1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "qemu/timer.h" 18 #include "qemu/bswap.h" 19 #include "trace.h" 20 #include "qed.h" 21 #include "qapi/qmp/qerror.h" 22 #include "sysemu/block-backend.h" 23 24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 25 const char *filename) 26 { 27 const QEDHeader *header = (const QEDHeader *)buf; 28 29 if (buf_size < sizeof(*header)) { 30 return 0; 31 } 32 if (le32_to_cpu(header->magic) != QED_MAGIC) { 33 return 0; 34 } 35 return 100; 36 } 37 38 /** 39 * Check whether an image format is raw 40 * 41 * @fmt: Backing file format, may be NULL 42 */ 43 static bool qed_fmt_is_raw(const char *fmt) 44 { 45 return fmt && strcmp(fmt, "raw") == 0; 46 } 47 48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 49 { 50 cpu->magic = le32_to_cpu(le->magic); 51 cpu->cluster_size = le32_to_cpu(le->cluster_size); 52 cpu->table_size = le32_to_cpu(le->table_size); 53 cpu->header_size = le32_to_cpu(le->header_size); 54 cpu->features = le64_to_cpu(le->features); 55 cpu->compat_features = le64_to_cpu(le->compat_features); 56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 58 cpu->image_size = le64_to_cpu(le->image_size); 59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 61 } 62 63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 64 { 65 le->magic = cpu_to_le32(cpu->magic); 66 le->cluster_size = cpu_to_le32(cpu->cluster_size); 67 le->table_size = cpu_to_le32(cpu->table_size); 68 le->header_size = cpu_to_le32(cpu->header_size); 69 le->features = cpu_to_le64(cpu->features); 70 le->compat_features = cpu_to_le64(cpu->compat_features); 71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 73 le->image_size = cpu_to_le64(cpu->image_size); 74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 76 } 77 78 int qed_write_header_sync(BDRVQEDState *s) 79 { 80 QEDHeader le; 81 int ret; 82 83 qed_header_cpu_to_le(&s->header, &le); 84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 85 if (ret != sizeof(le)) { 86 return ret; 87 } 88 return 0; 89 } 90 91 /** 92 * Update header in-place (does not rewrite backing filename or other strings) 93 * 94 * This function only updates known header fields in-place and does not affect 95 * extra data after the QED header. 96 */ 97 static int coroutine_fn qed_write_header(BDRVQEDState *s) 98 { 99 /* We must write full sectors for O_DIRECT but cannot necessarily generate 100 * the data following the header if an unrecognized compat feature is 101 * active. Therefore, first read the sectors containing the header, update 102 * them, and write back. 103 */ 104 105 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 106 size_t len = nsectors * BDRV_SECTOR_SIZE; 107 uint8_t *buf; 108 struct iovec iov; 109 QEMUIOVector qiov; 110 int ret; 111 112 buf = qemu_blockalign(s->bs, len); 113 iov = (struct iovec) { 114 .iov_base = buf, 115 .iov_len = len, 116 }; 117 qemu_iovec_init_external(&qiov, &iov, 1); 118 119 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 120 if (ret < 0) { 121 goto out; 122 } 123 124 /* Update header */ 125 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 126 127 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 128 if (ret < 0) { 129 goto out; 130 } 131 132 ret = 0; 133 out: 134 qemu_vfree(buf); 135 return ret; 136 } 137 138 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 139 { 140 uint64_t table_entries; 141 uint64_t l2_size; 142 143 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 144 l2_size = table_entries * cluster_size; 145 146 return l2_size * table_entries; 147 } 148 149 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 150 { 151 if (cluster_size < QED_MIN_CLUSTER_SIZE || 152 cluster_size > QED_MAX_CLUSTER_SIZE) { 153 return false; 154 } 155 if (cluster_size & (cluster_size - 1)) { 156 return false; /* not power of 2 */ 157 } 158 return true; 159 } 160 161 static bool qed_is_table_size_valid(uint32_t table_size) 162 { 163 if (table_size < QED_MIN_TABLE_SIZE || 164 table_size > QED_MAX_TABLE_SIZE) { 165 return false; 166 } 167 if (table_size & (table_size - 1)) { 168 return false; /* not power of 2 */ 169 } 170 return true; 171 } 172 173 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 174 uint32_t table_size) 175 { 176 if (image_size % BDRV_SECTOR_SIZE != 0) { 177 return false; /* not multiple of sector size */ 178 } 179 if (image_size > qed_max_image_size(cluster_size, table_size)) { 180 return false; /* image is too large */ 181 } 182 return true; 183 } 184 185 /** 186 * Read a string of known length from the image file 187 * 188 * @file: Image file 189 * @offset: File offset to start of string, in bytes 190 * @n: String length in bytes 191 * @buf: Destination buffer 192 * @buflen: Destination buffer length in bytes 193 * @ret: 0 on success, -errno on failure 194 * 195 * The string is NUL-terminated. 