1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/main-loop.h" 21 #include "qemu/module.h" 22 #include "qemu/option.h" 23 #include "trace.h" 24 #include "qed.h" 25 #include "sysemu/block-backend.h" 26 #include "qapi/qmp/qdict.h" 27 #include "qapi/qobject-input-visitor.h" 28 #include "qapi/qapi-visit-block-core.h" 29 30 static QemuOptsList qed_create_opts; 31 32 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 33 const char *filename) 34 { 35 const QEDHeader *header = (const QEDHeader *)buf; 36 37 if (buf_size < sizeof(*header)) { 38 return 0; 39 } 40 if (le32_to_cpu(header->magic) != QED_MAGIC) { 41 return 0; 42 } 43 return 100; 44 } 45 46 /** 47 * Check whether an image format is raw 48 * 49 * @fmt: Backing file format, may be NULL 50 */ 51 static bool qed_fmt_is_raw(const char *fmt) 52 { 53 return fmt && strcmp(fmt, "raw") == 0; 54 } 55 56 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 57 { 58 cpu->magic = le32_to_cpu(le->magic); 59 cpu->cluster_size = le32_to_cpu(le->cluster_size); 60 cpu->table_size = le32_to_cpu(le->table_size); 61 cpu->header_size = le32_to_cpu(le->header_size); 62 cpu->features = le64_to_cpu(le->features); 63 cpu->compat_features = le64_to_cpu(le->compat_features); 64 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 65 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 66 cpu->image_size = le64_to_cpu(le->image_size); 67 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 68 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 69 } 70 71 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 72 { 73 le->magic = cpu_to_le32(cpu->magic); 74 le->cluster_size = cpu_to_le32(cpu->cluster_size); 75 le->table_size = cpu_to_le32(cpu->table_size); 76 le->header_size = cpu_to_le32(cpu->header_size); 77 le->features = cpu_to_le64(cpu->features); 78 le->compat_features = cpu_to_le64(cpu->compat_features); 79 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 80 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 81 le->image_size = cpu_to_le64(cpu->image_size); 82 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 83 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 84 } 85 86 int qed_write_header_sync(BDRVQEDState *s) 87 { 88 QEDHeader le; 89 int ret; 90 91 qed_header_cpu_to_le(&s->header, &le); 92 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 93 if (ret != sizeof(le)) { 94 return ret; 95 } 96 return 0; 97 } 98 99 /** 100 * Update header in-place (does not rewrite backing filename or other strings) 101 * 102 * This function only updates known header fields in-place and does not affect 103 * extra data after the QED header. 104 * 105 * No new allocating reqs can start while this function runs. 106 */ 107 static int coroutine_fn qed_write_header(BDRVQEDState *s) 108 { 109 /* We must write full sectors for O_DIRECT but cannot necessarily generate 110 * the data following the header if an unrecognized compat feature is 111 * active. Therefore, first read the sectors containing the header, update 112 * them, and write back. 113 */ 114 115 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 116 size_t len = nsectors * BDRV_SECTOR_SIZE; 117 uint8_t *buf; 118 int ret; 119 120 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 121 122 buf = qemu_blockalign(s->bs, len); 123 124 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0); 125 if (ret < 0) { 126 goto out; 127 } 128 129 /* Update header */ 130 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 131 132 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0); 133 if (ret < 0) { 134 goto out; 135 } 136 137 ret = 0; 138 out: 139 qemu_vfree(buf); 140 return ret; 141 } 142 143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 144 { 145 uint64_t table_entries; 146 uint64_t l2_size; 147 148 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 149 l2_size = table_entries * cluster_size; 150 151 return l2_size * table_entries; 152 } 153 154 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 155 { 156 if (cluster_size < QED_MIN_CLUSTER_SIZE || 157 cluster_size > QED_MAX_CLUSTER_SIZE) { 158 return false; 159 } 160 if (cluster_size & (cluster_size - 1)) { 161 return false; /* not power of 2 */ 162 } 163 return true; 164 } 165 166 static bool qed_is_table_size_valid(uint32_t table_size) 167 { 168 if (table_size < QED_MIN_TABLE_SIZE || 169 table_size > QED_MAX_TABLE_SIZE) { 170 return false; 171 } 172 if (table_size & (table_size - 1)) { 173 return false; /* not power of 2 */ 174 } 175 return true; 176 } 177 178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 179 uint32_t table_size) 180 { 181 if (image_size % BDRV_SECTOR_SIZE != 0) { 182 return false; /* not multiple of sector size */ 183 } 184 if (image_size > qed_max_image_size(cluster_size, table_size)) { 185 return false; /* image is too large */ 186 } 187 return true; 188 } 189 190 /** 191 * Read a string of known length from the image file 192 * 193 * @file: Image file 194 * @offset: File offset to start of string, in bytes 195 * @n: String length in bytes 196 * @buf: Destination buffer 197 * @buflen: Destination buffer length in bytes 198 * @ret: 0 on success, -errno on failure 199 * 200 * The string is NUL-terminated. 