xref: /openbmc/qemu/block/qed.c (revision 24496b8d)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
27 
28 static QemuOptsList qed_create_opts;
29 
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31                           const char *filename)
32 {
33     const QEDHeader *header = (const QEDHeader *)buf;
34 
35     if (buf_size < sizeof(*header)) {
36         return 0;
37     }
38     if (le32_to_cpu(header->magic) != QED_MAGIC) {
39         return 0;
40     }
41     return 100;
42 }
43 
44 /**
45  * Check whether an image format is raw
46  *
47  * @fmt:    Backing file format, may be NULL
48  */
49 static bool qed_fmt_is_raw(const char *fmt)
50 {
51     return fmt && strcmp(fmt, "raw") == 0;
52 }
53 
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
55 {
56     cpu->magic = le32_to_cpu(le->magic);
57     cpu->cluster_size = le32_to_cpu(le->cluster_size);
58     cpu->table_size = le32_to_cpu(le->table_size);
59     cpu->header_size = le32_to_cpu(le->header_size);
60     cpu->features = le64_to_cpu(le->features);
61     cpu->compat_features = le64_to_cpu(le->compat_features);
62     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64     cpu->image_size = le64_to_cpu(le->image_size);
65     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 }
68 
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
70 {
71     le->magic = cpu_to_le32(cpu->magic);
72     le->cluster_size = cpu_to_le32(cpu->cluster_size);
73     le->table_size = cpu_to_le32(cpu->table_size);
74     le->header_size = cpu_to_le32(cpu->header_size);
75     le->features = cpu_to_le64(cpu->features);
76     le->compat_features = cpu_to_le64(cpu->compat_features);
77     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79     le->image_size = cpu_to_le64(cpu->image_size);
80     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 }
83 
84 int qed_write_header_sync(BDRVQEDState *s)
85 {
86     QEDHeader le;
87     int ret;
88 
89     qed_header_cpu_to_le(&s->header, &le);
90     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91     if (ret != sizeof(le)) {
92         return ret;
93     }
94     return 0;
95 }
96 
97 /**
98  * Update header in-place (does not rewrite backing filename or other strings)
99  *
100  * This function only updates known header fields in-place and does not affect
101  * extra data after the QED header.
102  *
103  * No new allocating reqs can start while this function runs.
104  */
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
106 {
107     /* We must write full sectors for O_DIRECT but cannot necessarily generate
108      * the data following the header if an unrecognized compat feature is
109      * active.  Therefore, first read the sectors containing the header, update
110      * them, and write back.
111      */
112 
113     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114     size_t len = nsectors * BDRV_SECTOR_SIZE;
115     uint8_t *buf;
116     int ret;
117 
118     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
119 
120     buf = qemu_blockalign(s->bs, len);
121 
122     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
123     if (ret < 0) {
124         goto out;
125     }
126 
127     /* Update header */
128     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
129 
130     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
131     if (ret < 0) {
132         goto out;
133     }
134 
135     ret = 0;
136 out:
137     qemu_vfree(buf);
138     return ret;
139 }
140 
141 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
142 {
143     uint64_t table_entries;
144     uint64_t l2_size;
145 
146     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
147     l2_size = table_entries * cluster_size;
148 
149     return l2_size * table_entries;
150 }
151 
152 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
153 {
154     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
155         cluster_size > QED_MAX_CLUSTER_SIZE) {
156         return false;
157     }
158     if (cluster_size & (cluster_size - 1)) {
159         return false; /* not power of 2 */
160     }
161     return true;
162 }
163 
164 static bool qed_is_table_size_valid(uint32_t table_size)
165 {
166     if (table_size < QED_MIN_TABLE_SIZE ||
167         table_size > QED_MAX_TABLE_SIZE) {
168         return false;
169     }
170     if (table_size & (table_size - 1)) {
171         return false; /* not power of 2 */
172     }
173     return true;
174 }
175 
176 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
177                                     uint32_t table_size)
178 {
179     if (image_size % BDRV_SECTOR_SIZE != 0) {
180         return false; /* not multiple of sector size */
181     }
182     if (image_size > qed_max_image_size(cluster_size, table_size)) {
183         return false; /* image is too large */
184     }
185     return true;
186 }
187 
188 /**
189  * Read a string of known length from the image file
190  *
191  * @file:       Image file
192  * @offset:     File offset to start of string, in bytes
193  * @n:          String length in bytes
194  * @buf:        Destination buffer
195  * @buflen:     Destination buffer length in bytes
196  * @ret:        0 on success, -errno on failure
197  *
198  * The string is NUL-terminated.
199  */
200 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
201                            char *buf, size_t buflen)
202 {
203     int ret;
204     if (n >= buflen) {
205         return -EINVAL;
206     }
207     ret = bdrv_pread(file, offset, buf, n);
208     if (ret < 0) {
209         return ret;
210     }
211     buf[n] = '\0';
212     return 0;
213 }
214 
215 /**
216  * Allocate new clusters
217  *
218  * @s:          QED state
219  * @n:          Number of contiguous clusters to allocate
220  * @ret:        Offset of first allocated cluster
221  *
222  * This function only produces the offset where the new clusters should be
223  * written.  It updates BDRVQEDState but does not make any changes to the image
224  * file.
225  *
226  * Called with table_lock held.
227  */
228 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
229 {
230     uint64_t offset = s->file_size;
231     s->file_size += n * s->header.cluster_size;
232     return offset;
233 }
234 
235 QEDTable *qed_alloc_table(BDRVQEDState *s)
236 {
237     /* Honor O_DIRECT memory alignment requirements */
238     return qemu_blockalign(s->bs,
239                            s->header.cluster_size * s->header.table_size);
240 }
241 
242 /**
243  * Allocate a new zeroed L2 table
244  *
245  * Called with table_lock held.