196 */ 197 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 198 char *buf, size_t buflen) 199 { 200 int ret; 201 if (n >= buflen) { 202 return -EINVAL; 203 } 204 ret = bdrv_pread(file, offset, buf, n); 205 if (ret < 0) { 206 return ret; 207 } 208 buf[n] = '\0'; 209 return 0; 210 } 211 212 /** 213 * Allocate new clusters 214 * 215 * @s: QED state 216 * @n: Number of contiguous clusters to allocate 217 * @ret: Offset of first allocated cluster 218 * 219 * This function only produces the offset where the new clusters should be 220 * written. It updates BDRVQEDState but does not make any changes to the image 221 * file. 222 */ 223 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 224 { 225 uint64_t offset = s->file_size; 226 s->file_size += n * s->header.cluster_size; 227 return offset; 228 } 229 230 QEDTable *qed_alloc_table(BDRVQEDState *s) 231 { 232 /* Honor O_DIRECT memory alignment requirements */ 233 return qemu_blockalign(s->bs, 234 s->header.cluster_size * s->header.table_size); 235 } 236 237 /** 238 * Allocate a new zeroed L2 table 239 */ 240 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 241 { 242 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 243 244 l2_table->table = qed_alloc_table(s); 245 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 246 247 memset(l2_table->table->offsets, 0, 248 s->header.cluster_size * s->header.table_size); 249 return l2_table; 250 } 251 252 static void qed_plug_allocating_write_reqs(BDRVQEDState *s) 253 { 254 assert(!s->allocating_write_reqs_plugged); 255 256 s->allocating_write_reqs_plugged = true; 257 } 258 259 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 260 { 261 assert(s->allocating_write_reqs_plugged); 262 263 s->allocating_write_reqs_plugged = false; 264 qemu_co_enter_next(&s->allocating_write_reqs); 265 } 266 267 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 268 { 269 BDRVQEDState *s = opaque; 270 int ret; 271 272 /* The timer should only fire when allocating writes have drained */ 273 assert(!s->allocating_acb); 274 275 trace_qed_need_check_timer_cb(s); 276 277 qed_acquire(s); 278 qed_plug_allocating_write_reqs(s); 279 280 /* Ensure writes are on disk before clearing flag */ 281 ret = bdrv_co_flush(s->bs->file->bs); 282 qed_release(s); 283 if (ret < 0) { 284 qed_unplug_allocating_write_reqs(s); 285 return; 286 } 287 288 s->header.features &= ~QED_F_NEED_CHECK; 289 ret = qed_write_header(s); 290 (void) ret; 291 292 qed_unplug_allocating_write_reqs(s); 293 294 ret = bdrv_co_flush(s->bs); 295 (void) ret; 296 } 297 298 static void qed_need_check_timer_cb(void *opaque) 299 { 300 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 301 qemu_coroutine_enter(co); 302 } 303 304 void qed_acquire(BDRVQEDState *s) 305 { 306 aio_context_acquire(bdrv_get_aio_context(s->bs)); 307 } 308 309 void qed_release(BDRVQEDState *s) 310 { 311 aio_context_release(bdrv_get_aio_context(s->bs)); 312 } 313 314 static void qed_start_need_check_timer(BDRVQEDState *s) 315 { 316 trace_qed_start_need_check_timer(s); 317 318 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 319 * migration. 320 */ 321 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 322 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 323 } 324 325 /* It's okay to call this multiple times or when no timer is started */ 326 static void qed_cancel_need_check_timer(BDRVQEDState *s) 327 { 328 trace_qed_cancel_need_check_timer(s); 329 timer_del(s->need_check_timer); 330 } 331 332 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 333 { 334 BDRVQEDState *s = bs->opaque; 335 336 qed_cancel_need_check_timer(s); 337 timer_free(s->need_check_timer); 338 } 339 340 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 341 AioContext *new_context) 342 { 343 BDRVQEDState *s = bs->opaque; 344 345 s->need_check_timer = aio_timer_new(new_context, 346 QEMU_CLOCK_VIRTUAL, SCALE_NS, 347 qed_need_check_timer_cb, s); 348 if (s->header.features & QED_F_NEED_CHECK) { 349 qed_start_need_check_timer(s); 350 } 351 } 352 353 static void bdrv_qed_drain(BlockDriverState *bs) 354 { 355 BDRVQEDState *s = bs->opaque; 356 357 /* Fire the timer immediately in order to start doing I/O as soon as the 358 * header is flushed. 359 */ 360 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 361 qed_cancel_need_check_timer(s); 362 qed_need_check_timer_cb(s); 363 } 364 } 365 366 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, 367 Error **errp) 368 { 369 BDRVQEDState *s = bs->opaque; 370 QEDHeader le_header; 371 int64_t file_size; 372 int ret; 373 374 s->bs = bs; 375 qemu_co_queue_init(&s->allocating_write_reqs); 376 377 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 378 if (ret < 0) { 379 return ret; 380 } 381 qed_header_le_to_cpu(&le_header, &s->header); 382 383 if (s->header.magic != QED_MAGIC) { 384 error_setg(errp, "Image not in QED format"); 385 return -EINVAL; 386 } 387 if (s->header.features & ~QED_FEATURE_MASK) { 388 /* image uses unsupported feature bits */ 389 error_setg(errp, "Unsupported QED features: %" PRIx64, 390 s->header.features & ~QED_FEATURE_MASK); 391 return -ENOTSUP; 392 } 393 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 394 return -EINVAL; 395 } 396 397 /* Round down file size to the last cluster */ 398 file_size = bdrv_getlength(bs->file->bs); 399 if (file_size < 0) { 400 return file_size; 401 } 402 s->file_size = qed_start_of_cluster(s, file_size); 403 404 if (!qed_is_table_size_valid(s->header.table_size)) { 405 return -EINVAL; 406 } 407 if (!qed_is_image_size_valid(s->header.image_size, 408 s->header.cluster_size, 409 s->header.table_size)) { 410 return -EINVAL; 411 } 412 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 413 return -EINVAL; 414 } 415 416 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 417 sizeof(uint64_t); 