201 */ 202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 203 char *buf, size_t buflen) 204 { 205 int ret; 206 if (n >= buflen) { 207 return -EINVAL; 208 } 209 ret = bdrv_pread(file, offset, buf, n); 210 if (ret < 0) { 211 return ret; 212 } 213 buf[n] = '\0'; 214 return 0; 215 } 216 217 /** 218 * Allocate new clusters 219 * 220 * @s: QED state 221 * @n: Number of contiguous clusters to allocate 222 * @ret: Offset of first allocated cluster 223 * 224 * This function only produces the offset where the new clusters should be 225 * written. It updates BDRVQEDState but does not make any changes to the image 226 * file. 227 * 228 * Called with table_lock held. 229 */ 230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 231 { 232 uint64_t offset = s->file_size; 233 s->file_size += n * s->header.cluster_size; 234 return offset; 235 } 236 237 QEDTable *qed_alloc_table(BDRVQEDState *s) 238 { 239 /* Honor O_DIRECT memory alignment requirements */ 240 return qemu_blockalign(s->bs, 241 s->header.cluster_size * s->header.table_size); 242 } 243 244 /** 245 * Allocate a new zeroed L2 table 246 * 247 * Called with table_lock held. 248 */ 249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 250 { 251 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 252 253 l2_table->table = qed_alloc_table(s); 254 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 255 256 memset(l2_table->table->offsets, 0, 257 s->header.cluster_size * s->header.table_size); 258 return l2_table; 259 } 260 261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 262 { 263 qemu_co_mutex_lock(&s->table_lock); 264 265 /* No reentrancy is allowed. */ 266 assert(!s->allocating_write_reqs_plugged); 267 if (s->allocating_acb != NULL) { 268 /* Another allocating write came concurrently. This cannot happen 269 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 270 */ 271 qemu_co_mutex_unlock(&s->table_lock); 272 return false; 273 } 274 275 s->allocating_write_reqs_plugged = true; 276 qemu_co_mutex_unlock(&s->table_lock); 277 return true; 278 } 279 280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 281 { 282 qemu_co_mutex_lock(&s->table_lock); 283 assert(s->allocating_write_reqs_plugged); 284 s->allocating_write_reqs_plugged = false; 285 qemu_co_queue_next(&s->allocating_write_reqs); 286 qemu_co_mutex_unlock(&s->table_lock); 287 } 288 289 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 290 { 291 BDRVQEDState *s = opaque; 292 int ret; 293 294 trace_qed_need_check_timer_cb(s); 295 296 if (!qed_plug_allocating_write_reqs(s)) { 297 return; 298 } 299 300 /* Ensure writes are on disk before clearing flag */ 301 ret = bdrv_co_flush(s->bs->file->bs); 302 if (ret < 0) { 303 qed_unplug_allocating_write_reqs(s); 304 return; 305 } 306 307 s->header.features &= ~QED_F_NEED_CHECK; 308 ret = qed_write_header(s); 309 (void) ret; 310 311 qed_unplug_allocating_write_reqs(s); 312 313 ret = bdrv_co_flush(s->bs); 314 (void) ret; 315 } 316 317 static void qed_need_check_timer_cb(void *opaque) 318 { 319 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 320 qemu_coroutine_enter(co); 321 } 322 323 static void qed_start_need_check_timer(BDRVQEDState *s) 324 { 325 trace_qed_start_need_check_timer(s); 326 327 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 328 * migration. 329 */ 330 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 331 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 332 } 333 334 /* It's okay to call this multiple times or when no timer is started */ 335 static void qed_cancel_need_check_timer(BDRVQEDState *s) 336 { 337 trace_qed_cancel_need_check_timer(s); 338 timer_del(s->need_check_timer); 339 } 340 341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 342 { 343 BDRVQEDState *s = bs->opaque; 344 345 qed_cancel_need_check_timer(s); 346 timer_free(s->need_check_timer); 347 } 348 349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 350 AioContext *new_context) 351 { 352 BDRVQEDState *s = bs->opaque; 353 354 s->need_check_timer = aio_timer_new(new_context, 355 QEMU_CLOCK_VIRTUAL, SCALE_NS, 356 qed_need_check_timer_cb, s); 357 if (s->header.features & QED_F_NEED_CHECK) { 358 qed_start_need_check_timer(s); 359 } 360 } 361 362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 363 { 364 BDRVQEDState *s = bs->opaque; 365 366 /* Fire the timer immediately in order to start doing I/O as soon as the 367 * header is flushed. 368 */ 369 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 370 qed_cancel_need_check_timer(s); 371 qed_need_check_timer_entry(s); 372 } 373 } 374 375 static void bdrv_qed_init_state(BlockDriverState *bs) 376 { 377 BDRVQEDState *s = bs->opaque; 378 379 memset(s, 0, sizeof(BDRVQEDState)); 380 s->bs = bs; 381 qemu_co_mutex_init(&s->table_lock); 382 qemu_co_queue_init(&s->allocating_write_reqs); 383 } 384 385 /* Called with table_lock held. */ 386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 387 int flags, Error **errp) 388 { 389 BDRVQEDState *s = bs->opaque; 390 QEDHeader le_header; 391 int64_t file_size; 392 int ret; 393 394 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 395 if (ret < 0) { 396 error_setg(errp, "Failed to read QED header"); 397 return ret; 398 } 399 qed_header_le_to_cpu(&le_header, &s->header); 400 401 if (s->header.magic != QED_MAGIC) { 402 error_setg(errp, "Image not in QED format"); 403 return -EINVAL; 404 } 405 if (s->header.features & ~QED_FEATURE_MASK) { 406 /* image uses unsupported feature bits */ 407 error_setg(errp, "Unsupported QED features: %" PRIx64, 408 s->header.features & ~QED_FEATURE_MASK); 409 return -ENOTSUP; 410 } 411 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 412 error_setg(errp, "QED cluster size is invalid"); 413 return -EINVAL; 414 } 415 416 /* Round down file size to the last cluster */ 417 file_size = bdrv_getlength(bs->file->bs); 418 if (file_size < 0) { 419 error_setg(errp, "Failed to get file length"); 420 return file_size; 421 } 422 s->file_size = qed_start_of_cluster(s, file_size); 423 424 if (!qed_is_table_size_valid(s->header.table_size)) { 425 error_setg(errp, "QED table size is invalid"); 426 return -EINVAL; 427 } 428 if (!qed_is_image_size_valid(s->header.image_size, 429 s->header.cluster_size, 430 s->header.table_size)) { 431 error_setg(errp, "QED image size is invalid"); 432 return -EINVAL; 433 } 434 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 435 error_setg(errp, "QED table offset is invalid"); 436 return -EINVAL; 437 } 438 439 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 440 sizeof(uint64_t); 441 s->l2_shift = ctz32(s->header.cluster_size); 442 s->l2_mask = s->table_nelems - 1; 443 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 444 445 /* Header size calculation must not overflow uint32_t */ 446 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 447 error_setg(errp, "QED header size is too large"); 448 return -EINVAL; 449 } 450 451 if ((s->header.features & QED_F_BACKING_FILE)) { 452 if ((uint64_t)s->header.backing_filename_offset + 453 s->header.backing_filename_size > 454 s->header.cluster_size * s->header.header_size) { 455 error_setg(errp, "QED backing filename offset is invalid"); 456 return -EINVAL; 457 } 458 459 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 460 s->header.backing_filename_size, 461 bs->auto_backing_file, 462 sizeof(bs->auto_backing_file)); 463 if (ret < 0) { 464 error_setg(errp, "Failed to read backing filename"); 465 return ret; 466 } 467 pstrcpy(bs->backing_file, sizeof(bs->backing_file), 468 bs->auto_backing_file); 469 470 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 471 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 472 } 473 } 474 475 /* Reset unknown autoclear feature bits. This is a backwards 476 * compatibility mechanism that allows images to be opened by older 477 * programs, which "knock out" unknown feature bits. When an image is 478 * opened by a newer program again it can detect that the autoclear 479 * feature is no longer valid. 480 */ 481 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 482 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 483 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 484 485 ret = qed_write_header_sync(s); 486 if (ret) { 487 error_setg(errp, "Failed to update header"); 488 return ret; 489 } 490 491 /* From here on only known autoclear feature bits are valid */ 492 bdrv_flush(bs->file->bs); 493 } 494 495 s->l1_table = qed_alloc_table(s); 496 qed_init_l2_cache(&s->l2_cache); 497 498 ret = qed_read_l1_table_sync(s); 499 if (ret) { 500 error_setg(errp, "Failed to read L1 table"); 501 goto out; 502 } 503 504 /* If image was not closed cleanly, check consistency */ 505 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 506 /* Read-only images cannot be fixed. There is no risk of corruption 507 * since write operations are not possible. Therefore, allow 508 * potentially inconsistent images to be opened read-only. This can 509 * aid data recovery from an otherwise inconsistent image. 510 */ 511 if (!bdrv_is_read_only(bs->file->bs) && 512 !(flags & BDRV_O_INACTIVE)) { 513 BdrvCheckResult result = {0}; 514 515 ret = qed_check(s, &result, true); 516 if (ret) { 517 error_setg(errp, "Image corrupted"); 518 goto out; 519 } 520 } 521 } 522 523 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 524 525 out: 526 if (ret) { 527 qed_free_l2_cache(&s->l2_cache); 528 qemu_vfree(s->l1_table); 529 } 530 return ret; 531 } 532 533 typedef struct QEDOpenCo { 534 BlockDriverState *bs; 535 QDict *options; 536 int flags; 537 Error **errp; 538 int ret; 539 } QEDOpenCo; 540 541 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 542 { 543 QEDOpenCo *qoc = opaque; 544 BDRVQEDState *s = qoc->bs->opaque; 545 546 qemu_co_mutex_lock(&s->table_lock); 547 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 548 qemu_co_mutex_unlock(&s->table_lock); 549 } 550 551 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 552 Error **errp) 553 { 554 QEDOpenCo qoc = { 555 .bs = bs, 556 .options = options, 557 .flags = flags, 558 .errp = errp, 559 .ret = -EINPROGRESS 560 }; 561 562 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds, 563 BDRV_CHILD_IMAGE, false, errp); 564 if (!bs->file) { 565 return -EINVAL; 566 } 567 568 bdrv_qed_init_state(bs); 569 if (qemu_in_coroutine()) { 570 bdrv_qed_open_entry(&qoc); 571 } else { 572 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 573 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 574 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 575 } 576 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 577 return qoc.ret; 578 } 579 580 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 581 { 582 BDRVQEDState *s = bs->opaque; 583 584 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 585 } 586 587 /* We have nothing to do for QED reopen, stubs just return 588 * success */ 589 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 590 BlockReopenQueue *queue, Error **errp) 591 { 592 return 0; 593 } 594 595 static void bdrv_qed_close(BlockDriverState *bs) 596 { 597 BDRVQEDState *s = bs->opaque; 598 599 bdrv_qed_detach_aio_context(bs); 600 601 /* Ensure writes reach stable storage */ 602 bdrv_flush(bs->file->bs); 603 604 /* Clean shutdown, no check required on next open */ 605 if (s->header.features & QED_F_NEED_CHECK) { 606 s->header.features &= ~QED_F_NEED_CHECK; 607 qed_write_header_sync(s); 608 } 609 610 qed_free_l2_cache(&s->l2_cache); 611 qemu_vfree(s->l1_table); 612 } 613 614 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 615 Error **errp) 616 { 617 BlockdevCreateOptionsQed *qed_opts; 618 BlockBackend *blk = NULL; 619 BlockDriverState *bs = NULL; 620 621 QEDHeader header; 622 QEDHeader le_header; 623 uint8_t *l1_table = NULL; 624 size_t l1_size; 625 int ret = 0; 626 627 assert(opts->driver == BLOCKDEV_DRIVER_QED); 628 