1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "qemu/memalign.h" 24 #include "trace.h" 25 #include "qed.h" 26 #include "sysemu/block-backend.h" 27 #include "qapi/qmp/qdict.h" 28 #include "qapi/qobject-input-visitor.h" 29 #include "qapi/qapi-visit-block-core.h" 30 31 static QemuOptsList qed_create_opts; 32 33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 34 const char *filename) 35 { 36 const QEDHeader *header = (const QEDHeader *)buf; 37 38 if (buf_size < sizeof(*header)) { 39 return 0; 40 } 41 if (le32_to_cpu(header->magic) != QED_MAGIC) { 42 return 0; 43 } 44 return 100; 45 } 46 47 /** 48 * Check whether an image format is raw 49 * 50 * @fmt: Backing file format, may be NULL 51 */ 52 static bool qed_fmt_is_raw(const char *fmt) 53 { 54 return fmt && strcmp(fmt, "raw") == 0; 55 } 56 57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 58 { 59 cpu->magic = le32_to_cpu(le->magic); 60 cpu->cluster_size = le32_to_cpu(le->cluster_size); 61 cpu->table_size = le32_to_cpu(le->table_size); 62 cpu->header_size = le32_to_cpu(le->header_size); 63 cpu->features = le64_to_cpu(le->features); 64 cpu->compat_features = le64_to_cpu(le->compat_features); 65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 67 cpu->image_size = le64_to_cpu(le->image_size); 68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 70 } 71 72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 73 { 74 le->magic = cpu_to_le32(cpu->magic); 75 le->cluster_size = cpu_to_le32(cpu->cluster_size); 76 le->table_size = cpu_to_le32(cpu->table_size); 77 le->header_size = cpu_to_le32(cpu->header_size); 78 le->features = cpu_to_le64(cpu->features); 79 le->compat_features = cpu_to_le64(cpu->compat_features); 80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 82 le->image_size = cpu_to_le64(cpu->image_size); 83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 85 } 86 87 int qed_write_header_sync(BDRVQEDState *s) 88 { 89 QEDHeader le; 90 91 qed_header_cpu_to_le(&s->header, &le); 92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0); 93 } 94 95 /** 96 * Update header in-place (does not rewrite backing filename or other strings) 97 * 98 * This function only updates known header fields in-place and does not affect 99 * extra data after the QED header. 100 * 101 * No new allocating reqs can start while this function runs. 102 */ 103 static int coroutine_fn qed_write_header(BDRVQEDState *s) 104 { 105 /* We must write full sectors for O_DIRECT but cannot necessarily generate 106 * the data following the header if an unrecognized compat feature is 107 * active. Therefore, first read the sectors containing the header, update 108 * them, and write back. 109 */ 110 111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 112 size_t len = nsectors * BDRV_SECTOR_SIZE; 113 uint8_t *buf; 114 int ret; 115 116 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 117 118 buf = qemu_blockalign(s->bs, len); 119 120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 121 if (ret < 0) { 122 goto out; 123 } 124 125 /* Update header */ 126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 127 128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 129 if (ret < 0) { 130 goto out; 131 } 132 133 ret = 0; 134 out: 135 qemu_vfree(buf); 136 return ret; 137 } 138 139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 140 { 141 uint64_t table_entries; 142 uint64_t l2_size; 143 144 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 145 l2_size = table_entries * cluster_size; 146 147 return l2_size * table_entries; 148 } 149 150 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 151 { 152 if (cluster_size < QED_MIN_CLUSTER_SIZE || 153 cluster_size > QED_MAX_CLUSTER_SIZE) { 154 return false; 155 } 156 if (cluster_size & (cluster_size - 1)) { 157 return false; /* not power of 2 */ 158 } 159 return true; 160 } 161 162 static bool qed_is_table_size_valid(uint32_t table_size) 163 { 164 if (table_size < QED_MIN_TABLE_SIZE || 165 table_size > QED_MAX_TABLE_SIZE) { 166 return false; 167 } 168 if (table_size & (table_size - 1)) { 169 return false; /* not power of 2 */ 170 } 171 return true; 172 } 173 174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 175 uint32_t table_size) 176 { 177 if (image_size % BDRV_SECTOR_SIZE != 0) { 178 return false; /* not multiple of sector size */ 179 } 180 if (image_size > qed_max_image_size(cluster_size, table_size)) { 181 return false; /* image is too large */ 182 } 183 return true; 184 } 185 186 /** 187 * Read a string of known length from the image file 188 * 189 * @file: Image file 190 * @offset: File offset to start of string, in bytes 191 * @n: String length in bytes 192 * @buf: Destination buffer 193 * @buflen: Destination buffer length in bytes 194 * @ret: 0 on success, -errno on failure 195 * 196 * The string is NUL-terminated. 