418 s->l2_shift = ctz32(s->header.cluster_size); 419 s->l2_mask = s->table_nelems - 1; 420 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 421 422 /* Header size calculation must not overflow uint32_t */ 423 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 424 return -EINVAL; 425 } 426 427 if ((s->header.features & QED_F_BACKING_FILE)) { 428 if ((uint64_t)s->header.backing_filename_offset + 429 s->header.backing_filename_size > 430 s->header.cluster_size * s->header.header_size) { 431 return -EINVAL; 432 } 433 434 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 435 s->header.backing_filename_size, bs->backing_file, 436 sizeof(bs->backing_file)); 437 if (ret < 0) { 438 return ret; 439 } 440 441 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 442 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 443 } 444 } 445 446 /* Reset unknown autoclear feature bits. This is a backwards 447 * compatibility mechanism that allows images to be opened by older 448 * programs, which "knock out" unknown feature bits. When an image is 449 * opened by a newer program again it can detect that the autoclear 450 * feature is no longer valid. 451 */ 452 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 453 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 454 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 455 456 ret = qed_write_header_sync(s); 457 if (ret) { 458 return ret; 459 } 460 461 /* From here on only known autoclear feature bits are valid */ 462 bdrv_flush(bs->file->bs); 463 } 464 465 s->l1_table = qed_alloc_table(s); 466 qed_init_l2_cache(&s->l2_cache); 467 468 ret = qed_read_l1_table_sync(s); 469 if (ret) { 470 goto out; 471 } 472 473 /* If image was not closed cleanly, check consistency */ 474 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 475 /* Read-only images cannot be fixed. There is no risk of corruption 476 * since write operations are not possible. Therefore, allow 477 * potentially inconsistent images to be opened read-only. This can 478 * aid data recovery from an otherwise inconsistent image. 479 */ 480 if (!bdrv_is_read_only(bs->file->bs) && 481 !(flags & BDRV_O_INACTIVE)) { 482 BdrvCheckResult result = {0}; 483 484 ret = qed_check(s, &result, true); 485 if (ret) { 486 goto out; 487 } 488 } 489 } 490 491 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 492 493 out: 494 if (ret) { 495 qed_free_l2_cache(&s->l2_cache); 496 qemu_vfree(s->l1_table); 497 } 498 return ret; 499 } 500 501 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 502 Error **errp) 503 { 504 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 505 false, errp); 506 if (!bs->file) { 507 return -EINVAL; 508 } 509 510 return bdrv_qed_do_open(bs, options, flags, errp); 511 } 512 513 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 514 { 515 BDRVQEDState *s = bs->opaque; 516 517 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 518 } 519 520 /* We have nothing to do for QED reopen, stubs just return 521 * success */ 522 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 523 BlockReopenQueue *queue, Error **errp) 524 { 525 return 0; 526 } 527 528 static void bdrv_qed_close(BlockDriverState *bs) 529 { 530 BDRVQEDState *s = bs->opaque; 531 532 bdrv_qed_detach_aio_context(bs); 533 534 /* Ensure writes reach stable storage */ 535 bdrv_flush(bs->file->bs); 536 537 /* Clean shutdown, no check required on next open */ 538 if (s->header.features & QED_F_NEED_CHECK) { 539 s->header.features &= ~QED_F_NEED_CHECK; 540 qed_write_header_sync(s); 541 } 542 543 qed_free_l2_cache(&s->l2_cache); 544 qemu_vfree(s->l1_table); 545 } 546 547 static int qed_create(const char *filename, uint32_t cluster_size, 548 uint64_t image_size, uint32_t table_size, 549 const char *backing_file, const char *backing_fmt, 550 QemuOpts *opts, Error **errp) 551 { 552 QEDHeader header = { 553 .magic = QED_MAGIC, 554 .cluster_size = cluster_size, 555 .table_size = table_size, 556 .header_size = 1, 557 .features = 0, 558 .compat_features = 0, 559 .l1_table_offset = cluster_size, 560 .image_size = image_size, 561 }; 562 QEDHeader le_header; 563 uint8_t *l1_table = NULL; 564 size_t l1_size = header.cluster_size * header.table_size; 565 Error *local_err = NULL; 566 int ret = 0; 567 BlockBackend *blk; 568 569 ret = bdrv_create_file(filename, opts, &local_err); 570 if (ret < 0) { 571 error_propagate(errp, local_err); 572 return ret; 573 } 574 575 blk = blk_new_open(filename, NULL, NULL, 576 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, 577 &local_err); 578 if (blk == NULL) { 579 error_propagate(errp, local_err); 580 return -EIO; 581 } 582 583 blk_set_allow_write_beyond_eof(blk, true); 584 585 /* File must start empty and grow, check truncate is supported */ 586 ret = blk_truncate(blk, 0, errp); 587 if (ret < 0) { 588 goto out; 589 } 590 591 if (backing_file) { 592 header.features |= QED_F_BACKING_FILE; 593 header.backing_filename_offset = sizeof(le_header); 594 header.backing_filename_size = strlen(backing_file); 595 596 if (qed_fmt_is_raw(backing_fmt)) { 597 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 598 } 599 } 600 601 qed_header_cpu_to_le(&header, &le_header); 602 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 603 if (ret < 0) { 604 goto out; 605 } 606 ret = blk_pwrite(blk, sizeof(le_header), backing_file, 