246  */
247 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
248 {
249     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
250 
251     l2_table->table = qed_alloc_table(s);
252     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
253 
254     memset(l2_table->table->offsets, 0,
255            s->header.cluster_size * s->header.table_size);
256     return l2_table;
257 }
258 
259 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
260 {
261     qemu_co_mutex_lock(&s->table_lock);
262 
263     /* No reentrancy is allowed.  */
264     assert(!s->allocating_write_reqs_plugged);
265     if (s->allocating_acb != NULL) {
266         /* Another allocating write came concurrently.  This cannot happen
267          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
268          */
269         qemu_co_mutex_unlock(&s->table_lock);
270         return false;
271     }
272 
273     s->allocating_write_reqs_plugged = true;
274     qemu_co_mutex_unlock(&s->table_lock);
275     return true;
276 }
277 
278 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
279 {
280     qemu_co_mutex_lock(&s->table_lock);
281     assert(s->allocating_write_reqs_plugged);
282     s->allocating_write_reqs_plugged = false;
283     qemu_co_queue_next(&s->allocating_write_reqs);
284     qemu_co_mutex_unlock(&s->table_lock);
285 }
286 
287 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
288 {
289     BDRVQEDState *s = opaque;
290     int ret;
291 
292     trace_qed_need_check_timer_cb(s);
293 
294     if (!qed_plug_allocating_write_reqs(s)) {
295         return;
296     }
297 
298     /* Ensure writes are on disk before clearing flag */
299     ret = bdrv_co_flush(s->bs->file->bs);
300     if (ret < 0) {
301         qed_unplug_allocating_write_reqs(s);
302         return;
303     }
304 
305     s->header.features &= ~QED_F_NEED_CHECK;
306     ret = qed_write_header(s);
307     (void) ret;
308 
309     qed_unplug_allocating_write_reqs(s);
310 
311     ret = bdrv_co_flush(s->bs);
312     (void) ret;
313 }
314 
315 static void qed_need_check_timer_cb(void *opaque)
316 {
317     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
318     qemu_coroutine_enter(co);
319 }
320 
321 static void qed_start_need_check_timer(BDRVQEDState *s)
322 {
323     trace_qed_start_need_check_timer(s);
324 
325     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
326      * migration.
327      */
328     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
329                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
330 }
331 
332 /* It's okay to call this multiple times or when no timer is started */
333 static void qed_cancel_need_check_timer(BDRVQEDState *s)
334 {
335     trace_qed_cancel_need_check_timer(s);
336     timer_del(s->need_check_timer);
337 }
338 
339 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
340 {
341     BDRVQEDState *s = bs->opaque;
342 
343     qed_cancel_need_check_timer(s);
344     timer_free(s->need_check_timer);
345 }
346 
347 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
348                                         AioContext *new_context)
349 {
350     BDRVQEDState *s = bs->opaque;
351 
352     s->need_check_timer = aio_timer_new(new_context,
353                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
354                                         qed_need_check_timer_cb, s);
355     if (s->header.features & QED_F_NEED_CHECK) {
356         qed_start_need_check_timer(s);
357     }
358 }
359 
360 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
361 {
362     BDRVQEDState *s = bs->opaque;
363 
364     /* Fire the timer immediately in order to start doing I/O as soon as the
365      * header is flushed.
366      */
367     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
368         qed_cancel_need_check_timer(s);
369         qed_need_check_timer_entry(s);
370     }
371 }
372 
373 static void bdrv_qed_init_state(BlockDriverState *bs)
374 {
375     BDRVQEDState *s = bs->opaque;
376 
377     memset(s, 0, sizeof(BDRVQEDState));
378     s->bs = bs;
379     qemu_co_mutex_init(&s->table_lock);
380     qemu_co_queue_init(&s->allocating_write_reqs);
381 }
382 
383 /* Called with table_lock held.  */
384 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
385                                          int flags, Error **errp)
386 {
387     BDRVQEDState *s = bs->opaque;
388     QEDHeader le_header;
389     int64_t file_size;
390     int ret;
391 
392     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
393     if (ret < 0) {
394         return ret;
395     }
396     qed_header_le_to_cpu(&le_header, &s->header);
397 
398     if (s->header.magic != QED_MAGIC) {
399         error_setg(errp, "Image not in QED format");
400         return -EINVAL;
401     }
402     if (s->header.features & ~QED_FEATURE_MASK) {
403         /* image uses unsupported feature bits */
404         error_setg(errp, "Unsupported QED features: %" PRIx64,
405                    s->header.features & ~QED_FEATURE_MASK);
406         return -ENOTSUP;
407     }
408     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
409         return -EINVAL;
410     }
411 
412     /* Round down file size to the last cluster */
413     file_size = bdrv_getlength(bs->file->bs);
414     if (file_size < 0) {
415         return file_size;
416     }
417     s->file_size = qed_start_of_cluster(s, file_size);
418 
419     if (!qed_is_table_size_valid(s->header.table_size)) {
420         return -EINVAL;
421     }
422     if (!qed_is_image_size_valid(s->header.image_size,
423                                  s->header.cluster_size,
424                                  s->header.table_size)) {
425         return -EINVAL;
426     }
427     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
428         return -EINVAL;
429     }
430 
431     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
432                       sizeof(uint64_t);
433     s->l2_shift = ctz32(s->header.cluster_size);
434     s->l2_mask = s->table_nelems - 1;
435     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
436 
437     /* Header size calculation must not overflow uint32_t */
438     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
439         return -EINVAL;
440     }
441 
442     if ((s->header.features & QED_F_BACKING_FILE)) {
443         if ((uint64_t)s->header.backing_filename_offset +
444             s->header.backing_filename_size >
445             s->header.cluster_size * s->header.header_size) {
446             return -EINVAL;
447         }
448 
449         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
450                               s->header.backing_filename_size,
451                               bs->auto_backing_file,
452                               sizeof(bs->auto_backing_file));
453         if (ret < 0) {
454             return ret;
455         }
456         pstrcpy(bs->backing_file, sizeof(bs->backing_file),
457                 bs->auto_backing_file);
458 
459         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
460             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
461         }
462     }
463 
464     /* Reset unknown autoclear feature bits.  This is a backwards
465      * compatibility mechanism that allows images to be opened by older
466      * programs, which "knock out" unknown feature bits.  When an image is
467      * opened by a newer program again it can detect that the autoclear
468      * feature is no longer valid.