qed_opts = &opts->u.qed; 629 630 /* Validate options and set default values */ 631 if (!qed_opts->has_cluster_size) { 632 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 633 } 634 if (!qed_opts->has_table_size) { 635 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 636 } 637 638 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 639 error_setg(errp, "QED cluster size must be within range [%u, %u] " 640 "and power of 2", 641 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 642 return -EINVAL; 643 } 644 if (!qed_is_table_size_valid(qed_opts->table_size)) { 645 error_setg(errp, "QED table size must be within range [%u, %u] " 646 "and power of 2", 647 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 648 return -EINVAL; 649 } 650 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 651 qed_opts->table_size)) 652 { 653 error_setg(errp, "QED image size must be a non-zero multiple of " 654 "cluster size and less than %" PRIu64 " bytes", 655 qed_max_image_size(qed_opts->cluster_size, 656 qed_opts->table_size)); 657 return -EINVAL; 658 } 659 660 /* Create BlockBackend to write to the image */ 661 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 662 if (bs == NULL) { 663 return -EIO; 664 } 665 666 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL, 667 errp); 668 if (!blk) { 669 ret = -EPERM; 670 goto out; 671 } 672 blk_set_allow_write_beyond_eof(blk, true); 673 674 /* Prepare image format */ 675 header = (QEDHeader) { 676 .magic = QED_MAGIC, 677 .cluster_size = qed_opts->cluster_size, 678 .table_size = qed_opts->table_size, 679 .header_size = 1, 680 .features = 0, 681 .compat_features = 0, 682 .l1_table_offset = qed_opts->cluster_size, 683 .image_size = qed_opts->size, 684 }; 685 686 l1_size = header.cluster_size * header.table_size; 687 688 /* 689 * The QED format associates file length with allocation status, 690 * so a new file (which is empty) must have a length of 0. 691 */ 692 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp); 693 if (ret < 0) { 694 goto out; 695 } 696 697 if (qed_opts->has_backing_file) { 698 header.features |= QED_F_BACKING_FILE; 699 header.backing_filename_offset = sizeof(le_header); 700 header.backing_filename_size = strlen(qed_opts->backing_file); 701 702 if (qed_opts->has_backing_fmt) { 703 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 704 if (qed_fmt_is_raw(backing_fmt)) { 705 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 706 } 707 } 708 } 709 710 qed_header_cpu_to_le(&header, &le_header); 711 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 712 if (ret < 0) { 713 goto out; 714 } 715 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 716 header.backing_filename_size, 0); 717 if (ret < 0) { 718 goto out; 719 } 720 721 l1_table = g_malloc0(l1_size); 722 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 723 if (ret < 0) { 724 goto out; 725 } 726 727 ret = 0; /* success */ 728 out: 729 g_free(l1_table); 730 blk_unref(blk); 731 bdrv_unref(bs); 732 return ret; 733 } 734 735 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv, 736 const char *filename, 737 QemuOpts *opts, 738 Error **errp) 739 { 740 BlockdevCreateOptions *create_options = NULL; 741 QDict *qdict; 742 Visitor *v; 743 BlockDriverState *bs = NULL; 744 int ret; 745 746 static const QDictRenames opt_renames[] = { 747 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 748 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 749 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 750 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 751 { NULL, NULL }, 752 }; 753 754 /* Parse options and convert legacy syntax */ 755 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 756 757 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 758 ret = -EINVAL; 759 goto fail; 760 } 761 762 /* Create and open the file (protocol layer) */ 763 ret = bdrv_create_file(filename, opts, errp); 764 if (ret < 0) { 765 goto fail; 766 } 767 768 bs = bdrv_open(filename, NULL, NULL, 769 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 770 if (bs == NULL) { 771 ret = -EIO; 772 goto fail; 773 } 774 775 /* Now get the QAPI type BlockdevCreateOptions */ 776 qdict_put_str(qdict, "driver", "qed"); 777 qdict_put_str(qdict, "file", bs->node_name); 778 779 v = qobject_input_visitor_new_flat_confused(qdict, errp); 780 if (!v) { 781 ret = -EINVAL; 782 goto fail; 783 } 784 785 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp); 786 visit_free(v); 787 if (!create_options) { 788 ret = -EINVAL; 789 goto fail; 790 } 791 792 /* Silently round up size */ 793 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 794 create_options->u.qed.size = 795 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 796 797 /* Create the qed image (format layer) */ 798 ret = bdrv_qed_co_create(create_options, errp); 799 800 fail: 801 qobject_unref(qdict); 802 bdrv_unref(bs); 803 qapi_free_BlockdevCreateOptions(create_options); 804 return ret; 805 } 806 807 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 808 bool want_zero, 809 int64_t pos, int64_t bytes, 810 int64_t *pnum, int64_t *map, 811 BlockDriverState **file) 812 { 813 BDRVQEDState *s = bs->opaque; 814 size_t len = MIN(bytes, SIZE_MAX); 815 int status; 816 QEDRequest request = { .l2_table = NULL }; 817 uint64_t offset; 818 int ret; 819 820 qemu_co_mutex_lock(&s->table_lock); 821 ret = qed_find_cluster(s, &request, pos, &len, &offset); 822 823 *pnum = len; 824 switch (ret) { 825 case QED_CLUSTER_FOUND: 826 *map = offset | qed_offset_into_cluster(s, pos); 827 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 828 *file = bs->file->bs; 829 break; 830 case QED_CLUSTER_ZERO: 831 status = BDRV_BLOCK_ZERO; 