969     BDRVQEDState *s = acb_to_s(acb);
970     int index;
971 
972     if (ret) {
973         qed_aio_complete(acb, ret);
974         return;
975     }
976 
977     index = qed_l1_index(s, acb->cur_pos);
978     s->l1_table->offsets[index] = acb->request.l2_table->offset;
979 
980     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
981 }
982 
983 /**
984  * Update L2 table with new cluster offsets and write them out
985  */
986 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
987 {
988     BDRVQEDState *s = acb_to_s(acb);
989     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
990     int index;
991 
992     if (ret) {
993         goto err;
994     }
995 
996     if (need_alloc) {
997         qed_unref_l2_cache_entry(acb->request.l2_table);
998         acb->request.l2_table = qed_new_l2_table(s);
999     }
1000 
1001     index = qed_l2_index(s, acb->cur_pos);
1002     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1003                          offset);
1004 
1005     if (need_alloc) {
1006         /* Write out the whole new L2 table */
1007         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1008                             qed_aio_write_l1_update, acb);
1009     } else {
1010         /* Write out only the updated part of the L2 table */
1011         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1012                             qed_aio_next_io, acb);
1013     }
1014     return;
1015 
1016 err:
1017     qed_aio_complete(acb, ret);
1018 }
1019 
1020 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1021 {
1022     QEDAIOCB *acb = opaque;
1023     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1024 }
1025 
1026 /**
1027  * Flush new data clusters before updating the L2 table
1028  *
1029  * This flush is necessary when a backing file is in use.  A crash during an
1030  * allocating write could result in empty clusters in the image.  If the write
1031  * only touched a subregion of the cluster, then backing image sectors have
1032  * been lost in the untouched region.  The solution is to flush after writing a
1033  * new data cluster and before updating the L2 table.
1034  */
1035 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1036 {
1037     QEDAIOCB *acb = opaque;
1038     BDRVQEDState *s = acb_to_s(acb);
1039 
1040     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1041         qed_aio_complete(acb, -EIO);
1042     }
1043 }
1044 
1045 /**
1046  * Write data to the image file
1047  */
1048 static void qed_aio_write_main(void *opaque, int ret)
1049 {
1050     QEDAIOCB *acb = opaque;
1051     BDRVQEDState *s = acb_to_s(acb);
1052     uint64_t offset = acb->cur_cluster +
1053                       qed_offset_into_cluster(s, acb->cur_pos);
1054     BlockDriverCompletionFunc *next_fn;
1055 
1056     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1057 
1058     if (ret) {
1059         qed_aio_complete(acb, ret);
1060         return;
1061     }
1062 
1063     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1064         next_fn = qed_aio_next_io;
1065     } else {
1066         if (s->bs->backing_hd) {
1067             next_fn = qed_aio_write_flush_before_l2_update;
1068         } else {
1069             next_fn = qed_aio_write_l2_update_cb;
1070         }
1071     }
1072 
1073     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1074     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1075                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1076                     next_fn, acb);
1077 }
1078 
1079 /**
1080  * Populate back untouched region of new data cluster
1081  */
1082 static void qed_aio_write_postfill(void *opaque, int ret)
1083 {
1084     QEDAIOCB *acb = opaque;
1085     BDRVQEDState *s = acb_to_s(acb);
1086     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1087     uint64_t len =
1088         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1089     uint64_t offset = acb->cur_cluster +
1090                       qed_offset_into_cluster(s, acb->cur_pos) +
1091                       acb->cur_qiov.size;
1092 
1093     if (ret) {
1094         qed_aio_complete(acb, ret);
1095         return;
1096     }
1097 
1098     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1099     qed_copy_from_backing_file(s, start, len, offset,
1100                                 qed_aio_write_main, acb);
1101 }
1102 
1103 /**
1104  * Populate front untouched region of new data cluster
1105  */
1106 static void qed_aio_write_prefill(void *opaque, int ret)
1107 {
1108     QEDAIOCB *acb = opaque;
1109     BDRVQEDState *s = acb_to_s(acb);
1110     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1111     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1112 
1113     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1114     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1115                                 qed_aio_write_postfill, acb);
1116 }
1117 
1118 /**
1119  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1120  */
1121 static bool qed_should_set_need_check(BDRVQEDState *s)
1122 {
1123     /* The flush before L2 update path ensures consistency */
1124     if (s->bs->backing_hd) {
1125         return false;
1126     }
1127 
1128     return !(s->header.features & QED_F_NEED_CHECK);
1129 }
1130 
1131 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1132 {
1133     QEDAIOCB *acb = opaque;
1134 
1135     if (ret) {
1136         qed_aio_complete(acb, ret);
1137         return;
1138     }
1139 
1140     qed_aio_write_l2_update(acb, 0, 1);
1141 }
1142 
1143 /**
1144  * Write new data cluster
1145  *
1146  * @acb:        Write request
1147  * @len:        Length in bytes
1148  *
1149  * This path is taken when writing to previously unallocated clusters.