197 */ 198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 199 char *buf, size_t buflen) 200 { 201 int ret; 202 if (n >= buflen) { 203 return -EINVAL; 204 } 205 ret = bdrv_pread(file, offset, n, buf, 0); 206 if (ret < 0) { 207 return ret; 208 } 209 buf[n] = '\0'; 210 return 0; 211 } 212 213 /** 214 * Allocate new clusters 215 * 216 * @s: QED state 217 * @n: Number of contiguous clusters to allocate 218 * @ret: Offset of first allocated cluster 219 * 220 * This function only produces the offset where the new clusters should be 221 * written. It updates BDRVQEDState but does not make any changes to the image 222 * file. 223 * 224 * Called with table_lock held. 225 */ 226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 227 { 228 uint64_t offset = s->file_size; 229 s->file_size += n * s->header.cluster_size; 230 return offset; 231 } 232 233 QEDTable *qed_alloc_table(BDRVQEDState *s) 234 { 235 /* Honor O_DIRECT memory alignment requirements */ 236 return qemu_blockalign(s->bs, 237 s->header.cluster_size * s->header.table_size); 238 } 239 240 /** 241 * Allocate a new zeroed L2 table 242 * 243 * Called with table_lock held. 244 */ 245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 246 { 247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 248 249 l2_table->table = qed_alloc_table(s); 250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 251 252 memset(l2_table->table->offsets, 0, 253 s->header.cluster_size * s->header.table_size); 254 return l2_table; 255 } 256 257 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 258 { 259 qemu_co_mutex_lock(&s->table_lock); 260 261 /* No reentrancy is allowed. */ 262 assert(!s->allocating_write_reqs_plugged); 263 if (s->allocating_acb != NULL) { 264 /* Another allocating write came concurrently. This cannot happen 265 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 266 */ 267 qemu_co_mutex_unlock(&s->table_lock); 268 return false; 269 } 270 271 s->allocating_write_reqs_plugged = true; 272 qemu_co_mutex_unlock(&s->table_lock); 273 return true; 274 } 275 276 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 277 { 278 qemu_co_mutex_lock(&s->table_lock); 279 assert(s->allocating_write_reqs_plugged); 280 s->allocating_write_reqs_plugged = false; 281 qemu_co_queue_next(&s->allocating_write_reqs); 282 qemu_co_mutex_unlock(&s->table_lock); 283 } 284 285 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 286 { 287 BDRVQEDState *s = opaque; 288 int ret; 289 290 trace_qed_need_check_timer_cb(s); 291 292 if (!qed_plug_allocating_write_reqs(s)) { 293 return; 294 } 295 296 /* Ensure writes are on disk before clearing flag */ 297 ret = bdrv_co_flush(s->bs->file->bs); 298 if (ret < 0) { 299 qed_unplug_allocating_write_reqs(s); 300 return; 301 } 302 303 s->header.features &= ~QED_F_NEED_CHECK; 304 ret = qed_write_header(s); 305 (void) ret; 306 307 qed_unplug_allocating_write_reqs(s); 308 309 ret = bdrv_co_flush(s->bs); 310 (void) ret; 311 } 312 313 static void qed_need_check_timer_cb(void *opaque) 314 { 315 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 316 qemu_coroutine_enter(co); 317 } 318 319 static void qed_start_need_check_timer(BDRVQEDState *s) 320 { 321 trace_qed_start_need_check_timer(s); 322 323 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 324 * migration. 325 */ 326 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 327 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 328 } 329 330 /* It's okay to call this multiple times or when no timer is started */ 331 static void qed_cancel_need_check_timer(BDRVQEDState *s) 332 { 333 trace_qed_cancel_need_check_timer(s); 334 timer_del(s->need_check_timer); 335 } 336 337 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 338 { 339 BDRVQEDState *s = bs->opaque; 340 341 qed_cancel_need_check_timer(s); 342 timer_free(s->need_check_timer); 343 } 344 345 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 346 AioContext *new_context) 347 { 348 BDRVQEDState *s = bs->opaque; 349 350 s->need_check_timer = aio_timer_new(new_context, 351 QEMU_CLOCK_VIRTUAL, SCALE_NS, 352 qed_need_check_timer_cb, s); 353 if (s->header.features & QED_F_NEED_CHECK) { 354 qed_start_need_check_timer(s); 355 } 356 } 357 358 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 359 { 360 BDRVQEDState *s = bs->opaque; 361 362 /* Fire the timer immediately in order to start doing I/O as soon as the 363 * header is flushed. 364 */ 365 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 366 qed_cancel_need_check_timer(s); 367 qed_need_check_timer_entry(s); 368 } 369 } 370 371 static void bdrv_qed_init_state(BlockDriverState *bs) 372 { 373 BDRVQEDState *s = bs->opaque; 374 375 memset(s, 0, sizeof(BDRVQEDState)); 376 s->bs = bs; 377 qemu_co_mutex_init(&s->table_lock); 378 qemu_co_queue_init(&s->allocating_write_reqs); 379 } 380 381 /* Called with table_lock held. */ 382 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 383 int flags, Error **errp) 384 { 385 BDRVQEDState *s = bs->opaque; 386 QEDHeader le_header; 387 int64_t file_size; 388 int ret; 389 390 ret = bdrv_pread(bs->file, 0, sizeof(le_header), &le_header, 0); 391 if (ret < 0) { 392 error_setg(errp, "Failed to read QED header"); 393 return ret; 394 } 395 qed_header_le_to_cpu(&le_header, &s->header); 396 397 if (s->header.magic != QED_MAGIC) { 398 error_setg(errp, "Image not in QED format"); 399 return -EINVAL; 400 } 401 if (s->header.features & ~QED_FEATURE_MASK) { 402 /* image uses unsupported feature bits */ 403 error_setg(errp, "Unsupported QED features: %" PRIx64, 404 s->header.features & ~QED_FEATURE_MASK); 405 return -ENOTSUP; 406 } 407 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 408 error_setg(errp, "QED cluster size is invalid"); 409 return -EINVAL; 410 } 411 412 /* Round down file size to the last cluster */ 413 file_size = bdrv_getlength(bs->file->bs); 414 if (file_size < 0) { 415 error_setg(errp, "Failed to get file length"); 416 return file_size; 417 } 418 s->file_size = qed_start_of_cluster(s, file_size); 419 420 if (!qed_is_table_size_valid(s->header.table_size)) { 421 error_setg(errp, "QED table size is invalid"); 422 return -EINVAL; 423 } 424 if (!qed_is_image_size_valid(s->header.image_size, 425 s->header.cluster_size, 426 s->header.table_size)) { 427 error_setg(errp, "QED image size is invalid"); 428 return -EINVAL; 429 } 430 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 431 error_setg(errp, "QED table offset is invalid"); 432 return -EINVAL; 433 } 434 435 