xref: /openbmc/qemu/block/qed.c (revision 21a24302)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20 
21 static const AIOCBInfo qed_aiocb_info = {
22     .aiocb_size         = sizeof(QEDAIOCB),
23 };
24 
25 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
26                           const char *filename)
27 {
28     const QEDHeader *header = (const QEDHeader *)buf;
29 
30     if (buf_size < sizeof(*header)) {
31         return 0;
32     }
33     if (le32_to_cpu(header->magic) != QED_MAGIC) {
34         return 0;
35     }
36     return 100;
37 }
38 
39 /**
40  * Check whether an image format is raw
41  *
42  * @fmt:    Backing file format, may be NULL
43  */
44 static bool qed_fmt_is_raw(const char *fmt)
45 {
46     return fmt && strcmp(fmt, "raw") == 0;
47 }
48 
49 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
50 {
51     cpu->magic = le32_to_cpu(le->magic);
52     cpu->cluster_size = le32_to_cpu(le->cluster_size);
53     cpu->table_size = le32_to_cpu(le->table_size);
54     cpu->header_size = le32_to_cpu(le->header_size);
55     cpu->features = le64_to_cpu(le->features);
56     cpu->compat_features = le64_to_cpu(le->compat_features);
57     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
58     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
59     cpu->image_size = le64_to_cpu(le->image_size);
60     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
61     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
62 }
63 
64 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
65 {
66     le->magic = cpu_to_le32(cpu->magic);
67     le->cluster_size = cpu_to_le32(cpu->cluster_size);
68     le->table_size = cpu_to_le32(cpu->table_size);
69     le->header_size = cpu_to_le32(cpu->header_size);
70     le->features = cpu_to_le64(cpu->features);
71     le->compat_features = cpu_to_le64(cpu->compat_features);
72     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
73     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
74     le->image_size = cpu_to_le64(cpu->image_size);
75     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
76     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
77 }
78 
79 int qed_write_header_sync(BDRVQEDState *s)
80 {
81     QEDHeader le;
82     int ret;
83 
84     qed_header_cpu_to_le(&s->header, &le);
85     ret = bdrv_pwrite(s->bs->file->bs, 0, &le, sizeof(le));
86     if (ret != sizeof(le)) {
87         return ret;
88     }
89     return 0;
90 }
91 
92 typedef struct {
93     GenericCB gencb;
94     BDRVQEDState *s;
95     struct iovec iov;
96     QEMUIOVector qiov;
97     int nsectors;
98     uint8_t *buf;
99 } QEDWriteHeaderCB;
100 
101 static void qed_write_header_cb(void *opaque, int ret)
102 {
103     QEDWriteHeaderCB *write_header_cb = opaque;
104 
105     qemu_vfree(write_header_cb->buf);
106     gencb_complete(write_header_cb, ret);
107 }
108 
109 static void qed_write_header_read_cb(void *opaque, int ret)
110 {
111     QEDWriteHeaderCB *write_header_cb = opaque;
112     BDRVQEDState *s = write_header_cb->s;
113 
114     if (ret) {
115         qed_write_header_cb(write_header_cb, ret);
116         return;
117     }
118 
119     /* Update header */
120     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
121 
122     bdrv_aio_writev(s->bs->file->bs, 0, &write_header_cb->qiov,
123                     write_header_cb->nsectors, qed_write_header_cb,
124                     write_header_cb);
125 }
126 
127 /**
128  * Update header in-place (does not rewrite backing filename or other strings)
129  *
130  * This function only updates known header fields in-place and does not affect
131  * extra data after the QED header.
132  */
133 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
134                              void *opaque)
135 {
136     /* We must write full sectors for O_DIRECT but cannot necessarily generate
137      * the data following the header if an unrecognized compat feature is
138      * active.  Therefore, first read the sectors containing the header, update
139      * them, and write back.