1150  */
1151 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1152 {
1153     BDRVQEDState *s = acb_to_s(acb);
1154     BlockDriverCompletionFunc *cb;
1155 
1156     /* Cancel timer when the first allocating request comes in */
1157     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1158         qed_cancel_need_check_timer(s);
1159     }
1160 
1161     /* Freeze this request if another allocating write is in progress */
1162     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1163         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1164     }
1165     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1166         s->allocating_write_reqs_plugged) {
1167         return; /* wait for existing request to finish */
1168     }
1169 
1170     acb->cur_nclusters = qed_bytes_to_clusters(s,
1171             qed_offset_into_cluster(s, acb->cur_pos) + len);
1172     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1173 
1174     if (acb->flags & QED_AIOCB_ZERO) {
1175         /* Skip ahead if the clusters are already zero */
1176         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1177             qed_aio_next_io(acb, 0);
1178             return;
1179         }
1180 
1181         cb = qed_aio_write_zero_cluster;
1182     } else {
1183         cb = qed_aio_write_prefill;
1184         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1185     }
1186 
1187     if (qed_should_set_need_check(s)) {
1188         s->header.features |= QED_F_NEED_CHECK;
1189         qed_write_header(s, cb, acb);
1190     } else {
1191         cb(acb, 0);
1192     }
1193 }
1194 
1195 /**
1196  * Write data cluster in place
1197  *
1198  * @acb:        Write request
1199  * @offset:     Cluster offset in bytes
1200  * @len:        Length in bytes
1201  *
1202  * This path is taken when writing to already allocated clusters.
1203  */
1204 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1205 {
1206     /* Allocate buffer for zero writes */
1207     if (acb->flags & QED_AIOCB_ZERO) {
1208         struct iovec *iov = acb->qiov->iov;
1209 
1210         if (!iov->iov_base) {
1211             iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1212             memset(iov->iov_base, 0, iov->iov_len);
1213         }
1214     }
1215 
1216     /* Calculate the I/O vector */
1217     acb->cur_cluster = offset;
1218     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1219 
1220     /* Do the actual write */
1221     qed_aio_write_main(acb, 0);
1222 }
1223 
1224 /**
1225  * Write data cluster
1226  *
1227  * @opaque:     Write request
1228  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1229  *              or -errno
1230  * @offset:     Cluster offset in bytes
1231  * @len:        Length in bytes
1232  *
1233  * Callback from qed_find_cluster().
1234  */
1235 static void qed_aio_write_data(void *opaque, int ret,
1236                                uint64_t offset, size_t len)
1237 {
1238     QEDAIOCB *acb = opaque;
1239 
1240     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1241 
1242     acb->find_cluster_ret = ret;
1243 
1244     switch (ret) {
1245     case QED_CLUSTER_FOUND:
1246         qed_aio_write_inplace(acb, offset, len);
1247         break;
1248 
1249     case QED_CLUSTER_L2:
1250     case QED_CLUSTER_L1:
1251     case QED_CLUSTER_ZERO:
1252         qed_aio_write_alloc(acb, len);
1253         break;
1254 
1255     default:
1256         qed_aio_complete(acb, ret);
1257         break;
1258     }
1259 }
1260 
1261 /**
1262  * Read data cluster
1263  *
1264  * @opaque:     Read request
1265  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1266  *              or -errno
1267  * @offset:     Cluster offset in bytes
1268  * @len:        Length in bytes
1269  *
1270  * Callback from qed_find_cluster().