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 436 sizeof(uint64_t); 437 s->l2_shift = ctz32(s->header.cluster_size); 438 s->l2_mask = s->table_nelems - 1; 439 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 440 441 /* Header size calculation must not overflow uint32_t */ 442 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 443 error_setg(errp, "QED header size is too large"); 444 return -EINVAL; 445 } 446 447 if ((s->header.features & QED_F_BACKING_FILE)) { 448 if ((uint64_t)s->header.backing_filename_offset + 449 s->header.backing_filename_size > 450 s->header.cluster_size * s->header.header_size) { 451 error_setg(errp, "QED backing filename offset is invalid"); 452 return -EINVAL; 453 } 454 455 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 456 s->header.backing_filename_size, 457 bs->auto_backing_file, 458 sizeof(bs->auto_backing_file)); 459 if (ret < 0) { 460 error_setg(errp, "Failed to read backing filename"); 461 return ret; 462 } 463 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 464 bs->auto_backing_file); 465 466 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 467 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 468 } 469 } 470 471 /* Reset unknown autoclear feature bits. This is a backwards 472 * compatibility mechanism that allows images to be opened by older 473 * programs, which "knock out" unknown feature bits. When an image is 474 * opened by a newer program again it can detect that the autoclear 475 * feature is no longer valid. 476 */ 477 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 478 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 479 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 480 481 ret = qed_write_header_sync(s); 482 if (ret) { 483 error_setg(errp, "Failed to update header"); 484 return ret; 485 } 486 487 /* From here on only known autoclear feature bits are valid */ 488 bdrv_flush(bs->file->bs); 489 } 490 491 s->l1_table = qed_alloc_table(s); 492 qed_init_l2_cache(&s->l2_cache); 493 494 ret = qed_read_l1_table_sync(s); 495 if (ret) { 496 error_setg(errp, "Failed to read L1 table"); 497 goto out; 498 } 499 500 /* If image was not closed cleanly, check consistency */ 501 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 502 /* Read-only images cannot be fixed. There is no risk of corruption 503 * since write operations are not possible. Therefore, allow 504 * potentially inconsistent images to be opened read-only. This can 505 * aid data recovery from an otherwise inconsistent image. 506 */ 507 if (!bdrv_is_read_only(bs->file->bs) && 508 !(flags & BDRV_O_INACTIVE)) { 509 BdrvCheckResult result = {0}; 510 511 ret = qed_check(s, &result, true); 512 if (ret) { 513 error_setg(errp, "Image corrupted"); 514 goto out; 515 } 516 } 517 } 518 519 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 520 521 out: 522 if (ret) { 523 qed_free_l2_cache(&s->l2_cache); 524 qemu_vfree(s->l1_table); 525 } 526 return ret; 527 } 528 529 typedef struct QEDOpenCo { 530 BlockDriverState *bs; 531 QDict *options; 532 int flags; 533 Error **errp; 534 int ret; 535 } QEDOpenCo; 536 537 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 538 { 539 QEDOpenCo *qoc = opaque; 540 BDRVQEDState *s = qoc->bs->opaque; 541 542 qemu_co_mutex_lock(&s->table_lock); 543 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 544 qemu_co_mutex_unlock(&s->table_lock); 545 } 546 547 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 548 Error **errp) 549 { 550 QEDOpenCo qoc = { 551 .bs = bs, 552 .options = options, 553 .flags = flags, 554 .errp = errp, 555 .ret = -EINPROGRESS 556 }; 557 558 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds, 559 BDRV_CHILD_IMAGE, false, errp); 560 if (!bs->file) { 561 return -EINVAL; 562 } 563 564 bdrv_qed_init_state(bs); 565 if (qemu_in_coroutine()) { 566 bdrv_qed_open_entry(&qoc); 567 } else { 568 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 569 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 570 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 571 } 572 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 573 return qoc.ret; 574 } 575 576 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 577 { 578 BDRVQEDState *s = bs->opaque; 579 580 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 581 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size); 582 } 583 584 /* We have nothing to do for QED reopen, stubs just return 585 * success */ 586 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 587 BlockReopenQueue *queue, Error **errp) 588 { 589 return 0; 590 } 591 592 static void bdrv_qed_close(BlockDriverState *bs) 593 { 594 BDRVQEDState *s = bs->opaque; 595 596 bdrv_qed_detach_aio_context(bs); 597 598 /* Ensure writes reach stable storage */ 599 bdrv_flush(bs->file->bs); 600 601 /* Clean shutdown, no check required on next open */ 602 if (s->header.features & QED_F_NEED_CHECK) { 603 s->header.features &= ~QED_F_NEED_CHECK; 604 qed_write_header_sync(s); 605 } 606 607 qed_free_l2_cache(&s->l2_cache); 608 qemu_vfree(s->l1_table); 609 } 610 611 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 612 Error **errp) 613 { 614 BlockdevCreateOptionsQed *qed_opts; 615 BlockBackend *blk = NULL; 616 BlockDriverState *bs = NULL; 617 618 QEDHeader header; 619 QEDHeader le_header; 620 uint8_t *l1_table = NULL; 621 size_t l1_size; 622 int ret = 0; 623 624 assert(opts->driver == BLOCKDEV_DRIVER_QED); 625 qed_opts = &opts->u.qed; 626 627 /* Validate options and set default values */ 628 if (!qed_opts->has_cluster_size) { 629 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 630 } 631 if (!qed_opts->has_table_size) { 632 