832 break; 833 case QED_CLUSTER_L2: 834 case QED_CLUSTER_L1: 835 status = 0; 836 break; 837 default: 838 assert(ret < 0); 839 status = ret; 840 break; 841 } 842 843 qed_unref_l2_cache_entry(request.l2_table); 844 qemu_co_mutex_unlock(&s->table_lock); 845 846 return status; 847 } 848 849 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 850 { 851 return acb->bs->opaque; 852 } 853 854 /** 855 * Read from the backing file or zero-fill if no backing file 856 * 857 * @s: QED state 858 * @pos: Byte position in device 859 * @qiov: Destination I/O vector 860 * 861 * This function reads qiov->size bytes starting at pos from the backing file. 862 * If there is no backing file then zeroes are read. 863 */ 864 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 865 QEMUIOVector *qiov) 866 { 867 if (s->bs->backing) { 868 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 869 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0); 870 } 871 qemu_iovec_memset(qiov, 0, 0, qiov->size); 872 return 0; 873 } 874 875 /** 876 * Copy data from backing file into the image 877 * 878 * @s: QED state 879 * @pos: Byte position in device 880 * @len: Number of bytes 881 * @offset: Byte offset in image file 882 */ 883 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 884 uint64_t pos, uint64_t len, 885 uint64_t offset) 886 { 887 QEMUIOVector qiov; 888 int ret; 889 890 /* Skip copy entirely if there is no work to do */ 891 if (len == 0) { 892 return 0; 893 } 894 895 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len); 896 897 ret = qed_read_backing_file(s, pos, &qiov); 898 899 if (ret) { 900 goto out; 901 } 902 903 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 904 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 905 if (ret < 0) { 906 goto out; 907 } 908 ret = 0; 909 out: 910 qemu_vfree(qemu_iovec_buf(&qiov)); 911 return ret; 912 } 913 914 /** 915 * Link one or more contiguous clusters into a table 916 * 917 * @s: QED state 918 * @table: L2 table 919 * @index: First cluster index 920 * @n: Number of contiguous clusters 921 * @cluster: First cluster offset 922 * 923 * The cluster offset may be an allocated byte offset in the image file, the 924 * zero cluster marker, or the unallocated cluster marker. 925 * 926 * Called with table_lock held. 927 */ 928 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 929 int index, unsigned int n, 930 uint64_t cluster) 931 { 932 int i; 933 for (i = index; i < index + n; i++) { 934 table->offsets[i] = cluster; 935 if (!qed_offset_is_unalloc_cluster(cluster) && 936 !qed_offset_is_zero_cluster(cluster)) { 937 cluster += s->header.cluster_size; 938 } 939 } 940 } 941 942 /* Called with table_lock held. */ 943 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 944 { 945 BDRVQEDState *s = acb_to_s(acb); 946 947 /* Free resources */ 948 qemu_iovec_destroy(&acb->cur_qiov); 949 qed_unref_l2_cache_entry(acb->request.l2_table); 950 951 /* Free the buffer we may have allocated for zero writes */ 952 if (acb->flags & QED_AIOCB_ZERO) { 953 qemu_vfree(acb->qiov->iov[0].iov_base); 954 acb->qiov->iov[0].iov_base = NULL; 955 } 956 957 /* Start next allocating write request waiting behind this one. Note that 958 * requests enqueue themselves when they first hit an unallocated cluster 959 * but they wait until the entire request is finished before waking up the 960 * next request in the queue. This ensures that we don't cycle through 961 * requests multiple times but rather finish one at a time completely. 962 */ 963 if (acb == s->allocating_acb) { 964 s->allocating_acb = NULL; 965 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 966 qemu_co_queue_next(&s->allocating_write_reqs); 967 } else if (s->header.features & QED_F_NEED_CHECK) { 968 qed_start_need_check_timer(s); 969 } 970 } 971 } 972 973 /** 974 * Update L1 table with new L2 table offset and write it out 975 * 976 * Called with table_lock held. 977 */ 978 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 979 { 980 BDRVQEDState *s = acb_to_s(acb); 981 CachedL2Table *l2_table = acb->request.l2_table; 982 uint64_t l2_offset = l2_table->offset; 983 int index, ret; 984 985 index = qed_l1_index(s, acb->cur_pos); 986 s->l1_table->offsets[index] = l2_table->offset; 987 988 ret = qed_write_l1_table(s, index, 1); 989 990 /* Commit the current L2 table to the cache */ 991 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 992 993 /* This is guaranteed to succeed because we just committed the entry to the 994 * cache. 995 */ 996 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 997 assert(acb->request.l2_table != NULL); 998 999 return ret; 1000 } 1001 1002 1003 /** 1004 * Update L2 table with new cluster offsets and write them out 1005 * 1006 * Called with table_lock held. 1007 */ 1008 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1009 { 1010 BDRVQEDState *s = acb_to_s(acb); 1011 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1012 int index, ret; 1013 1014 if (need_alloc) { 1015 qed_unref_l2_cache_entry(acb->request.l2_table); 1016 acb->request.l2_table = qed_new_l2_table(s); 1017 } 1018 1019 index = qed_l2_index(s, acb->cur_pos); 1020 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1021 offset); 1022 1023 if (need_alloc) { 1024 /* Write out the whole new L2 table */ 1025 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1026 if (ret) { 1027 return ret; 1028 } 1029 return qed_aio_write_l1_update(acb); 1030 } else { 1031 /* Write out only the updated part of the L2 table */ 1032 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1033 false); 1034 if (ret) { 1035 return ret; 1036 } 1037 } 1038 return 0; 1039 } 1040 1041 /** 1042 * Write data to