xref: /openbmc/qemu/block/qed.c (revision 2cfb3b6c)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
103 static int coroutine_fn qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199                            char *buf, size_t buflen)
200 {
201     int ret;
202     if (n >= buflen) {
203         return -EINVAL;
204     }
205     ret = bdrv_pread(file, offset, n, buf, 0);
206     if (ret < 0) {
207         return ret;
208     }
209     buf[n] = '\0';
210     return 0;
211 }
212 
213 /**
214  * Allocate new clusters
215  *
216  * @s:          QED state
217  * @n:          Number of contiguous clusters to allocate
218  * @ret:        Offset of first allocated cluster
219  *
220  * This function only produces the offset where the new clusters should be
221  * written.  It updates BDRVQEDState but does not make any changes to the image
222  * file.
223  *
224  * Called with table_lock held.
225  */
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
227 {
228     uint64_t offset = s->file_size;
229     s->file_size += n * s->header.cluster_size;
230     return offset;
231 }
232 
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
234 {
235     /* Honor O_DIRECT memory alignment requirements */
236     return qemu_blockalign(s->bs,
237                            s->header.cluster_size * s->header.table_size);
238 }
239 
240 /**
241  * Allocate a new zeroed L2 table
242  *
243  * Called with table_lock held.
244  */
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 {
247     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248 
249     l2_table->table = qed_alloc_table(s);
250     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251 
252     memset(l2_table->table->offsets, 0,
253            s->header.cluster_size * s->header.table_size);
254     return l2_table;
255 }
256 
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
258 {
259     qemu_co_mutex_lock(&s->table_lock);
260 
261     /* No reentrancy is allowed.  */
262     assert(!s->allocating_write_reqs_plugged);
263     if (s->allocating_acb != NULL) {
264         /* Another allocating write came concurrently.  This cannot happen
265          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
266          */
267         qemu_co_mutex_unlock(&s->table_lock);
268         return false;
269     }
270 
271     s->allocating_write_reqs_plugged = true;
272     qemu_co_mutex_unlock(&s->table_lock);
273     return true;
274 }
275 
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
277 {
278     qemu_co_mutex_lock(&s->table_lock);
279     assert(s->allocating_write_reqs_plugged);
280     s->allocating_write_reqs_plugged = false;
281     qemu_co_queue_next(&s->allocating_write_reqs);
282     qemu_co_mutex_unlock(&s->table_lock);
283 }
284 
285 static void coroutine_fn qed_need_check_timer(BDRVQEDState *s)
286 {
287     int ret;
288 
289     trace_qed_need_check_timer_cb(s);
290 
291     if (!qed_plug_allocating_write_reqs(s)) {
292         return;
293     }
294 
295     /* Ensure writes are on disk before clearing flag */
296     ret = bdrv_co_flush(s->bs->file->bs);
297     if (ret < 0) {
298         qed_unplug_allocating_write_reqs(s);
299         return;
300     }
301 
302     s->header.features &= ~QED_F_NEED_CHECK;
303     ret = qed_write_header(s);
304     (void) ret;
305 
306     qed_unplug_allocating_write_reqs(s);
307 
308     ret = bdrv_co_flush(s->bs);
309     (void) ret;
310 }
311 
312 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
313 {
314     BDRVQEDState *s = opaque;
315 
316     qed_need_check_timer(opaque);
317     bdrv_dec_in_flight(s->bs);
318 }
319 
320 static void qed_need_check_timer_cb(void *opaque)
321 {
322     BDRVQEDState *s = opaque;
323     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
324 
325     bdrv_inc_in_flight(s->bs);
326     qemu_coroutine_enter(co);
327 }
328 
329 static void qed_start_need_check_timer(BDRVQEDState *s)
330 {
331     trace_qed_start_need_check_timer(s);
332 
333     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
334      * migration.
335      */
336     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
337                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
338 }
339 
340 /* It's okay to call this multiple times or when no timer is started */
341 static void qed_cancel_need_check_timer(BDRVQEDState *s)
342 {
343     trace_qed_cancel_need_check_timer(s);
344     timer_del(s->need_check_timer);
345 }
346 
347 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
348 {
349     BDRVQEDState *s = bs->opaque;
350 
351     qed_cancel_need_check_timer(s);
352     timer_free(s->need_check_timer);
353 }
354 
355 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
356                                         AioContext *new_context)
357 {
358     BDRVQEDState *s = bs->opaque;
359 
360     s->need_check_timer = aio_timer_new(new_context,
361                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
362                                         qed_need_check_timer_cb, s);
363     if (s->header.features & QED_F_NEED_CHECK) {
364         qed_start_need_check_timer(s);
365     }
366 }
367 
368 static void bdrv_qed_drain_begin(BlockDriverState *bs)
369 {
370     BDRVQEDState *s = bs->opaque;
371 
372     /* Fire the timer immediately in order to start doing I/O as soon as the
373      * header is flushed.