469      */
470     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
471         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
472         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
473 
474         ret = qed_write_header_sync(s);
475         if (ret) {
476             return ret;
477         }
478 
479         /* From here on only known autoclear feature bits are valid */
480         bdrv_flush(bs->file->bs);
481     }
482 
483     s->l1_table = qed_alloc_table(s);
484     qed_init_l2_cache(&s->l2_cache);
485 
486     ret = qed_read_l1_table_sync(s);
487     if (ret) {
488         goto out;
489     }
490 
491     /* If image was not closed cleanly, check consistency */
492     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
493         /* Read-only images cannot be fixed.  There is no risk of corruption
494          * since write operations are not possible.  Therefore, allow
495          * potentially inconsistent images to be opened read-only.  This can
496          * aid data recovery from an otherwise inconsistent image.
497          */
498         if (!bdrv_is_read_only(bs->file->bs) &&
499             !(flags & BDRV_O_INACTIVE)) {
500             BdrvCheckResult result = {0};
501 
502             ret = qed_check(s, &result, true);
503             if (ret) {
504                 goto out;
505             }
506         }
507     }
508 
509     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
510 
511 out:
512     if (ret) {
513         qed_free_l2_cache(&s->l2_cache);
514         qemu_vfree(s->l1_table);
515     }
516     return ret;
517 }
518 
519 typedef struct QEDOpenCo {
520     BlockDriverState *bs;
521     QDict *options;
522     int flags;
523     Error **errp;
524     int ret;
525 } QEDOpenCo;
526 
527 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
528 {
529     QEDOpenCo *qoc = opaque;
530     BDRVQEDState *s = qoc->bs->opaque;
531 
532     qemu_co_mutex_lock(&s->table_lock);
533     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
534     qemu_co_mutex_unlock(&s->table_lock);
535 }
536 
537 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
538                          Error **errp)
539 {
540     QEDOpenCo qoc = {
541         .bs = bs,
542         .options = options,
543         .flags = flags,
544         .errp = errp,
545         .ret = -EINPROGRESS
546     };
547 
548     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
549                                false, errp);
550     if (!bs->file) {
551         return -EINVAL;
552     }
553 
554     bdrv_qed_init_state(bs);
555     if (qemu_in_coroutine()) {
556         bdrv_qed_open_entry(&qoc);
557     } else {
558         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
559         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
560         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
561     }
562     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
563     return qoc.ret;
564 }
565 
566 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
567 {
568     BDRVQEDState *s = bs->opaque;
569 
570     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
571 }
572 
573 /* We have nothing to do for QED reopen, stubs just return
574  * success */
575 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
576                                    BlockReopenQueue *queue, Error **errp)
577 {
578     return 0;
579 }
580 
581 static void bdrv_qed_close(BlockDriverState *bs)
582 {
583     BDRVQEDState *s = bs->opaque;
584 
585     bdrv_qed_detach_aio_context(bs);
586 
587     /* Ensure writes reach stable storage */
588     bdrv_flush(bs->file->bs);
589 
590     /* Clean shutdown, no check required on next open */
591     if (s->header.features & QED_F_NEED_CHECK) {
592         s->header.features &= ~QED_F_NEED_CHECK;
593         qed_write_header_sync(s);
594     }
595 
596     qed_free_l2_cache(&s->l2_cache);
597     qemu_vfree(s->l1_table);
598 }
599 
600 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
601                                            Error **errp)
602 {
603     BlockdevCreateOptionsQed *qed_opts;
604     BlockBackend *blk = NULL;
605     BlockDriverState *bs = NULL;
606 
607     QEDHeader header;
608     QEDHeader le_header;
609     uint8_t *l1_table = NULL;
610     size_t l1_size;
611     int ret = 0;
612 
613     assert(opts->driver == BLOCKDEV_DRIVER_QED);
614     qed_opts = &opts->u.qed;
615 
616     /* Validate options and set default values */
617     if (!qed_opts->has_cluster_size) {
618         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
619     }
620     if (!qed_opts->has_table_size) {
621         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
622     }
623 
624     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
625         error_setg(errp, "QED cluster size must be within range [%u, %u] "
626                          "and power of 2",
627                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
628         return -EINVAL;
629     }
630     if (!qed_is_table_size_valid(qed_opts->table_size)) {
631         error_setg(errp, "QED table size must be within range [%u, %u] "
632                          "and power of 2",
633                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
634         return -EINVAL;
635     }
636     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
637                                  qed_opts->table_size))
638     {
639         error_setg(errp, "QED image size must be a non-zero multiple of "
640                          "cluster size and less than %" PRIu64 " bytes",
641                    qed_max_image_size(qed_opts->cluster_size,
642                                       qed_opts->table_size));
643         return -EINVAL;
644     }
645 
646     /* Create BlockBackend to write to the image */
647     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
648     if (bs == NULL) {
649         return -EIO;
650     }
651 
652     blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
653     ret = blk_insert_bs(blk, bs, errp);
654     if (ret < 0) {
655         goto out;
656     }
657     blk_set_allow_write_beyond_eof(blk, true);
658 
659     /* Prepare image format */
660     header = (QEDHeader) {
661         .magic = QED_MAGIC,
662         .cluster_size = qed_opts->cluster_size,
663         .table_size = qed_opts->table_size,
664         .header_size = 1,
665         .features = 0,