the image file 1043 * 1044 * Called with table_lock *not* held. 1045 */ 1046 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1047 { 1048 BDRVQEDState *s = acb_to_s(acb); 1049 uint64_t offset = acb->cur_cluster + 1050 qed_offset_into_cluster(s, acb->cur_pos); 1051 1052 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1053 1054 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1055 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1056 &acb->cur_qiov, 0); 1057 } 1058 1059 /** 1060 * Populate untouched regions of new data cluster 1061 * 1062 * Called with table_lock held. 1063 */ 1064 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1065 { 1066 BDRVQEDState *s = acb_to_s(acb); 1067 uint64_t start, len, offset; 1068 int ret; 1069 1070 qemu_co_mutex_unlock(&s->table_lock); 1071 1072 /* Populate front untouched region of new data cluster */ 1073 start = qed_start_of_cluster(s, acb->cur_pos); 1074 len = qed_offset_into_cluster(s, acb->cur_pos); 1075 1076 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1077 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1078 if (ret < 0) { 1079 goto out; 1080 } 1081 1082 /* Populate back untouched region of new data cluster */ 1083 start = acb->cur_pos + acb->cur_qiov.size; 1084 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1085 offset = acb->cur_cluster + 1086 qed_offset_into_cluster(s, acb->cur_pos) + 1087 acb->cur_qiov.size; 1088 1089 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1090 ret = qed_copy_from_backing_file(s, start, len, offset); 1091 if (ret < 0) { 1092 goto out; 1093 } 1094 1095 ret = qed_aio_write_main(acb); 1096 if (ret < 0) { 1097 goto out; 1098 } 1099 1100 if (s->bs->backing) { 1101 /* 1102 * Flush new data clusters before updating the L2 table 1103 * 1104 * This flush is necessary when a backing file is in use. A crash 1105 * during an allocating write could result in empty clusters in the 1106 * image. If the write only touched a subregion of the cluster, 1107 * then backing image sectors have been lost in the untouched 1108 * region. The solution is to flush after writing a new data 1109 * cluster and before updating the L2 table. 1110 */ 1111 ret = bdrv_co_flush(s->bs->file->bs); 1112 } 1113 1114 out: 1115 qemu_co_mutex_lock(&s->table_lock); 1116 return ret; 1117 } 1118 1119 /** 1120 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1121 */ 1122 static bool qed_should_set_need_check(BDRVQEDState *s) 1123 { 1124 /* The flush before L2 update path ensures consistency */ 1125 if (s->bs->backing) { 1126 return false; 1127 } 1128 1129 return !(s->header.features & QED_F_NEED_CHECK); 1130 } 1131 1132 /** 1133 * Write new data cluster 1134 * 1135 * @acb: Write request 1136 * @len: Length in bytes 1137 * 1138 * This path is taken when writing to previously unallocated clusters. 1139 * 1140 * Called with table_lock held. 1141 */ 1142 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1143 { 1144 BDRVQEDState *s = acb_to_s(acb); 1145 int ret; 1146 1147 /* Cancel timer when the first allocating request comes in */ 1148 if (s->allocating_acb == NULL) { 1149 qed_cancel_need_check_timer(s); 1150 } 1151 1152 /* Freeze this request if another allocating write is in progress */ 1153 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1154 if (s->allocating_acb != NULL) { 1155 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1156 assert(s->allocating_acb == NULL); 1157 } 1158 s->allocating_acb = acb; 1159 return -EAGAIN; /* start over with looking up table entries */ 1160 } 1161 1162 acb->cur_nclusters = qed_bytes_to_clusters(s, 1163 qed_offset_into_cluster(s, acb->cur_pos) + len); 1164 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1165 1166 if (acb->flags & QED_AIOCB_ZERO) { 1167 /* Skip ahead if the clusters are already zero */ 1168 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1169 return 0; 1170 } 1171 acb->cur_cluster = 1; 1172 } else { 1173 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1174 } 1175 1176 if (qed_should_set_need_check(s)) { 1177 s->header.features |= QED_F_NEED_CHECK; 1178 ret = qed_write_header(s); 1179 if (ret < 0) { 1180 return ret; 1181 } 1182 } 1183 1184 if (!(acb->flags & QED_AIOCB_ZERO)) { 1185 ret = qed_aio_write_cow(acb); 1186 if (ret < 0) { 1187 return ret; 1188 } 1189 } 1190 1191 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1192 } 1193 1194 /** 1195 * Write data cluster in place 1196 * 1197 * @acb: Write request 1198 * @offset: Cluster offset in bytes 1199 * @len: Length in bytes 1200 * 1201 * This path is taken when writing to already allocated clusters. 1202 * 1203 * Called with table_lock held. 1204 */ 1205 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1206 size_t len) 1207 { 1208 BDRVQEDState *s = acb_to_s(acb); 1209 int r; 1210 1211 qemu_co_mutex_unlock(&s->table_lock); 1212 1213 /* Allocate buffer for zero writes */ 1214 if (acb->flags & QED_AIOCB_ZERO) { 1215 struct iovec *iov = acb->qiov->iov; 1216 1217 if (!iov->iov_base) { 1218 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1219 if (iov->iov_base == NULL) { 1220 r = -ENOMEM; 1221 goto out; 1222 } 1223 memset(iov->iov_base, 0, iov->iov_len); 1224 } 1225 } 1226 1227 /* Calculate the I/O vector */ 1228 acb->cur_cluster = offset; 1229 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1230 1231 /* Do the actual write. */ 1232 r = qed_aio_write_main(acb); 1233 out: 1234 qemu_co_mutex_lock(&s->table_lock); 1235 return r; 1236 } 1237 1238 /** 1239 * Write data cluster 1240 * 1241 * @opaque: Write request 1242 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1243 * @offset: Cluster offset in bytes 1244 * @len: Length in bytes 1245 * 1246 * Called