374      */
375     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
376         Coroutine *co;
377 
378         qed_cancel_need_check_timer(s);
379         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
380         bdrv_inc_in_flight(bs);
381         aio_co_enter(bdrv_get_aio_context(bs), co);
382     }
383 }
384 
385 static void bdrv_qed_init_state(BlockDriverState *bs)
386 {
387     BDRVQEDState *s = bs->opaque;
388 
389     memset(s, 0, sizeof(BDRVQEDState));
390     s->bs = bs;
391     qemu_co_mutex_init(&s->table_lock);
392     qemu_co_queue_init(&s->allocating_write_reqs);
393 }
394 
395 /* Called with table_lock held.  */
396 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
397                                          int flags, Error **errp)
398 {
399     BDRVQEDState *s = bs->opaque;
400     QEDHeader le_header;
401     int64_t file_size;
402     int ret;
403 
404     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
405     if (ret < 0) {
406         error_setg(errp, "Failed to read QED header");
407         return ret;
408     }
409     qed_header_le_to_cpu(&le_header, &s->header);
410 
411     if (s->header.magic != QED_MAGIC) {
412         error_setg(errp, "Image not in QED format");
413         return -EINVAL;
414     }
415     if (s->header.features & ~QED_FEATURE_MASK) {
416         /* image uses unsupported feature bits */
417         error_setg(errp, "Unsupported QED features: %" PRIx64,
418                    s->header.features & ~QED_FEATURE_MASK);
419         return -ENOTSUP;
420     }
421     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
422         error_setg(errp, "QED cluster size is invalid");
423         return -EINVAL;
424     }
425 
426     /* Round down file size to the last cluster */
427     file_size = bdrv_co_getlength(bs->file->bs);
428     if (file_size < 0) {
429         error_setg(errp, "Failed to get file length");
430         return file_size;
431     }
432     s->file_size = qed_start_of_cluster(s, file_size);
433 
434     if (!qed_is_table_size_valid(s->header.table_size)) {
435         error_setg(errp, "QED table size is invalid");
436         return -EINVAL;
437     }
438     if (!qed_is_image_size_valid(s->header.image_size,
439                                  s->header.cluster_size,
440                                  s->header.table_size)) {
441         error_setg(errp, "QED image size is invalid");
442         return -EINVAL;
443     }
444     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
445         error_setg(errp, "QED table offset is invalid");
446         return -EINVAL;
447     }
448 
449     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
450                       sizeof(uint64_t);
451     s->l2_shift = ctz32(s->header.cluster_size);
452     s->l2_mask = s->table_nelems - 1;
453     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
454 
455     /* Header size calculation must not overflow uint32_t */
456     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
457         error_setg(errp, "QED header size is too large");
458         return -EINVAL;
459     }
460 
461     if ((s->header.features & QED_F_BACKING_FILE)) {
462         g_autofree char *backing_file_str = NULL;
463 
464         if ((uint64_t)s->header.backing_filename_offset +
465             s->header.backing_filename_size >
466             s->header.cluster_size * s->header.header_size) {
467             error_setg(errp, "QED backing filename offset is invalid");
468             return -EINVAL;
469         }
470 
471         backing_file_str = g_malloc(sizeof(bs->backing_file));
472         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
473                               s->header.backing_filename_size,
474                               backing_file_str, sizeof(bs->backing_file));
475         if (ret < 0) {
476             error_setg(errp, "Failed to read backing filename");
477             return ret;
478         }
479 
480         if (!g_str_equal(backing_file_str, bs->backing_file)) {
481             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
482                     backing_file_str);
483             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
484                     backing_file_str);
485         }
486 
487         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
488             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
489         }
490     }
491 
492     /* Reset unknown autoclear feature bits.  This is a backwards
493      * compatibility mechanism that allows images to be opened by older
494      * programs, which "knock out" unknown feature bits.  When an image is
495      * opened by a newer program again it can detect that the autoclear
496      * feature is no longer valid.
497      */
498     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
499         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
500         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
501 
502         ret = qed_write_header_sync(s);
503         if (ret) {
504             error_setg(errp, "Failed to update header");
505             return ret;
506         }
507 
508         /* From here on only known autoclear feature bits are valid */
509         bdrv_co_flush(bs->file->bs);
510     }
511 
512     s->l1_table = qed_alloc_table(s);
513     qed_init_l2_cache(&s->l2_cache);
514 
515     ret = qed_read_l1_table_sync(s);
516     if (ret) {
517         error_setg(errp, "Failed to read L1 table");
518         goto out;
519     }
520 
521     /* If image was not closed cleanly, check consistency */
522     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
523         /* Read-only images cannot be fixed.  There is no risk of corruption
524          * since write operations are not possible.  Therefore, allow
525          * potentially inconsistent images to be opened read-only.  This can
526          * aid data recovery from an otherwise inconsistent image.