607 header.backing_filename_size, 0); 608 if (ret < 0) { 609 goto out; 610 } 611 612 l1_table = g_malloc0(l1_size); 613 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 614 if (ret < 0) { 615 goto out; 616 } 617 618 ret = 0; /* success */ 619 out: 620 g_free(l1_table); 621 blk_unref(blk); 622 return ret; 623 } 624 625 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp) 626 { 627 uint64_t image_size = 0; 628 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 629 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 630 char *backing_file = NULL; 631 char *backing_fmt = NULL; 632 int ret; 633 634 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), 635 BDRV_SECTOR_SIZE); 636 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); 637 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT); 638 cluster_size = qemu_opt_get_size_del(opts, 639 BLOCK_OPT_CLUSTER_SIZE, 640 QED_DEFAULT_CLUSTER_SIZE); 641 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE, 642 QED_DEFAULT_TABLE_SIZE); 643 644 if (!qed_is_cluster_size_valid(cluster_size)) { 645 error_setg(errp, "QED cluster size must be within range [%u, %u] " 646 "and power of 2", 647 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 648 ret = -EINVAL; 649 goto finish; 650 } 651 if (!qed_is_table_size_valid(table_size)) { 652 error_setg(errp, "QED table size must be within range [%u, %u] " 653 "and power of 2", 654 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 655 ret = -EINVAL; 656 goto finish; 657 } 658 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 659 error_setg(errp, "QED image size must be a non-zero multiple of " 660 "cluster size and less than %" PRIu64 " bytes", 661 qed_max_image_size(cluster_size, table_size)); 662 ret = -EINVAL; 663 goto finish; 664 } 665 666 ret = qed_create(filename, cluster_size, image_size, table_size, 667 backing_file, backing_fmt, opts, errp); 668 669 finish: 670 g_free(backing_file); 671 g_free(backing_fmt); 672 return ret; 673 } 674 675 typedef struct { 676 BlockDriverState *bs; 677 Coroutine *co; 678 uint64_t pos; 679 int64_t status; 680 int *pnum; 681 BlockDriverState **file; 682 } QEDIsAllocatedCB; 683 684 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 685 { 686 QEDIsAllocatedCB *cb = opaque; 687 BDRVQEDState *s = cb->bs->opaque; 688 *cb->pnum = len / BDRV_SECTOR_SIZE; 689 switch (ret) { 690 case QED_CLUSTER_FOUND: 691 offset |= qed_offset_into_cluster(s, cb->pos); 692 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset; 693 *cb->file = cb->bs->file->bs; 694 break; 695 case QED_CLUSTER_ZERO: 696 cb->status = BDRV_BLOCK_ZERO; 697 break; 698 case QED_CLUSTER_L2: 699 case QED_CLUSTER_L1: 700 cb->status = 0; 701 break; 702 default: 703 assert(ret < 0); 704 cb->status = ret; 705 break; 706 } 707 708 if (cb->co) { 709 aio_co_wake(cb->co); 710 } 711 } 712 713 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, 714 int64_t sector_num, 715 int nb_sectors, int *pnum, 716 BlockDriverState **file) 717 { 718 BDRVQEDState *s = bs->opaque; 719 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 720 QEDIsAllocatedCB cb = { 721 .bs = bs, 722 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, 723 .status = BDRV_BLOCK_OFFSET_MASK, 724 .pnum = pnum, 725 .file = file, 726 }; 727 QEDRequest request = { .l2_table = NULL }; 728 uint64_t offset; 729 int ret; 730 731 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset); 732 qed_is_allocated_cb(&cb, ret, offset, len); 733 734 /* The callback was invoked immediately */ 735 assert(cb.status != BDRV_BLOCK_OFFSET_MASK); 736 737 qed_unref_l2_cache_entry(request.l2_table); 738 739 return cb.status; 740 } 741 742 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 743 { 744 return acb->bs->opaque; 745 } 746 747 /** 748 * Read from the backing file or zero-fill if no backing file 749 * 750 * @s: QED state 751 * @pos: Byte position in device 752 * @qiov: Destination I/O vector 753 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 754 * @cb: Completion function 755 * @opaque: User data for completion function 756 * 757 * This function reads qiov->size bytes starting at pos from the backing file. 758 * If there is no backing file then zeroes are read. 759 */ 760 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 761 QEMUIOVector *qiov, 762 QEMUIOVector **backing_qiov) 763 { 764 uint64_t backing_length = 0; 765 size_t size; 766 int ret; 767 768 /* If there is a backing file, get its length. Treat the absence of a 769 * backing file like a zero length backing file. 770 */ 771 if (s->bs->backing) { 772 int64_t l = bdrv_getlength(s->bs->backing->bs); 773 if (l < 0) { 774 return l; 775 } 776 backing_length = l; 777 } 778 779 /* Zero all sectors if reading beyond the end of the backing file */ 780 if (pos >= backing_length || 781 pos + qiov->size > backing_length) { 782 qemu_iovec_memset(qiov, 0, 0, qiov->size); 783 } 784 785 /* Complete now if there are no backing file sectors to read */ 786 if (pos >= backing_length) { 787 return 0; 788 } 789 790 /* If the read straddles the end of the backing file, shorten it */ 791 size = MIN((uint64_t)backing_length - pos, qiov->size); 792 793 assert(*backing_qiov == NULL); 794 *backing_qiov = g_new(QEMUIOVector, 1); 795 qemu_iovec_init(*backing_qiov, qiov->niov); 796 