with table_lock held. 1247 */ 1248 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1249 uint64_t offset, size_t len) 1250 { 1251 QEDAIOCB *acb = opaque; 1252 1253 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1254 1255 acb->find_cluster_ret = ret; 1256 1257 switch (ret) { 1258 case QED_CLUSTER_FOUND: 1259 return qed_aio_write_inplace(acb, offset, len); 1260 1261 case QED_CLUSTER_L2: 1262 case QED_CLUSTER_L1: 1263 case QED_CLUSTER_ZERO: 1264 return qed_aio_write_alloc(acb, len); 1265 1266 default: 1267 g_assert_not_reached(); 1268 } 1269 } 1270 1271 /** 1272 * Read data cluster 1273 * 1274 * @opaque: Read request 1275 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1276 * @offset: Cluster offset in bytes 1277 * @len: Length in bytes 1278 * 1279 * Called with table_lock held. 1280 */ 1281 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1282 uint64_t offset, size_t len) 1283 { 1284 QEDAIOCB *acb = opaque; 1285 BDRVQEDState *s = acb_to_s(acb); 1286 BlockDriverState *bs = acb->bs; 1287 int r; 1288 1289 qemu_co_mutex_unlock(&s->table_lock); 1290 1291 /* Adjust offset into cluster */ 1292 offset += qed_offset_into_cluster(s, acb->cur_pos); 1293 1294 trace_qed_aio_read_data(s, acb, ret, offset, len); 1295 1296 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1297 1298 /* Handle zero cluster and backing file reads, otherwise read 1299 * data cluster directly. 1300 */ 1301 if (ret == QED_CLUSTER_ZERO) { 1302 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1303 r = 0; 1304 } else if (ret != QED_CLUSTER_FOUND) { 1305 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov); 1306 } else { 1307 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1308 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1309 &acb->cur_qiov, 0); 1310 } 1311 1312 qemu_co_mutex_lock(&s->table_lock); 1313 return r; 1314 } 1315 1316 /** 1317 * Begin next I/O or complete the request 1318 */ 1319 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1320 { 1321 BDRVQEDState *s = acb_to_s(acb); 1322 uint64_t offset; 1323 size_t len; 1324 int ret; 1325 1326 qemu_co_mutex_lock(&s->table_lock); 1327 while (1) { 1328 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1329 1330 acb->qiov_offset += acb->cur_qiov.size; 1331 acb->cur_pos += acb->cur_qiov.size; 1332 qemu_iovec_reset(&acb->cur_qiov); 1333 1334 /* Complete request */ 1335 if (acb->cur_pos >= acb->end_pos) { 1336 ret = 0; 1337 break; 1338 } 1339 1340 /* Find next cluster and start I/O */ 1341 len = acb->end_pos - acb->cur_pos; 1342 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1343 if (ret < 0) { 1344 break; 1345 } 1346 1347 if (acb->flags & QED_AIOCB_WRITE) { 1348 ret = qed_aio_write_data(acb, ret, offset, len); 1349 } else { 1350 ret = qed_aio_read_data(acb, ret, offset, len); 1351 } 1352 1353 if (ret < 0 && ret != -EAGAIN) { 1354 break; 1355 } 1356 } 1357 1358 trace_qed_aio_complete(s, acb, ret); 1359 qed_aio_complete(acb); 1360 qemu_co_mutex_unlock(&s->table_lock); 1361 return ret; 1362 } 1363 1364 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1365 QEMUIOVector *qiov, int nb_sectors, 1366 int flags) 1367 { 1368 QEDAIOCB acb = { 1369 .bs = bs, 1370 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1371 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1372 .qiov = qiov, 1373 .flags = flags, 1374 }; 1375 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1376 1377 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1378 1379 /* Start request */ 1380 return qed_aio_next_io(&acb); 1381 } 1382 1383 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1384 int64_t sector_num, int nb_sectors, 1385 QEMUIOVector *qiov) 1386 { 1387 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1388 } 1389 1390 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1391 int64_t sector_num, int nb_sectors, 1392 QEMUIOVector *qiov, int flags) 1393 { 1394 assert(!flags); 1395 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1396 } 1397 1398 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1399 int64_t offset, 1400 int bytes, 1401 BdrvRequestFlags flags) 1402 { 1403 BDRVQEDState *s = bs->opaque; 1404 1405 /* 1406 * Zero writes start without an I/O buffer. If a buffer becomes necessary 1407 * then it will be allocated during request processing. 1408 */ 1409 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 1410 1411 /* Fall back if the request is not aligned */ 1412 if (qed_offset_into_cluster(s, offset) || 1413 qed_offset_into_cluster(s, bytes)) { 1414 return -ENOTSUP; 1415 } 1416 1417 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1418 bytes >> BDRV_SECTOR_BITS, 1419 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1420 } 1421 1422 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1423 int64_t offset, 1424 bool exact, 1425 PreallocMode prealloc, 1426 BdrvRequestFlags flags, 1427 Error **errp) 1428 { 1429 BDRVQEDState *s = bs->opaque; 1430 uint64_t old_image_size; 1431 int ret; 1432 1433 if (prealloc != PREALLOC_MODE_OFF) { 1434 error_setg(errp, "Unsupported preallocation mode '%s'", 1435 PreallocMode_str(prealloc)); 1436 return -ENOTSUP; 1437 } 1438 1439 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1440 s->header.table_size)) { 1441 error_setg(errp, "Invalid image size specified"); 1442 return -EINVAL; 1443 } 1444 1445 if ((uint64_t)offset < s->header.image_size) { 1446 error_setg(errp, "Shrinking images is currently not supported"); 1447 return -ENOTSUP; 1448 } 1449 1450 old_image_size = s->header.image_size; 1451 s->header.image_size = offset; 1452 ret = qed_write_header_sync(s); 1453 if (ret < 0) { 1454 s->header.image_size = old_image_size; 1455 error_setg_errno(errp, -ret, "Failed