527          */
528         if (!bdrv_is_read_only(bs->file->bs) &&
529             !(flags & BDRV_O_INACTIVE)) {
530             BdrvCheckResult result = {0};
531 
532             ret = qed_check(s, &result, true);
533             if (ret) {
534                 error_setg(errp, "Image corrupted");
535                 goto out;
536             }
537         }
538     }
539 
540     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
541 
542 out:
543     if (ret) {
544         qed_free_l2_cache(&s->l2_cache);
545         qemu_vfree(s->l1_table);
546     }
547     return ret;
548 }
549 
550 typedef struct QEDOpenCo {
551     BlockDriverState *bs;
552     QDict *options;
553     int flags;
554     Error **errp;
555     int ret;
556 } QEDOpenCo;
557 
558 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
559 {
560     QEDOpenCo *qoc = opaque;
561     BDRVQEDState *s = qoc->bs->opaque;
562 
563     qemu_co_mutex_lock(&s->table_lock);
564     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
565     qemu_co_mutex_unlock(&s->table_lock);
566 }
567 
568 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
569                          Error **errp)
570 {
571     QEDOpenCo qoc = {
572         .bs = bs,
573         .options = options,
574         .flags = flags,
575         .errp = errp,
576         .ret = -EINPROGRESS
577     };
578     int ret;
579 
580     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
581     if (ret < 0) {
582         return ret;
583     }
584 
585     bdrv_qed_init_state(bs);
586     if (qemu_in_coroutine()) {
587         bdrv_qed_open_entry(&qoc);
588     } else {
589         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
590         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
591         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
592     }
593     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
594     return qoc.ret;
595 }
596 
597 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
598 {
599     BDRVQEDState *s = bs->opaque;
600 
601     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
602     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
603 }
604 
605 /* We have nothing to do for QED reopen, stubs just return
606  * success */
607 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
608                                    BlockReopenQueue *queue, Error **errp)
609 {
610     return 0;
611 }
612 
613 static void bdrv_qed_close(BlockDriverState *bs)
614 {
615     BDRVQEDState *s = bs->opaque;
616 
617     bdrv_qed_detach_aio_context(bs);
618 
619     /* Ensure writes reach stable storage */
620     bdrv_flush(bs->file->bs);
621 
622     /* Clean shutdown, no check required on next open */
623     if (s->header.features & QED_F_NEED_CHECK) {
624         s->header.features &= ~QED_F_NEED_CHECK;
625         qed_write_header_sync(s);
626     }
627 
628     qed_free_l2_cache(&s->l2_cache);
629     qemu_vfree(s->l1_table);
630 }
631 
632 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
633                                            Error **errp)
634 {
635     BlockdevCreateOptionsQed *qed_opts;
636     BlockBackend *blk = NULL;
637     BlockDriverState *bs = NULL;
638 
639     QEDHeader header;
640     QEDHeader le_header;
641     uint8_t *l1_table = NULL;
642     size_t l1_size;
643     int ret = 0;
644 
645     assert(opts->driver == BLOCKDEV_DRIVER_QED);
646     qed_opts = &opts->u.qed;
647 
648     /* Validate options and set default values */
649     if (!qed_opts->has_cluster_size) {
650         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
651     }
652     if (!qed_opts->has_table_size) {
653         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
654     }
655 
656     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
657         error_setg(errp, "QED cluster size must be within range [%u, %u] "
658                          "and power of 2",
659                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
660         return -EINVAL;
661     }
662     if (!qed_is_table_size_valid(qed_opts->table_size)) {
663         error_setg(errp, "QED table size must be within range [%u, %u] "
664                          "and power of 2",
665                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
666         return -EINVAL;
667     }
668     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
669                                  qed_opts->table_size))
670     {
671         error_setg(errp, "QED image size must be a non-zero multiple of "
672                          "cluster size and less than %" PRIu64 " bytes",
673                    qed_max_image_size(qed_opts->cluster_size,
674                                       qed_opts->table_size));
675         return -EINVAL;
676     }
677 
678     /* Create BlockBackend to write to the image */
679     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
680     if (bs == NULL) {
681         return -EIO;
682     }
683 
684     blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
685                           errp);
686     if (!blk) {
687         ret = -EPERM;
688         goto out;
689     }
690     blk_set_allow_write_beyond_eof(blk, true);
691 
692     /* Prepare image format */
693     header = (QEDHeader) {
694         .magic = QED_MAGIC,
695         .cluster_size = qed_opts->cluster_size,
696         .table_size = qed_opts->table_size,
697         .header_size = 1,
698         .features = 0,
699         .compat_features = 0,
700         .l1_table_offset = qed_opts->cluster_size,
701         .image_size = qed_opts->size,
702     };
703 
704     l1_size = header.cluster_size * header.table_size;
705 
706     /*
707      * The QED format associates file length with allocation status,
708      * so a new file (which is empty) must have a length of 0.