140      */
141 
142     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
143                    BDRV_SECTOR_SIZE;
144     size_t len = nsectors * BDRV_SECTOR_SIZE;
145     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
146                                                     cb, opaque);
147 
148     write_header_cb->s = s;
149     write_header_cb->nsectors = nsectors;
150     write_header_cb->buf = qemu_blockalign(s->bs, len);
151     write_header_cb->iov.iov_base = write_header_cb->buf;
152     write_header_cb->iov.iov_len = len;
153     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
154 
155     bdrv_aio_readv(s->bs->file->bs, 0, &write_header_cb->qiov, nsectors,
156                    qed_write_header_read_cb, write_header_cb);
157 }
158 
159 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
160 {
161     uint64_t table_entries;
162     uint64_t l2_size;
163 
164     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
165     l2_size = table_entries * cluster_size;
166 
167     return l2_size * table_entries;
168 }
169 
170 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
171 {
172     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
173         cluster_size > QED_MAX_CLUSTER_SIZE) {
174         return false;
175     }
176     if (cluster_size & (cluster_size - 1)) {
177         return false; /* not power of 2 */
178     }
179     return true;
180 }
181 
182 static bool qed_is_table_size_valid(uint32_t table_size)
183 {
184     if (table_size < QED_MIN_TABLE_SIZE ||
185         table_size > QED_MAX_TABLE_SIZE) {
186         return false;
187     }
188     if (table_size & (table_size - 1)) {
189         return false; /* not power of 2 */
190     }
191     return true;
192 }
193 
194 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
195                                     uint32_t table_size)
196 {
197     if (image_size % BDRV_SECTOR_SIZE != 0) {
198         return false; /* not multiple of sector size */
199     }
200     if (image_size > qed_max_image_size(cluster_size, table_size)) {
201         return false; /* image is too large */
202     }
203     return true;
204 }
205 
206 /**
207  * Read a string of known length from the image file
208  *
209  * @file:       Image file
210  * @offset:     File offset to start of string, in bytes
211  * @n:          String length in bytes
212  * @buf:        Destination buffer
213  * @buflen:     Destination buffer length in bytes
214  * @ret:        0 on success, -errno on failure
215  *
216  * The string is NUL-terminated.
217  */
218 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
219                            char *buf, size_t buflen)
220 {
221     int ret;
222     if (n >= buflen) {
223         return -EINVAL;
224     }
225     ret = bdrv_pread(file, offset, buf, n);
226     if (ret < 0) {
227         return ret;
228     }
229     buf[n] = '\0';
230     return 0;
231 }
232 
233 /**
234  * Allocate new clusters
235  *
236  * @s:          QED state
237  * @n:          Number of contiguous clusters to allocate
238  * @ret:        Offset of first allocated cluster
239  *
240  * This function only produces the offset where the new clusters should be
241  * written.  It updates BDRVQEDState but does not make any changes to the image
242  * file.
243  */
244 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
245 {
246     uint64_t offset = s->file_size;
247     s->file_size += n * s->header.cluster_size;
248     return offset;
249 }
250 
251 QEDTable *qed_alloc_table(BDRVQEDState *s)
252 {
253     /* Honor O_DIRECT memory alignment requirements */
254     return qemu_blockalign(s->bs,
255                            s->header.cluster_size * s->header.table_size);
256 }
257 
258 /**
259  * Allocate a new zeroed L2 table
260  */
261 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
262 {
263     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
264 
265     l2_table->table = qed_alloc_table(s);
266     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
267 
268     memset(l2_table->table->offsets, 0,
269            s->header.cluster_size * s->header.table_size);
270     return l2_table;
271 }
272 
273 static void qed_aio_next_io(void *opaque, int ret);
274 
275 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
276 {
277     assert(!s->allocating_write_reqs_plugged);
278 
279     s->allocating_write_reqs_plugged = true;
280 }
281 
282 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
283 {
284     QEDAIOCB *acb;
285 
286     assert(s->allocating_write_reqs_plugged);
287 
288     s->allocating_write_reqs_plugged = false;
289 
290     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
291     if (acb) {
292         qed_aio_next_io(acb, 0);
293     }
294 }
295 
296 static void qed_finish_clear_need_check(void *opaque, int ret)
297 {
298     /* Do nothing */
299 }
300 
301 static void qed_flush_after_clear_need_check(void *opaque, int ret)
302 {
303     BDRVQEDState *s = opaque;
304 
305     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
306 
307     /* No need to wait until flush completes */
308     qed_unplug_allocating_write_reqs(s);
309 }
310 
311 static void qed_clear_need_check(void *opaque, int ret)
312 {
313     BDRVQEDState *s = opaque;
314 
315     if (ret) {
316         qed_unplug_allocating_write_reqs(s);
317         return;
318     }
319 
320     s->header.features &= ~QED_F_NEED_CHECK;
321     qed_write_header(s, qed_flush_after_clear_need_check, s);
322 }
323 
324 static void qed_need_check_timer_cb(void *opaque)
325 {
326     BDRVQEDState *s = opaque;
327 
328     /* The timer should only fire when allocating writes have drained */
329     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
330 
331     trace_qed_need_check_timer_cb(s);
332 
333     qed_plug_allocating_write_reqs(s);
334 
335     /* Ensure writes are on disk before clearing flag */
336     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
337 }
338 
339 static void qed_start_need_check_timer(BDRVQEDState *s)
340 {
341     trace_qed_start_need_check_timer(s);
342 
343     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
344      * migration.