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 797 798 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 799 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 800 if (ret < 0) { 801 return ret; 802 } 803 return 0; 804 } 805 806 /** 807 * Copy data from backing file into the image 808 * 809 * @s: QED state 810 * @pos: Byte position in device 811 * @len: Number of bytes 812 * @offset: Byte offset in image file 813 */ 814 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 815 uint64_t pos, uint64_t len, 816 uint64_t offset) 817 { 818 QEMUIOVector qiov; 819 QEMUIOVector *backing_qiov = NULL; 820 struct iovec iov; 821 int ret; 822 823 /* Skip copy entirely if there is no work to do */ 824 if (len == 0) { 825 return 0; 826 } 827 828 iov = (struct iovec) { 829 .iov_base = qemu_blockalign(s->bs, len), 830 .iov_len = len, 831 }; 832 qemu_iovec_init_external(&qiov, &iov, 1); 833 834 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 835 836 if (backing_qiov) { 837 qemu_iovec_destroy(backing_qiov); 838 g_free(backing_qiov); 839 backing_qiov = NULL; 840 } 841 842 if (ret) { 843 goto out; 844 } 845 846 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 847 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 848 if (ret < 0) { 849 goto out; 850 } 851 ret = 0; 852 out: 853 qemu_vfree(iov.iov_base); 854 return ret; 855 } 856 857 /** 858 * Link one or more contiguous clusters into a table 859 * 860 * @s: QED state 861 * @table: L2 table 862 * @index: First cluster index 863 * @n: Number of contiguous clusters 864 * @cluster: First cluster offset 865 * 866 * The cluster offset may be an allocated byte offset in the image file, the 867 * zero cluster marker, or the unallocated cluster marker. 868 */ 869 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 870 int index, unsigned int n, 871 uint64_t cluster) 872 { 873 int i; 874 for (i = index; i < index + n; i++) { 875 table->offsets[i] = cluster; 876 if (!qed_offset_is_unalloc_cluster(cluster) && 877 !qed_offset_is_zero_cluster(cluster)) { 878 cluster += s->header.cluster_size; 879 } 880 } 881 } 882 883 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 884 { 885 BDRVQEDState *s = acb_to_s(acb); 886 887 /* Free resources */ 888 qemu_iovec_destroy(&acb->cur_qiov); 889 qed_unref_l2_cache_entry(acb->request.l2_table); 890 891 /* Free the buffer we may have allocated for zero writes */ 892 if (acb->flags & QED_AIOCB_ZERO) { 893 qemu_vfree(acb->qiov->iov[0].iov_base); 894 acb->qiov->iov[0].iov_base = NULL; 895 } 896 897 /* Start next allocating write request waiting behind this one. Note that 898 * requests enqueue themselves when they first hit an unallocated cluster 899 * but they wait until the entire request is finished before waking up the 900 * next request in the queue. This ensures that we don't cycle through 901 * requests multiple times but rather finish one at a time completely. 902 */ 903 if (acb == s->allocating_acb) { 904 s->allocating_acb = NULL; 905 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 906 qemu_co_enter_next(&s->allocating_write_reqs); 907 } else if (s->header.features & QED_F_NEED_CHECK) { 908 qed_start_need_check_timer(s); 909 } 910 } 911 } 912 913 /** 914 * Update L1 table with new L2 table offset and write it out 915 */ 916 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 917 { 918 BDRVQEDState *s = acb_to_s(acb); 919 CachedL2Table *l2_table = acb->request.l2_table; 920 uint64_t l2_offset = l2_table->offset; 921 int index, ret; 922 923 index = qed_l1_index(s, acb->cur_pos); 924 s->l1_table->offsets[index] = l2_table->offset; 925 926 ret = qed_write_l1_table(s, index, 1); 927 928 /* Commit the current L2 table to the cache */ 929 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 930 931 /* This is guaranteed to succeed because we just committed the entry to the 932 * cache. 933 */ 934 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 935 assert(acb->request.l2_table != NULL); 936 937 return ret; 938 } 939 940 941 /** 942 * Update L2 table with new cluster offsets and write them out 943 */ 944 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 945 { 946 BDRVQEDState *s = acb_to_s(acb); 947 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 948 int index, ret; 949 950 if (need_alloc) { 951 qed_unref_l2_cache_entry(acb->request.l2_table); 952 acb->request.l2_table = qed_new_l2_table(s); 953 } 954 955 index = qed_l2_index(s, acb->cur_pos); 956 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 957 offset); 958 959 if (need_alloc) { 960 /* Write out the whole new L2 table */ 961 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 962 if (ret) { 963 return ret; 964 } 965 return qed_aio_write_l1_update(acb); 966 } else { 967 /* Write out only the updated part of the L2 table */ 968 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 969 false); 970 if (ret) { 971 return ret; 972 } 973 } 974 return 0; 975 } 976 977 /** 978 * Write data to the image file 979 */ 980 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 981 { 982 BDRVQEDState *s = acb_to_s(acb); 983 uint64_t offset = acb->cur_cluster + 984 qed_offset_into_cluster(s, acb->cur_pos); 985 int ret; 986 987 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 988 989 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 990 ret = bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 991 &acb->cur_qiov, 0); 992 if (ret < 0) { 993 return ret; 994 } 995 996 if (acb->find_cluster_ret != QED_CLUSTER_FOUND) { 997 if (s->bs->backing) { 998 /* 999 * Flush new data clusters before updating the L2 table 1000 * 1001 * This flush is necessary when a backing file is in use. A crash 1002 * during an allocating write could result in empty clusters in the 1003 * image. If the write only touched a subregion of the cluster, 1004 * then backing image sectors have been lost in the untouched 1005 * region. The solution is to flush after writing a new data 1006 * cluster and before updating the L2 table. 