709      */
710     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
711     if (ret < 0) {
712         goto out;
713     }
714 
715     if (qed_opts->backing_file) {
716         header.features |= QED_F_BACKING_FILE;
717         header.backing_filename_offset = sizeof(le_header);
718         header.backing_filename_size = strlen(qed_opts->backing_file);
719 
720         if (qed_opts->has_backing_fmt) {
721             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
722             if (qed_fmt_is_raw(backing_fmt)) {
723                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
724             }
725         }
726     }
727 
728     qed_header_cpu_to_le(&header, &le_header);
729     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
730     if (ret < 0) {
731         goto out;
732     }
733     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
734                      qed_opts->backing_file, 0);
735     if (ret < 0) {
736         goto out;
737     }
738 
739     l1_table = g_malloc0(l1_size);
740     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
741     if (ret < 0) {
742         goto out;
743     }
744 
745     ret = 0; /* success */
746 out:
747     g_free(l1_table);
748     blk_unref(blk);
749     bdrv_unref(bs);
750     return ret;
751 }
752 
753 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
754                                                 const char *filename,
755                                                 QemuOpts *opts,
756                                                 Error **errp)
757 {
758     BlockdevCreateOptions *create_options = NULL;
759     QDict *qdict;
760     Visitor *v;
761     BlockDriverState *bs = NULL;
762     int ret;
763 
764     static const QDictRenames opt_renames[] = {
765         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
766         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
767         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
768         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
769         { NULL, NULL },
770     };
771 
772     /* Parse options and convert legacy syntax */
773     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
774 
775     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
776         ret = -EINVAL;
777         goto fail;
778     }
779 
780     /* Create and open the file (protocol layer) */
781     ret = bdrv_co_create_file(filename, opts, errp);
782     if (ret < 0) {
783         goto fail;
784     }
785 
786     bs = bdrv_open(filename, NULL, NULL,
787                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
788     if (bs == NULL) {
789         ret = -EIO;
790         goto fail;
791     }
792 
793     /* Now get the QAPI type BlockdevCreateOptions */
794     qdict_put_str(qdict, "driver", "qed");
795     qdict_put_str(qdict, "file", bs->node_name);
796 
797     v = qobject_input_visitor_new_flat_confused(qdict, errp);
798     if (!v) {
799         ret = -EINVAL;
800         goto fail;
801     }
802 
803     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
804     visit_free(v);
805     if (!create_options) {
806         ret = -EINVAL;
807         goto fail;
808     }
809 
810     /* Silently round up size */
811     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
812     create_options->u.qed.size =
813         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
814 
815     /* Create the qed image (format layer) */
816     ret = bdrv_qed_co_create(create_options, errp);
817 
818 fail:
819     qobject_unref(qdict);
820     bdrv_unref(bs);
821     qapi_free_BlockdevCreateOptions(create_options);
822     return ret;
823 }
824 
825 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
826                                                  bool want_zero,
827                                                  int64_t pos, int64_t bytes,
828                                                  int64_t *pnum, int64_t *map,
829                                                  BlockDriverState **file)
830 {
831     BDRVQEDState *s = bs->opaque;
832     size_t len = MIN(bytes, SIZE_MAX);
833     int status;
834     QEDRequest request = { .l2_table = NULL };
835     uint64_t offset;
836     int ret;
837 
838     qemu_co_mutex_lock(&s->table_lock);
839     ret = qed_find_cluster(s, &request, pos, &len, &offset);
840 
841     *pnum = len;
842     switch (ret) {
843     case QED_CLUSTER_FOUND:
844         *map = offset | qed_offset_into_cluster(s, pos);
845         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
846         *file = bs->file->bs;
847         break;
848     case QED_CLUSTER_ZERO:
849         status = BDRV_BLOCK_ZERO;
850         break;
851     case QED_CLUSTER_L2:
852     case QED_CLUSTER_L1:
853         status = 0;
854         break;
855     default:
856         assert(ret < 0);
857         status = ret;
858         break;
859     }
860 
861     qed_unref_l2_cache_entry(request.l2_table);
862     qemu_co_mutex_unlock(&s->table_lock);
863 
864     return status;
865 }
866 
867 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
868 {
869     return acb->bs->opaque;
870 }
871 
872 /**
873  * Read from the backing file or zero-fill if no backing file
874  *
875  * @s:              QED state
876  * @pos:            Byte position in device
877  * @qiov:           Destination I/O vector
878  *
879  * This function reads qiov->size bytes starting at pos from the backing file.
880  * If there is no backing file then zeroes are read.
881  */
882 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
883                                               QEMUIOVector *qiov)
884 {
885     if (s->bs->backing) {
886         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
887         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
888     }
889     qemu_iovec_memset(qiov, 0, 0, qiov->size);
890     return 0;
891 }
892 
893 /**
894  * Copy data from backing file into the image
895  *
896  * @s:          QED state
897  * @pos:        Byte position in device
898  * @len:        Number of bytes
899  * @offset:     Byte offset in image file
900  */
901 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
902                                                    uint64_t pos, uint64_t len,
903                                                    uint64_t offset)
904 {
905     QEMUIOVector qiov;
906     int ret;
907 
908     /* Skip copy entirely if there is no work to do */
909     if (len == 0) {
910         return 0;
911     }
912 
913     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
914 
915     ret = qed_read_backing_file(s, pos, &qiov);
916 
917     if (ret) {
918         goto out;
919     }
920 
921     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
922     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
923     if (ret < 0) {
924         goto out;
925     }
926     ret = 0;
927 out:
928     qemu_vfree(qemu_iovec_buf(&qiov));
929     return ret;
930 }
931 
932 /**
933  * Link one or more contiguous clusters into a table
934  *
935  * @s:              QED state
936  * @table:          L2 table
937  * @index:          First cluster index
938  * @n:              Number of contiguous clusters
939  * @cluster:        First cluster offset
940  *
941  * The cluster offset may be an allocated byte offset in the image file, the
942  * zero cluster marker, or the unallocated cluster marker.
943  *
944  * Called with table_lock held.