666         .compat_features = 0,
667         .l1_table_offset = qed_opts->cluster_size,
668         .image_size = qed_opts->size,
669     };
670 
671     l1_size = header.cluster_size * header.table_size;
672 
673     /* File must start empty and grow, check truncate is supported */
674     ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
675     if (ret < 0) {
676         goto out;
677     }
678 
679     if (qed_opts->has_backing_file) {
680         header.features |= QED_F_BACKING_FILE;
681         header.backing_filename_offset = sizeof(le_header);
682         header.backing_filename_size = strlen(qed_opts->backing_file);
683 
684         if (qed_opts->has_backing_fmt) {
685             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
686             if (qed_fmt_is_raw(backing_fmt)) {
687                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
688             }
689         }
690     }
691 
692     qed_header_cpu_to_le(&header, &le_header);
693     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
694     if (ret < 0) {
695         goto out;
696     }
697     ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
698                      header.backing_filename_size, 0);
699     if (ret < 0) {
700         goto out;
701     }
702 
703     l1_table = g_malloc0(l1_size);
704     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
705     if (ret < 0) {
706         goto out;
707     }
708 
709     ret = 0; /* success */
710 out:
711     g_free(l1_table);
712     blk_unref(blk);
713     bdrv_unref(bs);
714     return ret;
715 }
716 
717 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
718                                                 QemuOpts *opts,
719                                                 Error **errp)
720 {
721     BlockdevCreateOptions *create_options = NULL;
722     QDict *qdict;
723     Visitor *v;
724     BlockDriverState *bs = NULL;
725     Error *local_err = NULL;
726     int ret;
727 
728     static const QDictRenames opt_renames[] = {
729         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
730         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
731         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
732         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
733         { NULL, NULL },
734     };
735 
736     /* Parse options and convert legacy syntax */
737     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
738 
739     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
740         ret = -EINVAL;
741         goto fail;
742     }
743 
744     /* Create and open the file (protocol layer) */
745     ret = bdrv_create_file(filename, opts, &local_err);
746     if (ret < 0) {
747         error_propagate(errp, local_err);
748         goto fail;
749     }
750 
751     bs = bdrv_open(filename, NULL, NULL,
752                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
753     if (bs == NULL) {
754         ret = -EIO;
755         goto fail;
756     }
757 
758     /* Now get the QAPI type BlockdevCreateOptions */
759     qdict_put_str(qdict, "driver", "qed");
760     qdict_put_str(qdict, "file", bs->node_name);
761 
762     v = qobject_input_visitor_new_flat_confused(qdict, errp);
763     if (!v) {
764         ret = -EINVAL;
765         goto fail;
766     }
767 
768     visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
769     visit_free(v);
770 
771     if (local_err) {
772         error_propagate(errp, local_err);
773         ret = -EINVAL;
774         goto fail;
775     }
776 
777     /* Silently round up size */
778     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
779     create_options->u.qed.size =
780         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
781 
782     /* Create the qed image (format layer) */
783     ret = bdrv_qed_co_create(create_options, errp);
784 
785 fail:
786     qobject_unref(qdict);
787     bdrv_unref(bs);
788     qapi_free_BlockdevCreateOptions(create_options);
789     return ret;
790 }
791 
792 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
793                                                  bool want_zero,
794                                                  int64_t pos, int64_t bytes,
795                                                  int64_t *pnum, int64_t *map,
796                                                  BlockDriverState **file)
797 {
798     BDRVQEDState *s = bs->opaque;
799     size_t len = MIN(bytes, SIZE_MAX);
800     int status;
801     QEDRequest request = { .l2_table = NULL };
802     uint64_t offset;
803     int ret;
804 
805     qemu_co_mutex_lock(&s->table_lock);
806     ret = qed_find_cluster(s, &request, pos, &len, &offset);
807 
808     *pnum = len;
809     switch (ret) {
810     case QED_CLUSTER_FOUND:
811         *map = offset | qed_offset_into_cluster(s, pos);
812         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
813         *file = bs->file->bs;
814         break;
815     case QED_CLUSTER_ZERO:
816         status = BDRV_BLOCK_ZERO;
817         break;
818     case QED_CLUSTER_L2:
819     case QED_CLUSTER_L1:
820         status = 0;
821         break;
822     default:
823         assert(ret < 0);
824         status = ret;
825         break;
826     }
827 
828     qed_unref_l2_cache_entry(request.l2_table);
829     qemu_co_mutex_unlock(&s->table_lock);
830 
831     return status;
832 }
833 
834 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
835 {
836     return acb->bs->opaque;
837 }
838 
839 /**
840  * Read from the backing file or zero-fill if no backing file
841  *
842  * @s:              QED state
843  * @pos:            Byte position in device
844  * @qiov:           Destination I/O vector
845  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
846  * @cb:             Completion function
847  * @opaque:         User data for completion function
848  *
849  * This function reads qiov->size bytes starting at pos from the backing file.
850  * If there is no backing file then zeroes are read.
851  */
852 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
853                                               QEMUIOVector *qiov,
854                                               QEMUIOVector **backing_qiov)
855 {
856     uint64_t backing_length = 0;
857     size_t size;
858     int ret;
859 
860     /* If there is a backing file, get its length.  Treat the absence of a
861      * backing file like a zero length backing file.