1007 */ 1008 ret = bdrv_co_flush(s->bs->file->bs); 1009 if (ret < 0) { 1010 return ret; 1011 } 1012 } 1013 ret = qed_aio_write_l2_update(acb, acb->cur_cluster); 1014 if (ret < 0) { 1015 return ret; 1016 } 1017 } 1018 return 0; 1019 } 1020 1021 /** 1022 * Populate untouched regions of new data cluster 1023 */ 1024 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1025 { 1026 BDRVQEDState *s = acb_to_s(acb); 1027 uint64_t start, len, offset; 1028 int ret; 1029 1030 /* Populate front untouched region of new data cluster */ 1031 start = qed_start_of_cluster(s, acb->cur_pos); 1032 len = qed_offset_into_cluster(s, acb->cur_pos); 1033 1034 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1035 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1036 if (ret < 0) { 1037 return ret; 1038 } 1039 1040 /* Populate back untouched region of new data cluster */ 1041 start = acb->cur_pos + acb->cur_qiov.size; 1042 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1043 offset = acb->cur_cluster + 1044 qed_offset_into_cluster(s, acb->cur_pos) + 1045 acb->cur_qiov.size; 1046 1047 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1048 ret = qed_copy_from_backing_file(s, start, len, offset); 1049 if (ret < 0) { 1050 return ret; 1051 } 1052 1053 return qed_aio_write_main(acb); 1054 } 1055 1056 /** 1057 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1058 */ 1059 static bool qed_should_set_need_check(BDRVQEDState *s) 1060 { 1061 /* The flush before L2 update path ensures consistency */ 1062 if (s->bs->backing) { 1063 return false; 1064 } 1065 1066 return !(s->header.features & QED_F_NEED_CHECK); 1067 } 1068 1069 /** 1070 * Write new data cluster 1071 * 1072 * @acb: Write request 1073 * @len: Length in bytes 1074 * 1075 * This path is taken when writing to previously unallocated clusters. 1076 */ 1077 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1078 { 1079 BDRVQEDState *s = acb_to_s(acb); 1080 int ret; 1081 1082 /* Cancel timer when the first allocating request comes in */ 1083 if (s->allocating_acb == NULL) { 1084 qed_cancel_need_check_timer(s); 1085 } 1086 1087 /* Freeze this request if another allocating write is in progress */ 1088 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1089 if (s->allocating_acb != NULL) { 1090 qemu_co_queue_wait(&s->allocating_write_reqs, NULL); 1091 assert(s->allocating_acb == NULL); 1092 } 1093 s->allocating_acb = acb; 1094 return -EAGAIN; /* start over with looking up table entries */ 1095 } 1096 1097 acb->cur_nclusters = qed_bytes_to_clusters(s, 1098 qed_offset_into_cluster(s, acb->cur_pos) + len); 1099 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1100 1101 if (acb->flags & QED_AIOCB_ZERO) { 1102 /* Skip ahead if the clusters are already zero */ 1103 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1104 return 0; 1105 } 1106 } else { 1107 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1108 } 1109 1110 if (qed_should_set_need_check(s)) { 1111 s->header.features |= QED_F_NEED_CHECK; 1112 ret = qed_write_header(s); 1113 if (ret < 0) { 1114 return ret; 1115 } 1116 } 1117 1118 if (acb->flags & QED_AIOCB_ZERO) { 1119 ret = qed_aio_write_l2_update(acb, 1); 1120 } else { 1121 ret = qed_aio_write_cow(acb); 1122 } 1123 if (ret < 0) { 1124 return ret; 1125 } 1126 return 0; 1127 } 1128 1129 /** 1130 * Write data cluster in place 1131 * 1132 * @acb: Write request 1133 * @offset: Cluster offset in bytes 1134 * @len: Length in bytes 1135 * 1136 * This path is taken when writing to already allocated clusters. 1137 */ 1138 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1139 size_t len) 1140 { 1141 /* Allocate buffer for zero writes */ 1142 if (acb->flags & QED_AIOCB_ZERO) { 1143 struct iovec *iov = acb->qiov->iov; 1144 1145 if (!iov->iov_base) { 1146 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1147 if (iov->iov_base == NULL) { 1148 return -ENOMEM; 1149 } 1150 memset(iov->iov_base, 0, iov->iov_len); 1151 } 1152 } 1153 1154 /* Calculate the I/O vector */ 1155 acb->cur_cluster = offset; 1156 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1157 1158 /* Do the actual write */ 1159 return qed_aio_write_main(acb); 1160 } 1161 1162 /** 1163 * Write data cluster 1164 * 1165 * @opaque: Write request 1166 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1167 * @offset: Cluster offset in bytes 1168 * @len: Length in bytes 1169 */ 1170 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1171 uint64_t offset, size_t len) 1172 { 1173 QEDAIOCB *acb = opaque; 1174 1175 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1176 1177 acb->find_cluster_ret = ret; 1178 1179 switch (ret) { 1180 case QED_CLUSTER_FOUND: 1181 return