945  */
946 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
947                                              int index, unsigned int n,
948                                              uint64_t cluster)
949 {
950     int i;
951     for (i = index; i < index + n; i++) {
952         table->offsets[i] = cluster;
953         if (!qed_offset_is_unalloc_cluster(cluster) &&
954             !qed_offset_is_zero_cluster(cluster)) {
955             cluster += s->header.cluster_size;
956         }
957     }
958 }
959 
960 /* Called with table_lock held.  */
961 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
962 {
963     BDRVQEDState *s = acb_to_s(acb);
964 
965     /* Free resources */
966     qemu_iovec_destroy(&acb->cur_qiov);
967     qed_unref_l2_cache_entry(acb->request.l2_table);
968 
969     /* Free the buffer we may have allocated for zero writes */
970     if (acb->flags & QED_AIOCB_ZERO) {
971         qemu_vfree(acb->qiov->iov[0].iov_base);
972         acb->qiov->iov[0].iov_base = NULL;
973     }
974 
975     /* Start next allocating write request waiting behind this one.  Note that
976      * requests enqueue themselves when they first hit an unallocated cluster
977      * but they wait until the entire request is finished before waking up the
978      * next request in the queue.  This ensures that we don't cycle through
979      * requests multiple times but rather finish one at a time completely.
980      */
981     if (acb == s->allocating_acb) {
982         s->allocating_acb = NULL;
983         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
984             qemu_co_queue_next(&s->allocating_write_reqs);
985         } else if (s->header.features & QED_F_NEED_CHECK) {
986             qed_start_need_check_timer(s);
987         }
988     }
989 }
990 
991 /**
992  * Update L1 table with new L2 table offset and write it out
993  *
994  * Called with table_lock held.
995  */
996 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
997 {
998     BDRVQEDState *s = acb_to_s(acb);
999     CachedL2Table *l2_table = acb->request.l2_table;
1000     uint64_t l2_offset = l2_table->offset;
1001     int index, ret;
1002 
1003     index = qed_l1_index(s, acb->cur_pos);
1004     s->l1_table->offsets[index] = l2_table->offset;
1005 
1006     ret = qed_write_l1_table(s, index, 1);
1007 
1008     /* Commit the current L2 table to the cache */
1009     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1010 
1011     /* This is guaranteed to succeed because we just committed the entry to the
1012      * cache.
1013      */
1014     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1015     assert(acb->request.l2_table != NULL);
1016 
1017     return ret;
1018 }
1019 
1020 
1021 /**
1022  * Update L2 table with new cluster offsets and write them out
1023  *
1024  * Called with table_lock held.
1025  */
1026 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1027 {
1028     BDRVQEDState *s = acb_to_s(acb);
1029     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1030     int index, ret;
1031 
1032     if (need_alloc) {
1033         qed_unref_l2_cache_entry(acb->request.l2_table);
1034         acb->request.l2_table = qed_new_l2_table(s);
1035     }
1036 
1037     index = qed_l2_index(s, acb->cur_pos);
1038     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1039                          offset);
1040 
1041     if (need_alloc) {
1042         /* Write out the whole new L2 table */
1043         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1044         if (ret) {
1045             return ret;
1046         }
1047         return qed_aio_write_l1_update(acb);
1048     } else {
1049         /* Write out only the updated part of the L2 table */
1050         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1051                                  false);
1052         if (ret) {
1053             return ret;
1054         }
1055     }
1056     return 0;
1057 }
1058 
1059 /**
1060  * Write data to the image file
1061  *
1062  * Called with table_lock *not* held.
1063  */
1064 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1065 {
1066     BDRVQEDState *s = acb_to_s(acb);
1067     uint64_t offset = acb->cur_cluster +
1068                       qed_offset_into_cluster(s, acb->cur_pos);
1069 
1070     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1071 
1072     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1073     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1074                            &acb->cur_qiov, 0);
1075 }
1076 
1077 /**
1078  * Populate untouched regions of new data cluster
1079  *
1080  * Called with table_lock held.
1081  */
1082 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1083 {
1084     BDRVQEDState *s = acb_to_s(acb);
1085     uint64_t start, len, offset;
1086     int ret;
1087 
1088     qemu_co_mutex_unlock(&s->table_lock);
1089 
1090     /* Populate front untouched region of new data cluster */
1091     start = qed_start_of_cluster(s, acb->cur_pos);
1092     len = qed_offset_into_cluster(s, acb->cur_pos);
1093 
1094     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1095     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1096     if (ret < 0) {
1097         goto out;
1098     }
1099 
1100     /* Populate back untouched region of new data cluster */
1101     start = acb->cur_pos + acb->cur_qiov.size;
1102     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1103     offset = acb->cur_cluster +
1104              qed_offset_into_cluster(s, acb->cur_pos) +
1105              acb->cur_qiov.size;
1106 
1107     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1108     ret = qed_copy_from_backing_file(s, start, len, offset);
1109     if (ret < 0) {
1110         goto out;
1111     }
1112 
1113     ret = qed_aio_write_main(acb);
1114     if (ret < 0) {
1115         goto out;
1116     }
1117 
1118     if (s->bs->backing) {
1119         /*
1120          * Flush new data clusters before updating the L2 table
1121          *
1122          * This flush is necessary when a backing file is in use.  A crash
1123          * during an allocating write could result in empty clusters in the
1124          * image.  If the write only touched a subregion of the cluster,
1125          * then backing image sectors have been lost in the untouched
1126          * region.  The solution is to flush after writing a new data
1127          * cluster and before updating the L2 table.