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 633 } 634 635 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 636 error_setg(errp, "QED cluster size must be within range [%u, %u] " 637 "and power of 2", 638 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 639 return -EINVAL; 640 } 641 if (!qed_is_table_size_valid(qed_opts->table_size)) { 642 error_setg(errp, "QED table size must be within range [%u, %u] " 643 "and power of 2", 644 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 645 return -EINVAL; 646 } 647 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 648 qed_opts->table_size)) 649 { 650 error_setg(errp, "QED image size must be a non-zero multiple of " 651 "cluster size and less than %" PRIu64 " bytes", 652 qed_max_image_size(qed_opts->cluster_size, 653 qed_opts->table_size)); 654 return -EINVAL; 655 } 656 657 /* Create BlockBackend to write to the image */ 658 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 659 if (bs == NULL) { 660 return -EIO; 661 } 662 663 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 664 errp); 665 if (!blk) { 666 ret = -EPERM; 667 goto out; 668 } 669 blk_set_allow_write_beyond_eof(blk, true); 670 671 /* Prepare image format */ 672 header = (QEDHeader) { 673 .magic = QED_MAGIC, 674 .cluster_size = qed_opts->cluster_size, 675 .table_size = qed_opts->table_size, 676 .header_size = 1, 677 .features = 0, 678 .compat_features = 0, 679 .l1_table_offset = qed_opts->cluster_size, 680 .image_size = qed_opts->size, 681 }; 682 683 l1_size = header.cluster_size * header.table_size; 684 685 /* 686 * The QED format associates file length with allocation status, 687 * so a new file (which is empty) must have a length of 0. 688 */ 689 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 690 if (ret < 0) { 691 goto out; 692 } 693 694 if (qed_opts->has_backing_file) { 695 header.features |= QED_F_BACKING_FILE; 696 header.backing_filename_offset = sizeof(le_header); 697 header.backing_filename_size = strlen(qed_opts->backing_file); 698 699 if (qed_opts->has_backing_fmt) { 700 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 701 if (qed_fmt_is_raw(backing_fmt)) { 702 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 703 } 704 } 705 } 706 707 qed_header_cpu_to_le(&header, &le_header); 708 ret = blk_pwrite(blk, 0, sizeof(le_header), &le_header, 0); 709 if (ret < 0) { 710 goto out; 711 } 712 ret = blk_pwrite(blk, sizeof(le_header), header.backing_filename_size, 713 qed_opts->backing_file, 0); 714 if (ret < 0) { 715 goto out; 716 } 717 718 l1_table = g_malloc0(l1_size); 719 ret = blk_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0); 720 if (ret < 0) { 721 goto out; 722 } 723 724 ret = 0; /* success */ 725 out: 726 g_free(l1_table); 727 blk_unref(blk); 728 bdrv_unref(bs); 729 return ret; 730 } 731 732 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv, 733 const char *filename, 734 QemuOpts *opts, 735 Error **errp) 736 { 737 BlockdevCreateOptions *create_options = NULL; 738 QDict *qdict; 739 Visitor *v; 740 BlockDriverState *bs = NULL; 741 int ret; 742 743 static const QDictRenames opt_renames[] = { 744 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 745 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 746 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 747 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 748 { NULL, NULL }, 749 }; 750 751 /* Parse options and convert legacy syntax */ 752 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 753 754 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 755 ret = -EINVAL; 756 goto fail; 757 } 758 759 /* Create and open the file (protocol layer) */ 760 ret = bdrv_create_file(filename, opts, errp); 761 if (ret < 0) { 762 goto fail; 763 } 764 765 bs = bdrv_open(filename, NULL, NULL, 766 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 767 if (bs == NULL) { 768 ret = -EIO; 769 goto fail; 770 } 771 772 /* Now get the QAPI type BlockdevCreateOptions */ 773 qdict_put_str(qdict, "driver", "qed"); 774 qdict_put_str(qdict, "file", bs->node_name); 775 776 v = qobject_input_visitor_new_flat_confused(qdict, errp); 777 if (!v) { 778 ret = -EINVAL; 779 goto fail; 780 } 781 782 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 783 visit_free(v); 784 if (!create_options) { 785 ret = -EINVAL; 786 goto fail; 787 } 788 789 /* Silently round up size */ 790 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 791 create_options->u.qed.size = 792 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 793 794 /* Create the qed image (format layer) */ 795 ret = bdrv_qed_co_create(create_options, errp); 796 797 fail: 798 qobject_unref(qdict); 799 bdrv_unref(bs); 800 qapi_free_BlockdevCreateOptions(create_options); 801 return ret; 802 } 803 804 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 805 bool want_zero, 806 int64_t pos, int64_t bytes, 807 int64_t *pnum, int64_t *map, 808 BlockDriverState **file) 809 { 810 BDRVQEDState *s = bs->opaque; 811 size_t len = MIN(bytes, SIZE_MAX); 812 int status; 813 QEDRequest request = { .l2_table = NULL }; 814 uint64_t offset; 815 int ret; 816 817 qemu_co_mutex_lock(&s->table_lock); 818 ret = qed_find_cluster(s, &request, pos, &len, &offset); 819 820 *pnum = len; 821 switch (ret) { 822 case QED_CLUSTER_FOUND: 823 *map = offset | qed_offset_into_cluster(s, pos); 824 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 825 *file = bs->file->bs; 826 break; 827 case QED_CLUSTER_ZERO: 828 status = BDRV_BLOCK_ZERO; 829 break; 830 case QED_CLUSTER_L2: 831 case QED_CLUSTER_L1: 832 status = 0; 833 break; 834 default: 835 assert(ret < 0); 836 status = ret; 837 break; 838 } 839 840 