862      */
863     if (s->bs->backing) {
864         int64_t l = bdrv_getlength(s->bs->backing->bs);
865         if (l < 0) {
866             return l;
867         }
868         backing_length = l;
869     }
870 
871     /* Zero all sectors if reading beyond the end of the backing file */
872     if (pos >= backing_length ||
873         pos + qiov->size > backing_length) {
874         qemu_iovec_memset(qiov, 0, 0, qiov->size);
875     }
876 
877     /* Complete now if there are no backing file sectors to read */
878     if (pos >= backing_length) {
879         return 0;
880     }
881 
882     /* If the read straddles the end of the backing file, shorten it */
883     size = MIN((uint64_t)backing_length - pos, qiov->size);
884 
885     assert(*backing_qiov == NULL);
886     *backing_qiov = g_new(QEMUIOVector, 1);
887     qemu_iovec_init(*backing_qiov, qiov->niov);
888     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
889 
890     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
891     ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
892     if (ret < 0) {
893         return ret;
894     }
895     return 0;
896 }
897 
898 /**
899  * Copy data from backing file into the image
900  *
901  * @s:          QED state
902  * @pos:        Byte position in device
903  * @len:        Number of bytes
904  * @offset:     Byte offset in image file
905  */
906 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
907                                                    uint64_t pos, uint64_t len,
908                                                    uint64_t offset)
909 {
910     QEMUIOVector qiov;
911     QEMUIOVector *backing_qiov = NULL;
912     int ret;
913 
914     /* Skip copy entirely if there is no work to do */
915     if (len == 0) {
916         return 0;
917     }
918 
919     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
920 
921     ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
922 
923     if (backing_qiov) {
924         qemu_iovec_destroy(backing_qiov);
925         g_free(backing_qiov);
926         backing_qiov = NULL;
927     }
928 
929     if (ret) {
930         goto out;
931     }
932 
933     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
934     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
935     if (ret < 0) {
936         goto out;
937     }
938     ret = 0;
939 out:
940     qemu_vfree(qemu_iovec_buf(&qiov));
941     return ret;
942 }
943 
944 /**
945  * Link one or more contiguous clusters into a table
946  *
947  * @s:              QED state
948  * @table:          L2 table
949  * @index:          First cluster index
950  * @n:              Number of contiguous clusters
951  * @cluster:        First cluster offset
952  *
953  * The cluster offset may be an allocated byte offset in the image file, the
954  * zero cluster marker, or the unallocated cluster marker.
955  *
956  * Called with table_lock held.
957  */
958 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
959                                              int index, unsigned int n,
960                                              uint64_t cluster)
961 {
962     int i;
963     for (i = index; i < index + n; i++) {
964         table->offsets[i] = cluster;
965         if (!qed_offset_is_unalloc_cluster(cluster) &&
966             !qed_offset_is_zero_cluster(cluster)) {
967             cluster += s->header.cluster_size;
968         }
969     }
970 }
971 
972 /* Called with table_lock held.  */
973 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
974 {
975     BDRVQEDState *s = acb_to_s(acb);
976 
977     /* Free resources */
978     qemu_iovec_destroy(&acb->cur_qiov);
979     qed_unref_l2_cache_entry(acb->request.l2_table);
980 
981     /* Free the buffer we may have allocated for zero writes */
982     if (acb->flags & QED_AIOCB_ZERO) {
983         qemu_vfree(acb->qiov->iov[0].iov_base);
984         acb->qiov->iov[0].iov_base = NULL;
985     }
986 
987     /* Start next allocating write request waiting behind this one.  Note that
988      * requests enqueue themselves when they first hit an unallocated cluster
989      * but they wait until the entire request is finished before waking up the
990      * next request in the queue.  This ensures that we don't cycle through
991      * requests multiple times but rather finish one at a time completely.
992      */
993     if (acb == s->allocating_acb) {
994         s->allocating_acb = NULL;
995         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
996             qemu_co_queue_next(&s->allocating_write_reqs);
997         } else if (s->header.features & QED_F_NEED_CHECK) {
998             qed_start_need_check_timer(s);
999         }
1000     }
1001 }
1002 
1003 /**
1004  * Update L1 table with new L2 table offset and write it out
1005  *
1006  * Called with table_lock held.
1007  */
1008 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1009 {
1010     BDRVQEDState *s = acb_to_s(acb);
1011     CachedL2Table *l2_table = acb->request.l2_table;
1012     uint64_t l2_offset = l2_table->offset;
1013     int index, ret;
1014 
1015     index = qed_l1_index(s, acb->cur_pos);
1016     s->l1_table->offsets[index] = l2_table->offset;
1017 
1018     ret = qed_write_l1_table(s, index, 1);
1019 
1020     /* Commit the current L2 table to the cache */
1021     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1022 
1023     /* This is guaranteed to succeed because we just committed the entry to the
1024      * cache.
1025      */
1026     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1027     assert(acb->request.l2_table != NULL);
1028 
1029     return ret;
1030 }
1031 
1032 
1033 /**
1034  * Update L2 table with new cluster offsets and write them out
1035  *
1036  * Called with table_lock held.
1037  */
1038 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1039 {
1040     BDRVQEDState *s = acb_to_s(acb);
1041     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1042     int index, ret;
1043 
1044     if (need_alloc) {
1045         qed_unref_l2_cache_entry(acb->request.l2_table);
1046         acb->request.l2_table = qed_new_l2_table(s);
1047     }
1048 
1049     index = qed_l2_index(s, acb->cur_pos);
1050     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1051                          offset);
1052 
1053     if (need_alloc) {
1054         /* Write out the whole new L2 table */
1055         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1056         if (ret) {
1057             return ret;
1058         }
1059         return qed_aio_write_l1_update(acb);
1060     } else {
1061         /* Write out only the updated part of the L2 table */
1062         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1063                                  false);
1064         if (ret) {
1065             return ret;
1066         }
1067     }
1068     return 0;
1069 }
1070 
1071 /**
1072  * Write data to the image file
1073  *
1074  * Called with table_lock *not* held.
1075  */
1076 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1077 {
1078     BDRVQEDState *s = acb_to_s(acb);
1079     uint64_t offset = acb->cur_cluster +
1080                       qed_offset_into_cluster(s, acb->cur_pos);
1081 
1082     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1083 
1084     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1085     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1086                            &acb->cur_qiov, 0);
1087 }
1088 
1089 /**
1090  * Populate untouched regions of new data cluster
1091  *
1092  * Called with table_lock held.