1128          */
1129         ret = bdrv_co_flush(s->bs->file->bs);
1130     }
1131 
1132 out:
1133     qemu_co_mutex_lock(&s->table_lock);
1134     return ret;
1135 }
1136 
1137 /**
1138  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1139  */
1140 static bool qed_should_set_need_check(BDRVQEDState *s)
1141 {
1142     /* The flush before L2 update path ensures consistency */
1143     if (s->bs->backing) {
1144         return false;
1145     }
1146 
1147     return !(s->header.features & QED_F_NEED_CHECK);
1148 }
1149 
1150 /**
1151  * Write new data cluster
1152  *
1153  * @acb:        Write request
1154  * @len:        Length in bytes
1155  *
1156  * This path is taken when writing to previously unallocated clusters.
1157  *
1158  * Called with table_lock held.
1159  */
1160 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1161 {
1162     BDRVQEDState *s = acb_to_s(acb);
1163     int ret;
1164 
1165     /* Cancel timer when the first allocating request comes in */
1166     if (s->allocating_acb == NULL) {
1167         qed_cancel_need_check_timer(s);
1168     }
1169 
1170     /* Freeze this request if another allocating write is in progress */
1171     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1172         if (s->allocating_acb != NULL) {
1173             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1174             assert(s->allocating_acb == NULL);
1175         }
1176         s->allocating_acb = acb;
1177         return -EAGAIN; /* start over with looking up table entries */
1178     }
1179 
1180     acb->cur_nclusters = qed_bytes_to_clusters(s,
1181             qed_offset_into_cluster(s, acb->cur_pos) + len);
1182     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1183 
1184     if (acb->flags & QED_AIOCB_ZERO) {
1185         /* Skip ahead if the clusters are already zero */
1186         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1187             return 0;
1188         }
1189         acb->cur_cluster = 1;
1190     } else {
1191         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1192     }
1193 
1194     if (qed_should_set_need_check(s)) {
1195         s->header.features |= QED_F_NEED_CHECK;
1196         ret = qed_write_header(s);
1197         if (ret < 0) {
1198             return ret;
1199         }
1200     }
1201 
1202     if (!(acb->flags & QED_AIOCB_ZERO)) {
1203         ret = qed_aio_write_cow(acb);
1204         if (ret < 0) {
1205             return ret;
1206         }
1207     }
1208 
1209     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1210 }
1211 
1212 /**
1213  * Write data cluster in place
1214  *
1215  * @acb:        Write request
1216  * @offset:     Cluster offset in bytes
1217  * @len:        Length in bytes
1218  *
1219  * This path is taken when writing to already allocated clusters.
1220  *
1221  * Called with table_lock held.
1222  */
1223 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1224                                               size_t len)
1225 {
1226     BDRVQEDState *s = acb_to_s(acb);
1227     int r;
1228 
1229     qemu_co_mutex_unlock(&s->table_lock);
1230 
1231     /* Allocate buffer for zero writes */
1232     if (acb->flags & QED_AIOCB_ZERO) {
1233         struct iovec *iov = acb->qiov->iov;
1234 
1235         if (!iov->iov_base) {
1236             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1237             if (iov->iov_base == NULL) {
1238                 r = -ENOMEM;
1239                 goto out;
1240             }
1241             memset(iov->iov_base, 0, iov->iov_len);
1242         }
1243     }
1244 
1245     /* Calculate the I/O vector */
1246     acb->cur_cluster = offset;
1247     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1248 
1249     /* Do the actual write.  */
1250     r = qed_aio_write_main(acb);
1251 out:
1252     qemu_co_mutex_lock(&s->table_lock);
1253     return r;
1254 }
1255 
1256 /**
1257  * Write data cluster
1258  *
1259  * @opaque:     Write request
1260  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1261  * @offset:     Cluster offset in bytes
1262  * @len:        Length in bytes
1263  *
1264  * Called with table_lock held.
1265  */
1266 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1267                                            uint64_t offset, size_t len)
1268 {
1269     QEDAIOCB *acb = opaque;
1270 
1271     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1272 
1273     acb->find_cluster_ret = ret;
1274 
1275     switch (ret) {
1276     case QED_CLUSTER_FOUND:
1277         return qed_aio_write_inplace(acb, offset, len);
1278 
1279     case QED_CLUSTER_L2:
1280     case QED_CLUSTER_L1:
1281     case QED_CLUSTER_ZERO:
1282         return qed_aio_write_alloc(acb, len);
1283 
1284     default:
1285         g_assert_not_reached();
1286     }
1287 }
1288 
1289 /**
1290  * Read data cluster
1291  *
1292  * @opaque:     Read request
1293  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1294  * @offset:     Cluster offset in bytes
1295  * @len:        Length in bytes
1296  *
1297  * Called with table_lock held.
1298  */
1299 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1300                                           uint64_t offset, size_t len)
1301 {
1302     QEDAIOCB *acb = opaque;
1303     BDRVQEDState *s = acb_to_s(acb);
1304     BlockDriverState *bs = acb->bs;
1305     int r;
1306 
1307     qemu_co_mutex_unlock(&s->table_lock);
1308 
1309     /* Adjust offset into cluster */
1310     offset += qed_offset_into_cluster(s, acb->cur_pos);
1311 
1312     trace_qed_aio_read_data(s, acb, ret, offset, len);
1313 
1314     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1315 
1316     /* Handle zero cluster and backing file reads, otherwise read
1317      * data cluster directly.