qed_unref_l2_cache_entry(request.l2_table); 841 qemu_co_mutex_unlock(&s->table_lock); 842 843 return status; 844 } 845 846 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 847 { 848 return acb->bs->opaque; 849 } 850 851 /** 852 * Read from the backing file or zero-fill if no backing file 853 * 854 * @s: QED state 855 * @pos: Byte position in device 856 * @qiov: Destination I/O vector 857 * 858 * This function reads qiov->size bytes starting at pos from the backing file. 859 * If there is no backing file then zeroes are read. 860 */ 861 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 862 QEMUIOVector *qiov) 863 { 864 if (s->bs->backing) { 865 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 866 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 867 } 868 qemu_iovec_memset(qiov, 0, 0, qiov->size); 869 return 0; 870 } 871 872 /** 873 * Copy data from backing file into the image 874 * 875 * @s: QED state 876 * @pos: Byte position in device 877 * @len: Number of bytes 878 * @offset: Byte offset in image file 879 */ 880 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 881 uint64_t pos, uint64_t len, 882 uint64_t offset) 883 { 884 QEMUIOVector qiov; 885 int ret; 886 887 /* Skip copy entirely if there is no work to do */ 888 if (len == 0) { 889 return 0; 890 } 891 892 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 893 894 ret = qed_read_backing_file(s, pos, &qiov); 895 896 if (ret) { 897 goto out; 898 } 899 900 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 901 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 902 if (ret < 0) { 903 goto out; 904 } 905 ret = 0; 906 out: 907 qemu_vfree(qemu_iovec_buf(&qiov)); 908 return ret; 909 } 910 911 /** 912 * Link one or more contiguous clusters into a table 913 * 914 * @s: QED state 915 * @table: L2 table 916 * @index: First cluster index 917 * @n: Number of contiguous clusters 918 * @cluster: First cluster offset 919 * 920 * The cluster offset may be an allocated byte offset in the image file, the 921 * zero cluster marker, or the unallocated cluster marker. 922 * 923 * Called with table_lock held. 924 */ 925 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 926 int index, unsigned int n, 927 uint64_t cluster) 928 { 929 int i; 930 for (i = index; i < index + n; i++) { 931 table->offsets[i] = cluster; 932 if (!qed_offset_is_unalloc_cluster(cluster) && 933 !qed_offset_is_zero_cluster(cluster)) { 934 cluster += s->header.cluster_size; 935 } 936 } 937 } 938 939 /* Called with table_lock held. */ 940 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 941 { 942 BDRVQEDState *s = acb_to_s(acb); 943 944 /* Free resources */ 945 qemu_iovec_destroy(&acb->cur_qiov); 946 qed_unref_l2_cache_entry(acb->request.l2_table); 947 948 /* Free the buffer we may have allocated for zero writes */ 949 if (acb->flags & QED_AIOCB_ZERO) { 950 qemu_vfree(acb->qiov->iov[0].iov_base); 951 acb->qiov->iov[0].iov_base = NULL; 952 } 953 954 /* Start next allocating write request waiting behind this one. Note that 955 * requests enqueue themselves when they first hit an unallocated cluster 956 * but they wait until the entire request is finished before waking up the 957 * next request in the queue. This ensures that we don't cycle through 958 * requests multiple times but rather finish one at a time completely. 959 */ 960 if (acb == s->allocating_acb) { 961 s->allocating_acb = NULL; 962 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 963 qemu_co_queue_next(&s->allocating_write_reqs); 964 } else if (s->header.features & QED_F_NEED_CHECK) { 965 qed_start_need_check_timer(s); 966 } 967 } 968 } 969 970 /** 971 * Update L1 table with new L2 table offset and write it out 972 * 973 * Called with table_lock held. 974 */ 975 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 976 { 977 BDRVQEDState *s = acb_to_s(acb); 978 CachedL2Table *l2_table = acb->request.l2_table; 979 uint64_t l2_offset = l2_table->offset; 980 int index, ret; 981 982 index = qed_l1_index(s, acb->cur_pos); 983 s->l1_table->offsets[index] = l2_table->offset; 984 985 ret = qed_write_l1_table(s, index, 1); 986 987 /* Commit the current L2 table to the cache */ 988 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 989 990 /* This is guaranteed to succeed because we just committed the entry to the 991 * cache. 992 */ 993 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 994 assert(acb->request.l2_table != NULL); 995 996 return ret; 997 } 998 999 1000 /** 1001 * Update L2 table with new cluster offsets and write them out 1002 * 1003 * Called with table_lock held. 1004 */ 1005 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1006 { 1007 BDRVQEDState *s = acb_to_s(acb); 1008 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1009 int index, ret; 1010 1011 if (need_alloc) { 1012 qed_unref_l2_cache_entry(acb->request.l2_table); 1013 acb->request.l2_table = qed_new_l2_table(s); 1014 } 1015 1016 index = qed_l2_index(s, acb->cur_pos); 1017 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1018 offset); 1019 1020 if (need_alloc) { 1021 /* Write out the whole new L2 table */ 1022 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1023 if (ret) { 1024 return ret; 1025 } 1026 return qed_aio_write_l1_update(acb); 1027 } else { 1028 /* Write out only the updated part of the L2 table */ 1029 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1030 false); 1031 if (ret) { 1032 return ret; 1033 } 1034 } 1035 return 0; 1036 } 1037 1038 /** 1039 * Write data to the image file 1040 * 1041 * Called with table_lock *not* held. 1042 */ 1043 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1044 { 1045 BDRVQEDState *s = acb_to_s(acb); 1046 