1093  */
1094 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1095 {
1096     BDRVQEDState *s = acb_to_s(acb);
1097     uint64_t start, len, offset;
1098     int ret;
1099 
1100     qemu_co_mutex_unlock(&s->table_lock);
1101 
1102     /* Populate front untouched region of new data cluster */
1103     start = qed_start_of_cluster(s, acb->cur_pos);
1104     len = qed_offset_into_cluster(s, acb->cur_pos);
1105 
1106     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1107     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1108     if (ret < 0) {
1109         goto out;
1110     }
1111 
1112     /* Populate back untouched region of new data cluster */
1113     start = acb->cur_pos + acb->cur_qiov.size;
1114     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1115     offset = acb->cur_cluster +
1116              qed_offset_into_cluster(s, acb->cur_pos) +
1117              acb->cur_qiov.size;
1118 
1119     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1120     ret = qed_copy_from_backing_file(s, start, len, offset);
1121     if (ret < 0) {
1122         goto out;
1123     }
1124 
1125     ret = qed_aio_write_main(acb);
1126     if (ret < 0) {
1127         goto out;
1128     }
1129 
1130     if (s->bs->backing) {
1131         /*
1132          * Flush new data clusters before updating the L2 table
1133          *
1134          * This flush is necessary when a backing file is in use.  A crash
1135          * during an allocating write could result in empty clusters in the
1136          * image.  If the write only touched a subregion of the cluster,
1137          * then backing image sectors have been lost in the untouched
1138          * region.  The solution is to flush after writing a new data
1139          * cluster and before updating the L2 table.
1140          */
1141         ret = bdrv_co_flush(s->bs->file->bs);
1142     }
1143 
1144 out:
1145     qemu_co_mutex_lock(&s->table_lock);
1146     return ret;
1147 }
1148 
1149 /**
1150  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1151  */
1152 static bool qed_should_set_need_check(BDRVQEDState *s)
1153 {
1154     /* The flush before L2 update path ensures consistency */
1155     if (s->bs->backing) {
1156         return false;
1157     }
1158 
1159     return !(s->header.features & QED_F_NEED_CHECK);
1160 }
1161 
1162 /**
1163  * Write new data cluster
1164  *
1165  * @acb:        Write request
1166  * @len:        Length in bytes
1167  *
1168  * This path is taken when writing to previously unallocated clusters.
1169  *
1170  * Called with table_lock held.
1171  */
1172 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1173 {
1174     BDRVQEDState *s = acb_to_s(acb);
1175     int ret;
1176 
1177     /* Cancel timer when the first allocating request comes in */
1178     if (s->allocating_acb == NULL) {
1179         qed_cancel_need_check_timer(s);
1180     }
1181 
1182     /* Freeze this request if another allocating write is in progress */
1183     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1184         if (s->allocating_acb != NULL) {
1185             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1186             assert(s->allocating_acb == NULL);
1187         }
1188         s->allocating_acb = acb;
1189         return -EAGAIN; /* start over with looking up table entries */
1190     }
1191 
1192     acb->cur_nclusters = qed_bytes_to_clusters(s,
1193             qed_offset_into_cluster(s, acb->cur_pos) + len);
1194     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1195 
1196     if (acb->flags & QED_AIOCB_ZERO) {
1197         /* Skip ahead if the clusters are already zero */
1198         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1199             return 0;
1200         }
1201         acb->cur_cluster = 1;
1202     } else {
1203         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1204     }
1205 
1206     if (qed_should_set_need_check(s)) {
1207         s->header.features |= QED_F_NEED_CHECK;
1208         ret = qed_write_header(s);
1209         if (ret < 0) {
1210             return ret;
1211         }
1212     }
1213 
1214     if (!(acb->flags & QED_AIOCB_ZERO)) {
1215         ret = qed_aio_write_cow(acb);
1216         if (ret < 0) {
1217             return ret;
1218         }
1219     }
1220 
1221     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1222 }
1223 
1224 /**
1225  * Write data cluster in place
1226  *
1227  * @acb:        Write request
1228  * @offset:     Cluster offset in bytes
1229  * @len:        Length in bytes
1230  *
1231  * This path is taken when writing to already allocated clusters.
1232  *
1233  * Called with table_lock held.
1234  */
1235 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1236                                               size_t len)
1237 {
1238     BDRVQEDState *s = acb_to_s(acb);
1239     int r;
1240 
1241     qemu_co_mutex_unlock(&s->table_lock);
1242 
1243     /* Allocate buffer for zero writes */
1244     if (acb->flags & QED_AIOCB_ZERO) {
1245         struct iovec *iov = acb->qiov->iov;
1246 
1247         if (!iov->iov_base) {
1248             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1249             if (iov->iov_base == NULL) {
1250                 r = -ENOMEM;
1251                 goto out;
1252             }
1253             memset(iov->iov_base, 0, iov->iov_len);
1254         }
1255     }
1256 
1257     /* Calculate the I/O vector */
1258     acb->cur_cluster = offset;
1259     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1260 
1261     /* Do the actual write.  */
1262     r = qed_aio_write_main(acb);
1263 out:
1264     qemu_co_mutex_lock(&s->table_lock);
1265     return r;
1266 }
1267 
1268 /**
1269  * Write data cluster
1270  *
1271  * @opaque:     Write request
1272  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1273  * @offset:     Cluster offset in bytes
1274  * @len:        Length in bytes
1275  *
1276  * Called with table_lock held.
1277  */
1278 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1279                                            uint64_t offset, size_t len)
1280 {
1281     QEDAIOCB *acb = opaque;
1282 
1283     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1284 
1285     acb->find_cluster_ret = ret;
1286 
1287     switch (ret) {
1288     case QED_CLUSTER_FOUND:
1289         return qed_aio_write_inplace(acb, offset, len);
1290 
1291     case QED_CLUSTER_L2:
1292     case QED_CLUSTER_L1:
1293     case QED_CLUSTER_ZERO:
1294         return qed_aio_write_alloc(acb, len);
1295 
1296     default:
1297         g_assert_not_reached();
1298     }
1299 }
1300 
1301 /**
1302  * Read data cluster
1303  *
1304  * @opaque:     Read request
1305  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1306  * @offset:     Cluster offset in bytes
1307  * @len:        Length in bytes
1308  *
1309  * Called with table_lock held.