1271  */
1272 static void qed_aio_read_data(void *opaque, int ret,
1273                               uint64_t offset, size_t len)
1274 {
1275     QEDAIOCB *acb = opaque;
1276     BDRVQEDState *s = acb_to_s(acb);
1277     BlockDriverState *bs = acb->common.bs;
1278 
1279     /* Adjust offset into cluster */
1280     offset += qed_offset_into_cluster(s, acb->cur_pos);
1281 
1282     trace_qed_aio_read_data(s, acb, ret, offset, len);
1283 
1284     if (ret < 0) {
1285         goto err;
1286     }
1287 
1288     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1289 
1290     /* Handle zero cluster and backing file reads */
1291     if (ret == QED_CLUSTER_ZERO) {
1292         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1293         qed_aio_next_io(acb, 0);
1294         return;
1295     } else if (ret != QED_CLUSTER_FOUND) {
1296         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1297                               qed_aio_next_io, acb);
1298         return;
1299     }
1300 
1301     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1302     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1303                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1304                    qed_aio_next_io, acb);
1305     return;
1306 
1307 err:
1308     qed_aio_complete(acb, ret);
1309 }
1310 
1311 /**
1312  * Begin next I/O or complete the request
1313  */
1314 static void qed_aio_next_io(void *opaque, int ret)
1315 {
1316     QEDAIOCB *acb = opaque;
1317     BDRVQEDState *s = acb_to_s(acb);
1318     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1319                                 qed_aio_write_data : qed_aio_read_data;
1320 
1321     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1322 
1323     /* Handle I/O error */
1324     if (ret) {
1325         qed_aio_complete(acb, ret);
1326         return;
1327     }
1328 
1329     acb->qiov_offset += acb->cur_qiov.size;
1330     acb->cur_pos += acb->cur_qiov.size;
1331     qemu_iovec_reset(&acb->cur_qiov);
1332 
1333     /* Complete request */
1334     if (acb->cur_pos >= acb->end_pos) {
1335         qed_aio_complete(acb, 0);
1336         return;
1337     }
1338 
1339     /* Find next cluster and start I/O */
1340     qed_find_cluster(s, &acb->request,
1341                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1342                       io_fn, acb);
1343 }
1344 
1345 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1346                                        int64_t sector_num,
1347                                        QEMUIOVector *qiov, int nb_sectors,
1348                                        BlockDriverCompletionFunc *cb,
1349                                        void *opaque, int flags)
1350 {
1351     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1352 
1353     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1354                         opaque, flags);
1355 
1356     acb->flags = flags;
1357     acb->finished = NULL;
1358     acb->qiov = qiov;
1359     acb->qiov_offset = 0;
1360     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1361     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1362     acb->request.l2_table = NULL;
1363     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1364 
1365     /* Start request */
1366     qed_aio_next_io(acb, 0);
1367     return &acb->common;
1368 }
1369 
1370 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1371                                             int64_t sector_num,
1372                                             QEMUIOVector *qiov, int nb_sectors,
1373                                             BlockDriverCompletionFunc *cb,
1374                                             void *opaque)
1375 {
1376     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1377 }
1378 
1379 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1380                                              int64_t sector_num,
1381                                              QEMUIOVector *qiov, int nb_sectors,
1382                                              BlockDriverCompletionFunc *cb,
1383                                              void *opaque)
1384 {
1385     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1386                          opaque, QED_AIOCB_WRITE);
1387 }
1388 
1389 typedef struct {
1390     Coroutine *co;
1391     int ret;
1392     bool done;
1393 } QEDWriteZeroesCB;
1394 
1395 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1396 {
1397     QEDWriteZeroesCB *cb = opaque;
1398 
1399     cb->done = true;
1400     cb->ret = ret;
1401     if (cb->co) {
1402         qemu_coroutine_enter(cb->co, NULL);
1403     }
1404 }
1405 
1406 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1407                                                  int64_t sector_num,
1408                                                  int nb_sectors,
1409                                                  BdrvRequestFlags flags)
1410 {
1411     BlockDriverAIOCB *blockacb;
1412     BDRVQEDState *s = bs->opaque;
1413     QEDWriteZeroesCB cb = { .done = false };
1414     QEMUIOVector qiov;
1415     struct iovec iov;
1416 
1417     /* Refuse if there are untouched backing file sectors */
1418     if (bs->backing_hd) {
1419         if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1420             return -ENOTSUP;
1421         }
1422         if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1423             return -ENOTSUP;
1424         }
1425     }
1426 
1427     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1428      * then it will be allocated during request processing.