uint64_t offset = acb->cur_cluster + 1047 qed_offset_into_cluster(s, acb->cur_pos); 1048 1049 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1050 1051 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1052 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1053 &acb->cur_qiov, 0); 1054 } 1055 1056 /** 1057 * Populate untouched regions of new data cluster 1058 * 1059 * Called with table_lock held. 1060 */ 1061 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1062 { 1063 BDRVQEDState *s = acb_to_s(acb); 1064 uint64_t start, len, offset; 1065 int ret; 1066 1067 qemu_co_mutex_unlock(&s->table_lock); 1068 1069 /* Populate front untouched region of new data cluster */ 1070 start = qed_start_of_cluster(s, acb->cur_pos); 1071 len = qed_offset_into_cluster(s, acb->cur_pos); 1072 1073 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1074 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1075 if (ret < 0) { 1076 goto out; 1077 } 1078 1079 /* Populate back untouched region of new data cluster */ 1080 start = acb->cur_pos + acb->cur_qiov.size; 1081 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1082 offset = acb->cur_cluster + 1083 qed_offset_into_cluster(s, acb->cur_pos) + 1084 acb->cur_qiov.size; 1085 1086 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1087 ret = qed_copy_from_backing_file(s, start, len, offset); 1088 if (ret < 0) { 1089 goto out; 1090 } 1091 1092 ret = qed_aio_write_main(acb); 1093 if (ret < 0) { 1094 goto out; 1095 } 1096 1097 if (s->bs->backing) { 1098 /* 1099 * Flush new data clusters before updating the L2 table 1100 * 1101 * This flush is necessary when a backing file is in use. A crash 1102 * during an allocating write could result in empty clusters in the 1103 * image. If the write only touched a subregion of the cluster, 1104 * then backing image sectors have been lost in the untouched 1105 * region. The solution is to flush after writing a new data 1106 * cluster and before updating the L2 table. 1107 */ 1108 ret = bdrv_co_flush(s->bs->file->bs); 1109 } 1110 1111 out: 1112 qemu_co_mutex_lock(&s->table_lock); 1113 return ret; 1114 } 1115 1116 /** 1117 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1118 */ 1119 static bool qed_should_set_need_check(BDRVQEDState *s) 1120 { 1121 /* The flush before L2 update path ensures consistency */ 1122 if (s->bs->backing) { 1123 return false; 1124 } 1125 1126 return !(s->header.features & QED_F_NEED_CHECK); 1127 } 1128 1129 /** 1130 * Write new data cluster 1131 * 1132 * @acb: Write request 1133 * @len: Length in bytes 1134 * 1135 * This path is taken when writing to previously unallocated clusters. 1136 * 1137 * Called with table_lock held. 1138 */ 1139 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1140 { 1141 BDRVQEDState *s = acb_to_s(acb); 1142 int ret; 1143 1144 /* Cancel timer when the first allocating request comes in */ 1145 if (s->allocating_acb == NULL) { 1146 qed_cancel_need_check_timer(s); 1147 } 1148 1149 /* Freeze this request if another allocating write is in progress */ 1150 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1151 if (s->allocating_acb != NULL) { 1152 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1153 assert(s->allocating_acb == NULL); 1154 } 1155 s->allocating_acb = acb; 1156 return -EAGAIN; /* start over with looking up table entries */ 1157 } 1158 1159 acb->cur_nclusters = qed_bytes_to_clusters(s, 1160 qed_offset_into_cluster(s, acb->cur_pos) + len); 1161 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1162 1163 if (acb->flags & QED_AIOCB_ZERO) { 1164 /* Skip ahead if the clusters are already zero */ 1165 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1166 return 0; 1167 } 1168 acb->cur_cluster = 1; 1169 } else { 1170 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1171 } 1172 1173 if (qed_should_set_need_check(s)) { 1174 s->header.features |= QED_F_NEED_CHECK; 1175 ret = qed_write_header(s); 1176 if (ret < 0) { 1177 return ret; 1178 } 1179 } 1180 1181 if (!(acb->flags & QED_AIOCB_ZERO)) { 1182 ret = qed_aio_write_cow(acb); 1183 if (ret < 0) { 1184 return ret; 1185 } 1186 } 1187 1188 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1189 } 1190 1191 /** 1192 * Write data cluster in place 1193 * 1194 * @acb: Write request 1195 * @offset: Cluster offset in bytes 1196 * @len: Length in bytes 1197 * 1198 * This path is taken when writing to already allocated clusters. 1199 * 1200 * Called with table_lock held. 1201 */ 1202 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1203 size_t len) 1204 { 1205 BDRVQEDState *s = acb_to_s(acb); 1206 int r; 1207 1208 qemu_co_mutex_unlock(&s->table_lock); 1209 1210 /* Allocate buffer for zero writes */ 1211 if (acb->flags & QED_AIOCB_ZERO) { 1212 struct iovec *iov = acb->qiov->iov; 1213 1214 if (!iov->iov_base) { 1215 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1216 if (iov->iov_base == NULL) { 1217 r = -ENOMEM; 1218 goto out; 1219 } 1220 memset(iov->iov_base, 0, iov->iov_len); 1221 } 1222 } 1223 1224 /* Calculate the I/O vector */ 1225 acb->cur_cluster = offset; 1226 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1227 1228 /* Do the actual write. */ 1229 r = qed_aio_write_main(acb); 1230 out: 1231 qemu_co_mutex_lock(&s->table_lock); 1232 return r; 1233 } 1234 1235 /** 1236 * Write data cluster 1237 * 1238 * @opaque: Write request 1239 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1240 * @offset: Cluster offset in bytes 1241 * @len: Length in bytes 1242 * 1243 * Called with table_lock held. 1244 */ 1245 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1246 uint64_t offset, size_t len) 1247 { 1248 QEDAIOCB *acb = opaque; 