1310  */
1311 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1312                                           uint64_t offset, size_t len)
1313 {
1314     QEDAIOCB *acb = opaque;
1315     BDRVQEDState *s = acb_to_s(acb);
1316     BlockDriverState *bs = acb->bs;
1317     int r;
1318 
1319     qemu_co_mutex_unlock(&s->table_lock);
1320 
1321     /* Adjust offset into cluster */
1322     offset += qed_offset_into_cluster(s, acb->cur_pos);
1323 
1324     trace_qed_aio_read_data(s, acb, ret, offset, len);
1325 
1326     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1327 
1328     /* Handle zero cluster and backing file reads, otherwise read
1329      * data cluster directly.
1330      */
1331     if (ret == QED_CLUSTER_ZERO) {
1332         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1333         r = 0;
1334     } else if (ret != QED_CLUSTER_FOUND) {
1335         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1336                                   &acb->backing_qiov);
1337     } else {
1338         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1339         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1340                            &acb->cur_qiov, 0);
1341     }
1342 
1343     qemu_co_mutex_lock(&s->table_lock);
1344     return r;
1345 }
1346 
1347 /**
1348  * Begin next I/O or complete the request
1349  */
1350 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1351 {
1352     BDRVQEDState *s = acb_to_s(acb);
1353     uint64_t offset;
1354     size_t len;
1355     int ret;
1356 
1357     qemu_co_mutex_lock(&s->table_lock);
1358     while (1) {
1359         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1360 
1361         if (acb->backing_qiov) {
1362             qemu_iovec_destroy(acb->backing_qiov);
1363             g_free(acb->backing_qiov);
1364             acb->backing_qiov = NULL;
1365         }
1366 
1367         acb->qiov_offset += acb->cur_qiov.size;
1368         acb->cur_pos += acb->cur_qiov.size;
1369         qemu_iovec_reset(&acb->cur_qiov);
1370 
1371         /* Complete request */
1372         if (acb->cur_pos >= acb->end_pos) {
1373             ret = 0;
1374             break;
1375         }
1376 
1377         /* Find next cluster and start I/O */
1378         len = acb->end_pos - acb->cur_pos;
1379         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1380         if (ret < 0) {
1381             break;
1382         }
1383 
1384         if (acb->flags & QED_AIOCB_WRITE) {
1385             ret = qed_aio_write_data(acb, ret, offset, len);
1386         } else {
1387             ret = qed_aio_read_data(acb, ret, offset, len);
1388         }
1389 
1390         if (ret < 0 && ret != -EAGAIN) {
1391             break;
1392         }
1393     }
1394 
1395     trace_qed_aio_complete(s, acb, ret);
1396     qed_aio_complete(acb);
1397     qemu_co_mutex_unlock(&s->table_lock);
1398     return ret;
1399 }
1400 
1401 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1402                                        QEMUIOVector *qiov, int nb_sectors,
1403                                        int flags)
1404 {
1405     QEDAIOCB acb = {
1406         .bs         = bs,
1407         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1408         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1409         .qiov       = qiov,
1410         .flags      = flags,
1411     };
1412     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1413 
1414     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1415 
1416     /* Start request */
1417     return qed_aio_next_io(&acb);
1418 }
1419 
1420 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1421                                           int64_t sector_num, int nb_sectors,
1422                                           QEMUIOVector *qiov)
1423 {
1424     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1425 }
1426 
1427 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1428                                            int64_t sector_num, int nb_sectors,
1429                                            QEMUIOVector *qiov, int flags)
1430 {
1431     assert(!flags);
1432     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1433 }
1434 
1435 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1436                                                   int64_t offset,
1437                                                   int bytes,
1438                                                   BdrvRequestFlags flags)
1439 {
1440     BDRVQEDState *s = bs->opaque;
1441 
1442     /*
1443      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1444      * then it will be allocated during request processing.
1445      */
1446     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1447 
1448     /* Fall back if the request is not aligned */
1449     if (qed_offset_into_cluster(s, offset) ||
1450         qed_offset_into_cluster(s, bytes)) {
1451         return -ENOTSUP;
1452     }
1453 
1454     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1455                           bytes >> BDRV_SECTOR_BITS,
1456                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1457 }
1458 
1459 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1460                                              int64_t offset,
1461                                              PreallocMode prealloc,
1462                                              Error **errp)
1463 {
1464     BDRVQEDState *s = bs->opaque;
1465     uint64_t old_image_size;
1466     int ret;
1467 
1468     if (prealloc != PREALLOC_MODE_OFF) {
1469         error_setg(errp, "Unsupported preallocation mode '%s'",
1470                    PreallocMode_str(prealloc));
1471         return -ENOTSUP;
1472     }
1473 
1474     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1475                                  s->header.table_size)) {
1476         error_setg(errp, "Invalid image size specified");
1477         return -EINVAL;
1478     }
1479 
1480     if ((uint64_t)offset < s->header.image_size) {
1481         error_setg(errp, "Shrinking images is currently not supported");
1482         return -ENOTSUP;
1483     }
1484 
1485     old_image_size = s->header.image_size;
1486     s->header.image_size = offset;
1487     ret = qed_write_header_sync(s);
1488     if (ret < 0) {
1489         s->header.image_size = old_image_size;
1490         error_setg_errno(errp, -ret, "Failed to update the image size");
1491     }
1492     return ret;
1493 }
1494 
1495 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1496 {
1497     BDRVQEDState *s = bs->opaque;
1498     return s->header.image_size;
1499 }
1500 
1501 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1502 {
1503     BDRVQEDState *s = bs->opaque;
1504 
1505     memset(bdi, 0, sizeof(*bdi));
1506     bdi->cluster_size = s->header.cluster_size;
1507     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1508     bdi->unallocated_blocks_are_zero = true;
1509     return 0;
1510 }
1511 
1512 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1513                                         const char *backing_file,
1514                                         const char *backing_fmt)
1515 {
1516     BDRVQEDState *s = bs->opaque;
1517     QEDHeader new_header, le_header;
1518     void *buffer;
1519     size_t buffer_len, backing_file_len;
1520     int ret;
1521 
1522     /* Refuse to set backing filename if unknown compat feature bits are
1523      * active.  If the image uses an unknown compat feature then we may not
1524      * know the layout of data following the header structure and cannot safely
1525      * add a new string.