1429      */
1430     iov.iov_base = NULL,
1431     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1432 
1433     qemu_iovec_init_external(&qiov, &iov, 1);
1434     blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1435                              qed_co_write_zeroes_cb, &cb,
1436                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1437     if (!blockacb) {
1438         return -EIO;
1439     }
1440     if (!cb.done) {
1441         cb.co = qemu_coroutine_self();
1442         qemu_coroutine_yield();
1443     }
1444     assert(cb.done);
1445     return cb.ret;
1446 }
1447 
1448 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1449 {
1450     BDRVQEDState *s = bs->opaque;
1451     uint64_t old_image_size;
1452     int ret;
1453 
1454     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1455                                  s->header.table_size)) {
1456         return -EINVAL;
1457     }
1458 
1459     /* Shrinking is currently not supported */
1460     if ((uint64_t)offset < s->header.image_size) {
1461         return -ENOTSUP;
1462     }
1463 
1464     old_image_size = s->header.image_size;
1465     s->header.image_size = offset;
1466     ret = qed_write_header_sync(s);
1467     if (ret < 0) {
1468         s->header.image_size = old_image_size;
1469     }
1470     return ret;
1471 }
1472 
1473 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1474 {
1475     BDRVQEDState *s = bs->opaque;
1476     return s->header.image_size;
1477 }
1478 
1479 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1480 {
1481     BDRVQEDState *s = bs->opaque;
1482 
1483     memset(bdi, 0, sizeof(*bdi));
1484     bdi->cluster_size = s->header.cluster_size;
1485     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1486     bdi->unallocated_blocks_are_zero = true;
1487     bdi->can_write_zeroes_with_unmap = true;
1488     return 0;
1489 }
1490 
1491 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1492                                         const char *backing_file,
1493                                         const char *backing_fmt)
1494 {
1495     BDRVQEDState *s = bs->opaque;
1496     QEDHeader new_header, le_header;
1497     void *buffer;
1498     size_t buffer_len, backing_file_len;
1499     int ret;
1500 
1501     /* Refuse to set backing filename if unknown compat feature bits are
1502      * active.  If the image uses an unknown compat feature then we may not
1503      * know the layout of data following the header structure and cannot safely
1504      * add a new string.