1318      */
1319     if (ret == QED_CLUSTER_ZERO) {
1320         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1321         r = 0;
1322     } else if (ret != QED_CLUSTER_FOUND) {
1323         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1324     } else {
1325         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1326         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1327                            &acb->cur_qiov, 0);
1328     }
1329 
1330     qemu_co_mutex_lock(&s->table_lock);
1331     return r;
1332 }
1333 
1334 /**
1335  * Begin next I/O or complete the request
1336  */
1337 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1338 {
1339     BDRVQEDState *s = acb_to_s(acb);
1340     uint64_t offset;
1341     size_t len;
1342     int ret;
1343 
1344     qemu_co_mutex_lock(&s->table_lock);
1345     while (1) {
1346         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1347 
1348         acb->qiov_offset += acb->cur_qiov.size;
1349         acb->cur_pos += acb->cur_qiov.size;
1350         qemu_iovec_reset(&acb->cur_qiov);
1351 
1352         /* Complete request */
1353         if (acb->cur_pos >= acb->end_pos) {
1354             ret = 0;
1355             break;
1356         }
1357 
1358         /* Find next cluster and start I/O */
1359         len = acb->end_pos - acb->cur_pos;
1360         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1361         if (ret < 0) {
1362             break;
1363         }
1364 
1365         if (acb->flags & QED_AIOCB_WRITE) {
1366             ret = qed_aio_write_data(acb, ret, offset, len);
1367         } else {
1368             ret = qed_aio_read_data(acb, ret, offset, len);
1369         }
1370 
1371         if (ret < 0 && ret != -EAGAIN) {
1372             break;
1373         }
1374     }
1375 
1376     trace_qed_aio_complete(s, acb, ret);
1377     qed_aio_complete(acb);
1378     qemu_co_mutex_unlock(&s->table_lock);
1379     return ret;
1380 }
1381 
1382 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1383                                        QEMUIOVector *qiov, int nb_sectors,
1384                                        int flags)
1385 {
1386     QEDAIOCB acb = {
1387         .bs         = bs,
1388         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1389         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1390         .qiov       = qiov,
1391         .flags      = flags,
1392     };
1393     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1394 
1395     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1396 
1397     /* Start request */
1398     return qed_aio_next_io(&acb);
1399 }
1400 
1401 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1402                                           int64_t sector_num, int nb_sectors,
1403                                           QEMUIOVector *qiov)
1404 {
1405     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1406 }
1407 
1408 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1409                                            int64_t sector_num, int nb_sectors,
1410                                            QEMUIOVector *qiov, int flags)
1411 {
1412     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1413 }
1414 
1415 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1416                                                   int64_t offset,
1417                                                   int64_t bytes,
1418                                                   BdrvRequestFlags flags)
1419 {
1420     BDRVQEDState *s = bs->opaque;
1421 
1422     /*
1423      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1424      * then it will be allocated during request processing.
1425      */
1426     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1427 
1428     /*
1429      * QED is not prepared for 63bit write-zero requests, so rely on
1430      * max_pwrite_zeroes.
1431      */
1432     assert(bytes <= INT_MAX);
1433 
1434     /* Fall back if the request is not aligned */
1435     if (qed_offset_into_cluster(s, offset) ||
1436         qed_offset_into_cluster(s, bytes)) {
1437         return -ENOTSUP;
1438     }
1439 
1440     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1441                           bytes >> BDRV_SECTOR_BITS,
1442                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1443 }
1444 
1445 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1446                                              int64_t offset,
1447                                              bool exact,
1448                                              PreallocMode prealloc,
1449                                              BdrvRequestFlags flags,
1450                                              Error **errp)
1451 {
1452     BDRVQEDState *s = bs->opaque;
1453     uint64_t old_image_size;
1454     int ret;
1455 
1456     if (prealloc != PREALLOC_MODE_OFF) {
1457         error_setg(errp, "Unsupported preallocation mode '%s'",
1458                    PreallocMode_str(prealloc));
1459         return -ENOTSUP;
1460     }
1461 
1462     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1463                                  s->header.table_size)) {
1464         error_setg(errp, "Invalid image size specified");
1465         return -EINVAL;
1466     }
1467 
1468     if ((uint64_t)offset < s->header.image_size) {
1469         error_setg(errp, "Shrinking images is currently not supported");
1470         return -ENOTSUP;
1471     }
1472 
1473     old_image_size = s->header.image_size;
1474     s->header.image_size = offset;
1475     ret = qed_write_header_sync(s);
1476     if (ret < 0) {
1477         s->header.image_size = old_image_size;
1478         error_setg_errno(errp, -ret, "Failed to update the image size");
1479     }
1480     return ret;
1481 }
1482 
1483 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1484 {
1485     BDRVQEDState *s = bs->opaque;
1486     return s->header.image_size;
1487 }
1488 
1489 static int coroutine_fn
1490 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1491 {
1492     BDRVQEDState *s = bs->opaque;
1493 
1494     memset(bdi, 0, sizeof(*bdi));
1495     bdi->cluster_size = s->header.cluster_size;
1496     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1497     return 0;
1498 }
1499 
1500 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1501                                         const char *backing_file,
1502                                         const char *backing_fmt)
1503 {
1504     BDRVQEDState *s = bs->opaque;
1505     QEDHeader new_header, le_header;
1506     void *buffer;
1507     size_t buffer_len, backing_file_len;
1508     int ret;
1509 
1510     /* Refuse to set backing filename if unknown compat feature bits are
1511      * active.  If the image uses an unknown compat feature then we may not
1512      * know the layout of data following the header structure and cannot safely
1513      * add a new string.