1526      */
1527     if (backing_file && (s->header.compat_features &
1528                          ~QED_COMPAT_FEATURE_MASK)) {
1529         return -ENOTSUP;
1530     }
1531 
1532     memcpy(&new_header, &s->header, sizeof(new_header));
1533 
1534     new_header.features &= ~(QED_F_BACKING_FILE |
1535                              QED_F_BACKING_FORMAT_NO_PROBE);
1536 
1537     /* Adjust feature flags */
1538     if (backing_file) {
1539         new_header.features |= QED_F_BACKING_FILE;
1540 
1541         if (qed_fmt_is_raw(backing_fmt)) {
1542             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1543         }
1544     }
1545 
1546     /* Calculate new header size */
1547     backing_file_len = 0;
1548 
1549     if (backing_file) {
1550         backing_file_len = strlen(backing_file);
1551     }
1552 
1553     buffer_len = sizeof(new_header);
1554     new_header.backing_filename_offset = buffer_len;
1555     new_header.backing_filename_size = backing_file_len;
1556     buffer_len += backing_file_len;
1557 
1558     /* Make sure we can rewrite header without failing */
1559     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1560         return -ENOSPC;
1561     }
1562 
1563     /* Prepare new header */
1564     buffer = g_malloc(buffer_len);
1565 
1566     qed_header_cpu_to_le(&new_header, &le_header);
1567     memcpy(buffer, &le_header, sizeof(le_header));
1568     buffer_len = sizeof(le_header);
1569 
1570     if (backing_file) {
1571         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1572         buffer_len += backing_file_len;
1573     }
1574 
1575     /* Write new header */
1576     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1577     g_free(buffer);
1578     if (ret == 0) {
1579         memcpy(&s->header, &new_header, sizeof(new_header));
1580     }
1581     return ret;
1582 }
1583 
1584 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1585                                                       Error **errp)
1586 {
1587     BDRVQEDState *s = bs->opaque;
1588     Error *local_err = NULL;
1589     int ret;
1590 
1591     bdrv_qed_close(bs);
1592 
1593     bdrv_qed_init_state(bs);
1594     qemu_co_mutex_lock(&s->table_lock);
1595     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1596     qemu_co_mutex_unlock(&s->table_lock);
1597     if (local_err) {
1598         error_propagate_prepend(errp, local_err,
1599                                 "Could not reopen qed layer: ");
1600         return;
1601     } else if (ret < 0) {
1602         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1603         return;
1604     }
1605 }
1606 
1607 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1608                                           BdrvCheckResult *result,
1609                                           BdrvCheckMode fix)
1610 {
1611     BDRVQEDState *s = bs->opaque;
1612     int ret;
1613 
1614     qemu_co_mutex_lock(&s->table_lock);
1615     ret = qed_check(s, result, !!fix);
1616     qemu_co_mutex_unlock(&s->table_lock);
1617 
1618     return ret;
1619 }
1620 
1621 static QemuOptsList qed_create_opts = {
1622     .name = "qed-create-opts",
1623     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1624     .desc = {
1625         {
1626             .name = BLOCK_OPT_SIZE,
1627             .type = QEMU_OPT_SIZE,
1628             .help = "Virtual disk size"
1629         },
1630         {
1631             .name = BLOCK_OPT_BACKING_FILE,
1632             .type = QEMU_OPT_STRING,
1633             .help = "File name of a base image"
1634         },
1635         {
1636             .name = BLOCK_OPT_BACKING_FMT,
1637             .type = QEMU_OPT_STRING,
1638             .help = "Image format of the base image"
1639         },
1640         {
1641             .name = BLOCK_OPT_CLUSTER_SIZE,
1642             .type = QEMU_OPT_SIZE,
1643             .help = "Cluster size (in bytes)",
1644             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1645         },
1646         {
1647             .name = BLOCK_OPT_TABLE_SIZE,
1648             .type = QEMU_OPT_SIZE,
1649             .help = "L1/L2 table size (in clusters)"
1650         },
1651         { /* end of list */ }
1652     }
1653 };
1654 
1655 static BlockDriver bdrv_qed = {
1656     .format_name              = "qed",
1657     .instance_size            = sizeof(BDRVQEDState),
1658     .create_opts              = &qed_create_opts,
1659     .supports_backing         = true,
1660 
1661     .bdrv_probe               = bdrv_qed_probe,
1662     .bdrv_open                = bdrv_qed_open,
1663     .bdrv_close               = bdrv_qed_close,
1664     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1665     .bdrv_child_perm          = bdrv_format_default_perms,
1666     .bdrv_co_create           = bdrv_qed_co_create,
1667     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1668     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1669     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1670     .bdrv_co_readv            = bdrv_qed_co_readv,
1671     .bdrv_co_writev           = bdrv_qed_co_writev,
1672     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1673     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1674     .bdrv_getlength           = bdrv_qed_getlength,
1675     .bdrv_get_info            = bdrv_qed_get_info,
1676     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1677     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1678     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1679     .bdrv_co_check            = bdrv_qed_co_check,
1680     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1681     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1682     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1683 };
1684 
1685 static void bdrv_qed_init(void)
1686 {
1687     bdrv_register(&bdrv_qed);
1688 }
1689 
1690 block_init(bdrv_qed_init);
1691