1249 1250 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1251 1252 acb->find_cluster_ret = ret; 1253 1254 switch (ret) { 1255 case QED_CLUSTER_FOUND: 1256 return qed_aio_write_inplace(acb, offset, len); 1257 1258 case QED_CLUSTER_L2: 1259 case QED_CLUSTER_L1: 1260 case QED_CLUSTER_ZERO: 1261 return qed_aio_write_alloc(acb, len); 1262 1263 default: 1264 g_assert_not_reached(); 1265 } 1266 } 1267 1268 /** 1269 * Read data cluster 1270 * 1271 * @opaque: Read request 1272 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1273 * @offset: Cluster offset in bytes 1274 * @len: Length in bytes 1275 * 1276 * Called with table_lock held. 1277 */ 1278 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1279 uint64_t offset, size_t len) 1280 { 1281 QEDAIOCB *acb = opaque; 1282 BDRVQEDState *s = acb_to_s(acb); 1283 BlockDriverState *bs = acb->bs; 1284 int r; 1285 1286 qemu_co_mutex_unlock(&s->table_lock); 1287 1288 /* Adjust offset into cluster */ 1289 offset += qed_offset_into_cluster(s, acb->cur_pos); 1290 1291 trace_qed_aio_read_data(s, acb, ret, offset, len); 1292 1293 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1294 1295 /* Handle zero cluster and backing file reads, otherwise read 1296 * data cluster directly. 1297 */ 1298 if (ret == QED_CLUSTER_ZERO) { 1299 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1300 r = 0; 1301 } else if (ret != QED_CLUSTER_FOUND) { 1302 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1303 } else { 1304 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1305 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1306 &acb->cur_qiov, 0); 1307 } 1308 1309 qemu_co_mutex_lock(&s->table_lock); 1310 return r; 1311 } 1312 1313 /** 1314 * Begin next I/O or complete the request 1315 */ 1316 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1317 { 1318 BDRVQEDState *s = acb_to_s(acb); 1319 uint64_t offset; 1320 size_t len; 1321 int ret; 1322 1323 qemu_co_mutex_lock(&s->table_lock); 1324 while (1) { 1325 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1326 1327 acb->qiov_offset += acb->cur_qiov.size; 1328 acb->cur_pos += acb->cur_qiov.size; 1329 qemu_iovec_reset(&acb->cur_qiov); 1330 1331 /* Complete request */ 1332 if (acb->cur_pos >= acb->end_pos) { 1333 ret = 0; 1334 break; 1335 } 1336 1337 /* Find next cluster and start I/O */ 1338 len = acb->end_pos - acb->cur_pos; 1339 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1340 if (ret < 0) { 1341 break; 1342 } 1343 1344 if (acb->flags & QED_AIOCB_WRITE) { 1345 ret = qed_aio_write_data(acb, ret, offset, len); 1346 } else { 1347 ret = qed_aio_read_data(acb, ret, offset, len); 1348 } 1349 1350 if (ret < 0 && ret != -EAGAIN) { 1351 break; 1352 } 1353 } 1354 1355 trace_qed_aio_complete(s, acb, ret); 1356 qed_aio_complete(acb); 1357 qemu_co_mutex_unlock(&s->table_lock); 1358 return ret; 1359 } 1360 1361 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1362 QEMUIOVector *qiov, int nb_sectors, 1363 int flags) 1364 { 1365 QEDAIOCB acb = { 1366 .bs = bs, 1367 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1368 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1369 .qiov = qiov, 1370 .flags = flags, 1371 }; 1372 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1373 1374 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1375 1376 /* Start request */ 1377 return qed_aio_next_io(&acb); 1378 } 1379 1380 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1381 int64_t sector_num, int nb_sectors, 1382 QEMUIOVector *qiov) 1383 { 1384 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1385 } 1386 1387 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1388 int64_t sector_num, int nb_sectors, 1389 QEMUIOVector *qiov, int flags) 1390 { 1391 assert(!flags); 1392 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1393 } 1394 1395 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1396 int64_t offset, 1397 int64_t bytes, 1398 BdrvRequestFlags flags) 1399 { 1400 BDRVQEDState *s = bs->opaque; 1401 1402 /* 1403 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1404 * then it will be allocated during request processing. 1405 */ 1406 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1407 1408 /* 1409 * QED is not prepared for 63bit write-zero requests, so rely on 1410 * max_pwrite_zeroes. 1411 */ 1412 assert(bytes <= INT_MAX); 1413 1414 /* Fall back if the request is not aligned */ 1415 if (qed_offset_into_cluster(s, offset) || 1416 qed_offset_into_cluster(s, bytes)) { 1417 return -ENOTSUP; 1418 } 1419 1420 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1421 bytes >> BDRV_SECTOR_BITS, 1422 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1423 } 1424 1425 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1426 int64_t offset, 1427 bool exact, 1428 PreallocMode prealloc, 1429 BdrvRequestFlags flags, 1430 Error **errp) 1431 { 1432 BDRVQEDState *s = bs->opaque; 1433 uint64_t old_image_size; 1434 int ret; 1435 1436 if (prealloc != PREALLOC_MODE_OFF) { 1437 error_setg(errp, "Unsupported preallocation mode '%s'", 1438 PreallocMode_str(prealloc)); 1439 return -ENOTSUP; 1440 } 1441 1442 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1443 s->header.table_size)) { 1444 error_setg(errp, "Invalid image size specified"); 1445 return -EINVAL; 1446 } 1447 1448 if ((uint64_t)offset < s->header.image_size) { 1449 error_setg(errp, "Shrinking images is currently not supported"); 1450 return -ENOTSUP; 1451 } 1452 1453 old_image_size = s->header.image_size; 1454 s->header.image_size = offset; 1455 ret = qed_write_header_sync(s); 1456 if (ret < 0) { 1457 s->header.image_size = old_image_size; 1458 error_setg_errno(errp, -ret, "Failed to