to update the image size"); 1456 } 1457 return ret; 1458 } 1459 1460 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1461 { 1462 BDRVQEDState *s = bs->opaque; 1463 return s->header.image_size; 1464 } 1465 1466 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1467 { 1468 BDRVQEDState *s = bs->opaque; 1469 1470 memset(bdi, 0, sizeof(*bdi)); 1471 bdi->cluster_size = s->header.cluster_size; 1472 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1473 return 0; 1474 } 1475 1476 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1477 const char *backing_file, 1478 const char *backing_fmt) 1479 { 1480 BDRVQEDState *s = bs->opaque; 1481 QEDHeader new_header, le_header; 1482 void *buffer; 1483 size_t buffer_len, backing_file_len; 1484 int ret; 1485 1486 /* Refuse to set backing filename if unknown compat feature bits are 1487 * active. If the image uses an unknown compat feature then we may not 1488 * know the layout of data following the header structure and cannot safely 1489 * add a new string. 1490 */ 1491 if (backing_file && (s->header.compat_features & 1492 ~QED_COMPAT_FEATURE_MASK)) { 1493 return -ENOTSUP; 1494 } 1495 1496 memcpy(&new_header, &s->header, sizeof(new_header)); 1497 1498 new_header.features &= ~(QED_F_BACKING_FILE | 1499 QED_F_BACKING_FORMAT_NO_PROBE); 1500 1501 /* Adjust feature flags */ 1502 if (backing_file) { 1503 new_header.features |= QED_F_BACKING_FILE; 1504 1505 if (qed_fmt_is_raw(backing_fmt)) { 1506 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1507 } 1508 } 1509 1510 /* Calculate new header size */ 1511 backing_file_len = 0; 1512 1513 if (backing_file) { 1514 backing_file_len = strlen(backing_file); 1515 } 1516 1517 buffer_len = sizeof(new_header); 1518 new_header.backing_filename_offset = buffer_len; 1519 new_header.backing_filename_size = backing_file_len; 1520 buffer_len += backing_file_len; 1521 1522 /* Make sure we can rewrite header without failing */ 1523 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1524 return -ENOSPC; 1525 } 1526 1527 /* Prepare new header */ 1528 buffer = g_malloc(buffer_len); 1529 1530 qed_header_cpu_to_le(&new_header, &le_header); 1531 memcpy(buffer, &le_header, sizeof(le_header)); 1532 buffer_len = sizeof(le_header); 1533 1534 if (backing_file) { 1535 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1536 buffer_len += backing_file_len; 1537 } 1538 1539 /* Write new header */ 1540 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1541 g_free(buffer); 1542 if (ret == 0) { 1543 memcpy(&s->header, &new_header, sizeof(new_header)); 1544 } 1545 return ret; 1546 } 1547 1548 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1549 Error **errp) 1550 { 1551 BDRVQEDState *s = bs->opaque; 1552 int ret; 1553 1554 bdrv_qed_close(bs); 1555 1556 bdrv_qed_init_state(bs); 1557 qemu_co_mutex_lock(&s->table_lock); 1558 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp); 1559 qemu_co_mutex_unlock(&s->table_lock); 1560 if (ret < 0) { 1561 error_prepend(errp, "Could not reopen qed layer: "); 1562 } 1563 } 1564 1565 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs, 1566 BdrvCheckResult *result, 1567 BdrvCheckMode fix) 1568 { 1569 BDRVQEDState *s = bs->opaque; 1570 int ret; 1571 1572 qemu_co_mutex_lock(&s->table_lock); 1573 ret = qed_check(s, result, !!fix); 1574 qemu_co_mutex_unlock(&s->table_lock); 1575 1576 return ret; 1577 } 1578 1579 static QemuOptsList qed_create_opts = { 1580 .name = "qed-create-opts", 1581 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1582 .desc = { 1583 { 1584 .name = BLOCK_OPT_SIZE, 1585 .type = QEMU_OPT_SIZE, 1586 .help = "Virtual disk size" 1587 }, 1588 { 1589 .name = BLOCK_OPT_BACKING_FILE, 1590 .type = QEMU_OPT_STRING, 1591 .help = "File name of a base image" 1592 }, 1593 { 1594 .name = BLOCK_OPT_BACKING_FMT, 1595 .type = QEMU_OPT_STRING, 1596 .help = "Image format of the base image" 1597 }, 1598 { 1599 .name = BLOCK_OPT_CLUSTER_SIZE, 1600 .type = QEMU_OPT_SIZE, 1601 .help = "Cluster size (in bytes)", 1602 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1603 }, 1604 { 1605 .name = BLOCK_OPT_TABLE_SIZE, 1606 .type = QEMU_OPT_SIZE, 1607 .help = "L1/L2 table size (in clusters)" 1608 }, 1609 { /* end of list */ } 1610 } 1611 }; 1612 1613 static BlockDriver bdrv_qed = { 1614 .format_name = "qed", 1615 .instance_size = sizeof(BDRVQEDState), 1616 .create_opts = &qed_create_opts, 1617 .is_format = true, 1618 .supports_backing = true, 1619 1620 .bdrv_probe = bdrv_qed_probe, 1621 .bdrv_open = bdrv_qed_open, 1622 .bdrv_close = bdrv_qed_close, 1623 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1624 .bdrv_child_perm = bdrv_default_perms, 1625 .bdrv_co_create = bdrv_qed_co_create, 1626 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1627 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1628 .bdrv_co_block_status = bdrv_qed_co_block_status, 1629 .bdrv_co_readv = bdrv_qed_co_readv, 1630 .bdrv_co_writev = bdrv_qed_co_writev, 1631 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1632 .bdrv_co_truncate = bdrv_qed_co_truncate, 1633 .bdrv_getlength = bdrv_qed_getlength, 1634 .bdrv_get_info = bdrv_qed_get_info, 1635 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1636 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1637 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1638 .bdrv_co_check = bdrv_qed_co_check, 1639 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1640 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1641 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1642 }; 1643 1644 static void bdrv_qed_init(void) 1645 { 1646 bdrv_register(&bdrv_qed); 1647 } 1648 1649 block_init(bdrv_qed_init); 1650