1514      */
1515     if (backing_file && (s->header.compat_features &
1516                          ~QED_COMPAT_FEATURE_MASK)) {
1517         return -ENOTSUP;
1518     }
1519 
1520     memcpy(&new_header, &s->header, sizeof(new_header));
1521 
1522     new_header.features &= ~(QED_F_BACKING_FILE |
1523                              QED_F_BACKING_FORMAT_NO_PROBE);
1524 
1525     /* Adjust feature flags */
1526     if (backing_file) {
1527         new_header.features |= QED_F_BACKING_FILE;
1528 
1529         if (qed_fmt_is_raw(backing_fmt)) {
1530             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1531         }
1532     }
1533 
1534     /* Calculate new header size */
1535     backing_file_len = 0;
1536 
1537     if (backing_file) {
1538         backing_file_len = strlen(backing_file);
1539     }
1540 
1541     buffer_len = sizeof(new_header);
1542     new_header.backing_filename_offset = buffer_len;
1543     new_header.backing_filename_size = backing_file_len;
1544     buffer_len += backing_file_len;
1545 
1546     /* Make sure we can rewrite header without failing */
1547     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1548         return -ENOSPC;
1549     }
1550 
1551     /* Prepare new header */
1552     buffer = g_malloc(buffer_len);
1553 
1554     qed_header_cpu_to_le(&new_header, &le_header);
1555     memcpy(buffer, &le_header, sizeof(le_header));
1556     buffer_len = sizeof(le_header);
1557 
1558     if (backing_file) {
1559         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1560         buffer_len += backing_file_len;
1561     }
1562 
1563     /* Write new header */
1564     ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1565     g_free(buffer);
1566     if (ret == 0) {
1567         memcpy(&s->header, &new_header, sizeof(new_header));
1568     }
1569     return ret;
1570 }
1571 
1572 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1573                                                       Error **errp)
1574 {
1575     BDRVQEDState *s = bs->opaque;
1576     int ret;
1577 
1578     bdrv_qed_close(bs);
1579 
1580     bdrv_qed_init_state(bs);
1581     qemu_co_mutex_lock(&s->table_lock);
1582     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1583     qemu_co_mutex_unlock(&s->table_lock);
1584     if (ret < 0) {
1585         error_prepend(errp, "Could not reopen qed layer: ");
1586     }
1587 }
1588 
1589 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1590                                           BdrvCheckResult *result,
1591                                           BdrvCheckMode fix)
1592 {
1593     BDRVQEDState *s = bs->opaque;
1594     int ret;
1595 
1596     qemu_co_mutex_lock(&s->table_lock);
1597     ret = qed_check(s, result, !!fix);
1598     qemu_co_mutex_unlock(&s->table_lock);
1599 
1600     return ret;
1601 }
1602 
1603 static QemuOptsList qed_create_opts = {
1604     .name = "qed-create-opts",
1605     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1606     .desc = {
1607         {
1608             .name = BLOCK_OPT_SIZE,
1609             .type = QEMU_OPT_SIZE,
1610             .help = "Virtual disk size"
1611         },
1612         {
1613             .name = BLOCK_OPT_BACKING_FILE,
1614             .type = QEMU_OPT_STRING,
1615             .help = "File name of a base image"
1616         },
1617         {
1618             .name = BLOCK_OPT_BACKING_FMT,
1619             .type = QEMU_OPT_STRING,
1620             .help = "Image format of the base image"
1621         },
1622         {
1623             .name = BLOCK_OPT_CLUSTER_SIZE,
1624             .type = QEMU_OPT_SIZE,
1625             .help = "Cluster size (in bytes)",
1626             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1627         },
1628         {
1629             .name = BLOCK_OPT_TABLE_SIZE,
1630             .type = QEMU_OPT_SIZE,
1631             .help = "L1/L2 table size (in clusters)"
1632         },
1633         { /* end of list */ }
1634     }
1635 };
1636 
1637 static BlockDriver bdrv_qed = {
1638     .format_name              = "qed",
1639     .instance_size            = sizeof(BDRVQEDState),
1640     .create_opts              = &qed_create_opts,
1641     .is_format                = true,
1642     .supports_backing         = true,
1643 
1644     .bdrv_probe               = bdrv_qed_probe,
1645     .bdrv_open                = bdrv_qed_open,
1646     .bdrv_close               = bdrv_qed_close,
1647     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1648     .bdrv_child_perm          = bdrv_default_perms,
1649     .bdrv_co_create           = bdrv_qed_co_create,
1650     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1651     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1652     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1653     .bdrv_co_readv            = bdrv_qed_co_readv,
1654     .bdrv_co_writev           = bdrv_qed_co_writev,
1655     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1656     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1657     .bdrv_co_getlength        = bdrv_qed_co_getlength,
1658     .bdrv_co_get_info         = bdrv_qed_co_get_info,
1659     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1660     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1661     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1662     .bdrv_co_check            = bdrv_qed_co_check,
1663     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1664     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1665     .bdrv_drain_begin         = bdrv_qed_drain_begin,
1666 };
1667 
1668 static void bdrv_qed_init(void)
1669 {
1670     bdrv_register(&bdrv_qed);
1671 }
1672 
1673 block_init(bdrv_qed_init);
1674