qed_aio_write_inplace(acb, offset, len); 1182 1183 case QED_CLUSTER_L2: 1184 case QED_CLUSTER_L1: 1185 case QED_CLUSTER_ZERO: 1186 return qed_aio_write_alloc(acb, len); 1187 1188 default: 1189 g_assert_not_reached(); 1190 } 1191 } 1192 1193 /** 1194 * Read data cluster 1195 * 1196 * @opaque: Read request 1197 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1198 * @offset: Cluster offset in bytes 1199 * @len: Length in bytes 1200 */ 1201 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1202 uint64_t offset, size_t len) 1203 { 1204 QEDAIOCB *acb = opaque; 1205 BDRVQEDState *s = acb_to_s(acb); 1206 BlockDriverState *bs = acb->bs; 1207 1208 /* Adjust offset into cluster */ 1209 offset += qed_offset_into_cluster(s, acb->cur_pos); 1210 1211 trace_qed_aio_read_data(s, acb, ret, offset, len); 1212 1213 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1214 1215 /* Handle zero cluster and backing file reads */ 1216 if (ret == QED_CLUSTER_ZERO) { 1217 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1218 return 0; 1219 } else if (ret != QED_CLUSTER_FOUND) { 1220 return qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1221 &acb->backing_qiov); 1222 } 1223 1224 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1225 ret = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1226 &acb->cur_qiov, 0); 1227 if (ret < 0) { 1228 return ret; 1229 } 1230 return 0; 1231 } 1232 1233 /** 1234 * Begin next I/O or complete the request 1235 */ 1236 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1237 { 1238 BDRVQEDState *s = acb_to_s(acb); 1239 uint64_t offset; 1240 size_t len; 1241 int ret; 1242 1243 while (1) { 1244 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1245 1246 if (acb->backing_qiov) { 1247 qemu_iovec_destroy(acb->backing_qiov); 1248 g_free(acb->backing_qiov); 1249 acb->backing_qiov = NULL; 1250 } 1251 1252 acb->qiov_offset += acb->cur_qiov.size; 1253 acb->cur_pos += acb->cur_qiov.size; 1254 qemu_iovec_reset(&acb->cur_qiov); 1255 1256 /* Complete request */ 1257 if (acb->cur_pos >= acb->end_pos) { 1258 ret = 0; 1259 break; 1260 } 1261 1262 /* Find next cluster and start I/O */ 1263 len = acb->end_pos - acb->cur_pos; 1264 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1265 if (ret < 0) { 1266 break; 1267 } 1268 1269 if (acb->flags & QED_AIOCB_WRITE) { 1270 ret = qed_aio_write_data(acb, ret, offset, len); 1271 } else { 1272 ret = qed_aio_read_data(acb, ret, offset, len); 1273 } 1274 1275 if (ret < 0 && ret != -EAGAIN) { 1276 break; 1277 } 1278 } 1279 1280 trace_qed_aio_complete(s, acb, ret); 1281 qed_aio_complete(acb); 1282 return ret; 1283 } 1284 1285 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1286 QEMUIOVector *qiov, int nb_sectors, 1287 int flags) 1288 { 1289 QEDAIOCB acb = { 1290 .bs = bs, 1291 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1292 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1293 .qiov = qiov, 1294 .flags = flags, 1295 }; 1296 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1297 1298 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1299 1300 /* Start request */ 1301 return qed_aio_next_io(&acb); 1302 } 1303 1304 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1305 int64_t sector_num, int nb_sectors, 1306 QEMUIOVector *qiov) 1307 { 1308 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1309 } 1310 1311 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1312 int64_t sector_num, int nb_sectors, 1313 QEMUIOVector *qiov) 1314 { 1315 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1316 } 1317 1318 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1319 int64_t offset, 1320 int bytes, 1321 BdrvRequestFlags flags) 1322 { 1323 BDRVQEDState *s = bs->opaque; 1324 QEMUIOVector qiov; 1325 struct iovec iov; 1326 1327 /* Fall back if the request is not aligned */ 1328 if (qed_offset_into_cluster(s, offset) || 1329 qed_offset_into_cluster(s, bytes)) { 1330 return -ENOTSUP; 1331 } 1332 1333 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1334 * then it will be allocated during request processing. 1335 */ 1336 iov.iov_base = NULL; 1337 iov.iov_len = bytes; 1338 1339 qemu_iovec_init_external(&qiov, &iov, 1); 1340 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1341 bytes >> BDRV_SECTOR_BITS, 1342 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1343 } 1344 1345 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp) 1346 { 1347 BDRVQEDState *s = bs->opaque; 1348 uint64_t old_image_size; 1349 int ret; 1350 1351 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1352 s->header.table_size)) { 1353 error_setg(errp, "Invalid image size specified"); 1354 return -EINVAL; 1355 } 1356 1357 if ((uint64_t)offset < s->header.image_size) { 1358 error_setg(errp, "Shrinking images is currently not supported"); 1359 return -ENOTSUP; 1360 } 1361 1362 old_image_size = s->header.image_size; 1363 s->header.image_size = offset; 1364 ret = qed_write_header_sync(s); 1365 if (ret < 0) { 1366 s->header.image_size = old_image_size; 1367 error_setg_errno(errp, -ret, "Failed to update the image size"); 1368 } 1369 return ret; 1370 } 1371 1372 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1373 { 1374 BDRVQEDState *s = bs->opaque; 1375 return s->header.image_size; 1376 } 1377 1378 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1379 { 1380 BDRVQEDState *s = bs->opaque; 1381 1382 memset(bdi, 0, sizeof(*bdi)); 1383 bdi->cluster_size = s->header.cluster_size; 1384 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1385 bdi->unallocated_blocks_are_zero = true; 1386 bdi->can_write_zeroes_with_unmap = true; 1387 return 0; 1388 } 1389 1390 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1391 const char *backing_file, 1392 const char *backing_fmt) 1393 { 1394 BDRVQEDState *s = bs->opaque; 1395 QEDHeader new_header, le_header; 1396 void *buffer; 1397 size_t buffer_len, backing_file_len; 1398 int ret; 1399 1400 /* Refuse to set backing filename if unknown compat feature bits are 1401 * active. If the image uses an unknown compat feature then we may not 1402 * know the layout of data following the header structure and cannot safely 1403 * add a new string. 1404 */ 1405 if (backing_file && (s->header.compat_features & 1406 ~QED_COMPAT_FEATURE_MASK)) { 1407 return -ENOTSUP; 1408 } 1409 1410 memcpy(&new_header, &s->header, sizeof(new_header)); 1411 1412 new_header.features &= ~(QED_F_BACKING_FILE | 1413 QED_F_BACKING_FORMAT_NO_PROBE); 1414 1415 /* Adjust feature flags */ 1416 if (backing_file) { 1417 new_header.features |= QED_F_BACKING_FILE; 1418 1419 if (qed_fmt_is_raw(backing_fmt)) { 1420 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1421 } 1422 } 1423 1424 /* Calculate new header size */ 1425 backing_file_len = 0; 1426 1427 if (backing_file) { 1428 backing_file_len = strlen(backing_file); 1429 } 1430 1431 buffer_len = sizeof(new_header); 1432 new_header.backing_filename_offset = buffer_len; 1433 new_header.backing_filename_size = backing_file_len; 1434 buffer_len += backing_file_len; 1435 1436 /* Make sure we can rewrite header without failing */ 1437 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1438 return -ENOSPC; 1439 } 1440 1441 /* Prepare new header */ 1442 buffer = g_malloc(buffer_len); 1443 1444 qed_header_cpu_to_le(&new_header, &le_header); 1445 memcpy(buffer, &le_header, sizeof(le_header)); 1446 buffer_len = sizeof(le_header); 1447 1448 if (backing_file) { 1449 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1450 buffer_len += backing_file_len; 1451 } 1452 1453 /* Write new header */ 1454 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1455 g_free(buffer); 1456 if (ret == 0) { 1457 memcpy(&s->header, &new_header, sizeof(new_header)); 1458 } 1459 return ret; 1460 } 1461 1462 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp) 1463 { 1464 BDRVQEDState *s = bs->opaque; 1465 Error *local_err = NULL; 1466 int ret; 1467 1468 bdrv_qed_close(bs); 1469 1470 memset(s, 0, sizeof(BDRVQEDState)); 1471 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1472 if (local_err) { 1473 error_propagate(errp, local_err); 1474 error_prepend(errp, "Could not reopen qed layer: "); 1475 return; 1476 } else if (ret < 0) { 1477 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1478 return; 1479 } 1480 } 1481 1482 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1483 BdrvCheckMode fix) 1484 { 1485 BDRVQEDState *s = bs->opaque; 1486 1487 return qed_check(s, result, !!fix); 1488 } 1489 1490 static QemuOptsList qed_create_opts = { 1491 .name = "qed-create-opts", 1492 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1493 .desc = { 1494 { 1495 .name = BLOCK_OPT_SIZE, 1496 .type = QEMU_OPT_SIZE, 1497 .help = "Virtual disk size" 1498 }, 1499 { 1500 .name = BLOCK_OPT_BACKING_FILE, 1501 .type = QEMU_OPT_STRING, 1502 .help = "File name of a base image" 1503 }, 1504 { 1505 .name = BLOCK_OPT_BACKING_FMT, 1506 .type = QEMU_OPT_STRING, 1507 .help = "Image format of the base image" 1508 }, 1509 { 1510 .name = BLOCK_OPT_CLUSTER_SIZE, 1511 .type = QEMU_OPT_SIZE, 1512 .help = "Cluster size (in bytes)", 1513 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1514 }, 1515 { 1516 .name = BLOCK_OPT_TABLE_SIZE, 1517 .type = QEMU_OPT_SIZE, 1518 .help = "L1/L2 table size (in clusters)" 1519 }, 1520 { /* end of list */ } 1521 } 1522 }; 1523 1524 static BlockDriver bdrv_qed = { 1525 .format_name = "qed", 1526 .instance_size = sizeof(BDRVQEDState), 1527 .create_opts = &qed_create_opts, 1528 .supports_backing = true, 1529 1530 .bdrv_probe = bdrv_qed_probe, 1531 .bdrv_open = bdrv_qed_open, 1532 .bdrv_close = bdrv_qed_close, 1533 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1534 .bdrv_child_perm = bdrv_format_default_perms, 1535 .bdrv_create = bdrv_qed_create, 1536 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1537 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status, 1538 .bdrv_co_readv = bdrv_qed_co_readv, 1539 .bdrv_co_writev = bdrv_qed_co_writev, 1540 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1541 .bdrv_truncate = bdrv_qed_truncate, 1542 .bdrv_getlength = bdrv_qed_getlength, 1543 .bdrv_get_info = bdrv_qed_get_info, 1544 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1545 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1546 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1547 .bdrv_check = bdrv_qed_check, 1548 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1549 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1550 .bdrv_drain = bdrv_qed_drain, 1551 }; 1552 1553 static void bdrv_qed_init(void) 1554 { 1555 bdrv_register(&bdrv_qed); 1556 } 1557 1558 block_init(bdrv_qed_init); 1559