1505      */
1506     if (backing_file && (s->header.compat_features &
1507                          ~QED_COMPAT_FEATURE_MASK)) {
1508         return -ENOTSUP;
1509     }
1510 
1511     memcpy(&new_header, &s->header, sizeof(new_header));
1512 
1513     new_header.features &= ~(QED_F_BACKING_FILE |
1514                              QED_F_BACKING_FORMAT_NO_PROBE);
1515 
1516     /* Adjust feature flags */
1517     if (backing_file) {
1518         new_header.features |= QED_F_BACKING_FILE;
1519 
1520         if (qed_fmt_is_raw(backing_fmt)) {
1521             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1522         }
1523     }
1524 
1525     /* Calculate new header size */
1526     backing_file_len = 0;
1527 
1528     if (backing_file) {
1529         backing_file_len = strlen(backing_file);
1530     }
1531 
1532     buffer_len = sizeof(new_header);
1533     new_header.backing_filename_offset = buffer_len;
1534     new_header.backing_filename_size = backing_file_len;
1535     buffer_len += backing_file_len;
1536 
1537     /* Make sure we can rewrite header without failing */
1538     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1539         return -ENOSPC;
1540     }
1541 
1542     /* Prepare new header */
1543     buffer = g_malloc(buffer_len);
1544 
1545     qed_header_cpu_to_le(&new_header, &le_header);
1546     memcpy(buffer, &le_header, sizeof(le_header));
1547     buffer_len = sizeof(le_header);
1548 
1549     if (backing_file) {
1550         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1551         buffer_len += backing_file_len;
1552     }
1553 
1554     /* Write new header */
1555     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1556     g_free(buffer);
1557     if (ret == 0) {
1558         memcpy(&s->header, &new_header, sizeof(new_header));
1559     }
1560     return ret;
1561 }
1562 
1563 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1564 {
1565     BDRVQEDState *s = bs->opaque;
1566     Error *local_err = NULL;
1567     int ret;
1568 
1569     bdrv_qed_close(bs);
1570 
1571     bdrv_invalidate_cache(bs->file, &local_err);
1572     if (local_err) {
1573         error_propagate(errp, local_err);
1574         return;
1575     }
1576 
1577     memset(s, 0, sizeof(BDRVQEDState));
1578     ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1579     if (local_err) {
1580         error_setg(errp, "Could not reopen qed layer: %s",
1581                    error_get_pretty(local_err));
1582         error_free(local_err);
1583         return;
1584     } else if (ret < 0) {
1585         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1586         return;
1587     }
1588 }
1589 
1590 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1591                           BdrvCheckMode fix)
1592 {
1593     BDRVQEDState *s = bs->opaque;
1594 
1595     return qed_check(s, result, !!fix);
1596 }
1597 
1598 static QEMUOptionParameter qed_create_options[] = {
1599     {
1600         .name = BLOCK_OPT_SIZE,
1601         .type = OPT_SIZE,
1602         .help = "Virtual disk size (in bytes)"
1603     }, {
1604         .name = BLOCK_OPT_BACKING_FILE,
1605         .type = OPT_STRING,
1606         .help = "File name of a base image"
1607     }, {
1608         .name = BLOCK_OPT_BACKING_FMT,
1609         .type = OPT_STRING,
1610         .help = "Image format of the base image"
1611     }, {
1612         .name = BLOCK_OPT_CLUSTER_SIZE,
1613         .type = OPT_SIZE,
1614         .help = "Cluster size (in bytes)",
1615         .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1616     }, {
1617         .name = BLOCK_OPT_TABLE_SIZE,
1618         .type = OPT_SIZE,
1619         .help = "L1/L2 table size (in clusters)"
1620     },
1621     { /* end of list */ }
1622 };
1623 
1624 static BlockDriver bdrv_qed = {
1625     .format_name              = "qed",
1626     .instance_size            = sizeof(BDRVQEDState),
1627     .create_options           = qed_create_options,
1628 
1629     .bdrv_probe               = bdrv_qed_probe,
1630     .bdrv_rebind              = bdrv_qed_rebind,
1631     .bdrv_open                = bdrv_qed_open,
1632     .bdrv_close               = bdrv_qed_close,
1633     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1634     .bdrv_create              = bdrv_qed_create,
1635     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1636     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1637     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1638     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1639     .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1640     .bdrv_truncate            = bdrv_qed_truncate,
1641     .bdrv_getlength           = bdrv_qed_getlength,
1642     .bdrv_get_info            = bdrv_qed_get_info,
1643     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1644     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1645     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1646     .bdrv_check               = bdrv_qed_check,
1647 };
1648 
1649 static void bdrv_qed_init(void)
1650 {
1651     bdrv_register(&bdrv_qed);
1652 }
1653 
1654 block_init(bdrv_qed_init);
1655