update the image size"); 1459 } 1460 return ret; 1461 } 1462 1463 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1464 { 1465 BDRVQEDState *s = bs->opaque; 1466 return s->header.image_size; 1467 } 1468 1469 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1470 { 1471 BDRVQEDState *s = bs->opaque; 1472 1473 memset(bdi, 0, sizeof(*bdi)); 1474 bdi->cluster_size = s->header.cluster_size; 1475 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1476 return 0; 1477 } 1478 1479 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1480 const char *backing_file, 1481 const char *backing_fmt) 1482 { 1483 BDRVQEDState *s = bs->opaque; 1484 QEDHeader new_header, le_header; 1485 void *buffer; 1486 size_t buffer_len, backing_file_len; 1487 int ret; 1488 1489 /* Refuse to set backing filename if unknown compat feature bits are 1490 * active. If the image uses an unknown compat feature then we may not 1491 * know the layout of data following the header structure and cannot safely 1492 * add a new string. 1493 */ 1494 if (backing_file && (s->header.compat_features & 1495 ~QED_COMPAT_FEATURE_MASK)) { 1496 return -ENOTSUP; 1497 } 1498 1499 memcpy(&new_header, &s->header, sizeof(new_header)); 1500 1501 new_header.features &= ~(QED_F_BACKING_FILE | 1502 QED_F_BACKING_FORMAT_NO_PROBE); 1503 1504 /* Adjust feature flags */ 1505 if (backing_file) { 1506 new_header.features |= QED_F_BACKING_FILE; 1507 1508 if (qed_fmt_is_raw(backing_fmt)) { 1509 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1510 } 1511 } 1512 1513 /* Calculate new header size */ 1514 backing_file_len = 0; 1515 1516 if (backing_file) { 1517 backing_file_len = strlen(backing_file); 1518 } 1519 1520 buffer_len = sizeof(new_header); 1521 new_header.backing_filename_offset = buffer_len; 1522 new_header.backing_filename_size = backing_file_len; 1523 buffer_len += backing_file_len; 1524 1525 /* Make sure we can rewrite header without failing */ 1526 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1527 return -ENOSPC; 1528 } 1529 1530 /* Prepare new header */ 1531 buffer = g_malloc(buffer_len); 1532 1533 qed_header_cpu_to_le(&new_header, &le_header); 1534 memcpy(buffer, &le_header, sizeof(le_header)); 1535 buffer_len = sizeof(le_header); 1536 1537 if (backing_file) { 1538 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1539 buffer_len += backing_file_len; 1540 } 1541 1542 /* Write new header */ 1543 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0); 1544 g_free(buffer); 1545 if (ret == 0) { 1546 memcpy(&s->header, &new_header, sizeof(new_header)); 1547 } 1548 return ret; 1549 } 1550 1551 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1552 Error **errp) 1553 { 1554 BDRVQEDState *s = bs->opaque; 1555 int ret; 1556 1557 bdrv_qed_close(bs); 1558 1559 bdrv_qed_init_state(bs); 1560 qemu_co_mutex_lock(&s->table_lock); 1561 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1562 qemu_co_mutex_unlock(&s->table_lock); 1563 if (ret < 0) { 1564 error_prepend(errp, "Could not reopen qed layer: "); 1565 } 1566 } 1567 1568 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs, 1569 BdrvCheckResult *result, 1570 BdrvCheckMode fix) 1571 { 1572 BDRVQEDState *s = bs->opaque; 1573 int ret; 1574 1575 qemu_co_mutex_lock(&s->table_lock); 1576 ret = qed_check(s, result, !!fix); 1577 qemu_co_mutex_unlock(&s->table_lock); 1578 1579 return ret; 1580 } 1581 1582 static QemuOptsList qed_create_opts = { 1583 .name = "qed-create-opts", 1584 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1585 .desc = { 1586 { 1587 .name = BLOCK_OPT_SIZE, 1588 .type = QEMU_OPT_SIZE, 1589 .help = "Virtual disk size" 1590 }, 1591 { 1592 .name = BLOCK_OPT_BACKING_FILE, 1593 .type = QEMU_OPT_STRING, 1594 .help = "File name of a base image" 1595 }, 1596 { 1597 .name = BLOCK_OPT_BACKING_FMT, 1598 .type = QEMU_OPT_STRING, 1599 .help = "Image format of the base image" 1600 }, 1601 { 1602 .name = BLOCK_OPT_CLUSTER_SIZE, 1603 .type = QEMU_OPT_SIZE, 1604 .help = "Cluster size (in bytes)", 1605 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1606 }, 1607 { 1608 .name = BLOCK_OPT_TABLE_SIZE, 1609 .type = QEMU_OPT_SIZE, 1610 .help = "L1/L2 table size (in clusters)" 1611 }, 1612 { /* end of list */ } 1613 } 1614 }; 1615 1616 static BlockDriver bdrv_qed = { 1617 .format_name = "qed", 1618 .instance_size = sizeof(BDRVQEDState), 1619 .create_opts = &qed_create_opts, 1620 .is_format = true, 1621 .supports_backing = true, 1622 1623 .bdrv_probe = bdrv_qed_probe, 1624 .bdrv_open = bdrv_qed_open, 1625 .bdrv_close = bdrv_qed_close, 1626 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1627 .bdrv_child_perm = bdrv_default_perms, 1628 .bdrv_co_create = bdrv_qed_co_create, 1629 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1630 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1631 .bdrv_co_block_status = bdrv_qed_co_block_status, 1632 .bdrv_co_readv = bdrv_qed_co_readv, 1633 .bdrv_co_writev = bdrv_qed_co_writev, 1634 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1635 .bdrv_co_truncate = bdrv_qed_co_truncate, 1636 .bdrv_getlength = bdrv_qed_getlength, 1637 .bdrv_get_info = bdrv_qed_get_info, 1638 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1639 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1640 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1641 .bdrv_co_check = bdrv_qed_co_check, 1642 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1643 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1644 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1645 }; 1646 1647 static void bdrv_qed_init(void) 1648 { 1649 bdrv_register(&bdrv_qed); 1650 } 1651 1652 block_init(bdrv_qed_init); 1653