345      */
346     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
347                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
348 }
349 
350 /* It's okay to call this multiple times or when no timer is started */
351 static void qed_cancel_need_check_timer(BDRVQEDState *s)
352 {
353     trace_qed_cancel_need_check_timer(s);
354     timer_del(s->need_check_timer);
355 }
356 
357 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
358 {
359     BDRVQEDState *s = bs->opaque;
360 
361     qed_cancel_need_check_timer(s);
362     timer_free(s->need_check_timer);
363 }
364 
365 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
366                                         AioContext *new_context)
367 {
368     BDRVQEDState *s = bs->opaque;
369 
370     s->need_check_timer = aio_timer_new(new_context,
371                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
372                                         qed_need_check_timer_cb, s);
373     if (s->header.features & QED_F_NEED_CHECK) {
374         qed_start_need_check_timer(s);
375     }
376 }
377 
378 static void bdrv_qed_drain(BlockDriverState *bs)
379 {
380     BDRVQEDState *s = bs->opaque;
381 
382     /* Cancel timer and start doing I/O that were meant to happen as if it
383      * fired, that way we get bdrv_drain() taking care of the ongoing requests
384      * correctly. */
385     qed_cancel_need_check_timer(s);
386     qed_plug_allocating_write_reqs(s);
387     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
388 }
389 
390 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
391                          Error **errp)
392 {
393     BDRVQEDState *s = bs->opaque;
394     QEDHeader le_header;
395     int64_t file_size;
396     int ret;
397 
398     s->bs = bs;
399     QSIMPLEQ_INIT(&s->allocating_write_reqs);
400 
401     ret = bdrv_pread(bs->file->bs, 0, &le_header, sizeof(le_header));
402     if (ret < 0) {
403         return ret;
404     }
405     qed_header_le_to_cpu(&le_header, &s->header);
406 
407     if (s->header.magic != QED_MAGIC) {
408         error_setg(errp, "Image not in QED format");
409         return -EINVAL;
410     }
411     if (s->header.features & ~QED_FEATURE_MASK) {
412         /* image uses unsupported feature bits */
413         char buf[64];
414         snprintf(buf, sizeof(buf), "%" PRIx64,
415             s->header.features & ~QED_FEATURE_MASK);
416         error_setg(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
417                    bdrv_get_device_or_node_name(bs), "QED", buf);
418         return -ENOTSUP;
419     }
420     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
421         return -EINVAL;
422     }
423 
424     /* Round down file size to the last cluster */
425     file_size = bdrv_getlength(bs->file->bs);
426     if (file_size < 0) {
427         return file_size;
428     }
429     s->file_size = qed_start_of_cluster(s, file_size);
430 
431     if (!qed_is_table_size_valid(s->header.table_size)) {
432         return -EINVAL;
433     }
434     if (!qed_is_image_size_valid(s->header.image_size,
435                                  s->header.cluster_size,
436                                  s->header.table_size)) {
437         return -EINVAL;
438     }
439     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
440         return -EINVAL;
441     }
442 
443     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
444                       sizeof(uint64_t);
445     s->l2_shift = ctz32(s->header.cluster_size);
446     s->l2_mask = s->table_nelems - 1;
447     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
448 
449     /* Header size calculation must not overflow uint32_t */
450     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
451         return -EINVAL;
452     }
453 
454     if ((s->header.features & QED_F_BACKING_FILE)) {
455         if ((uint64_t)s->header.backing_filename_offset +
456             s->header.backing_filename_size >
457             s->header.cluster_size * s->header.header_size) {
458             return -EINVAL;
459         }
460 
461         ret = qed_read_string(bs->file->bs, s->header.backing_filename_offset,
462                               s->header.backing_filename_size, bs->backing_file,
463                               sizeof(bs->backing_file));
464         if (ret < 0) {
465             return ret;
466         }
467 
468         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
469             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
470         }
471     }
472 
473     /* Reset unknown autoclear feature bits.  This is a backwards
474      * compatibility mechanism that allows images to be opened by older
475      * programs, which "knock out" unknown feature bits.  When an image is
476      * opened by a newer program again it can detect that the autoclear
477      * feature is no longer valid.
478      */
479     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
480         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INCOMING)) {
481         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
482 
483         ret = qed_write_header_sync(s);
484         if (ret) {
485             return ret;
486         }
487 
488         /* From here on only known autoclear feature bits are valid */
489         bdrv_flush(bs->file->bs);
490     }
491 
492     s->l1_table = qed_alloc_table(s);
493     qed_init_l2_cache(&s->l2_cache);
494 
495     ret = qed_read_l1_table_sync(s);
496     if (ret) {
497         goto out;
498     }
499 
500     /* If image was not closed cleanly, check consistency */
501     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
502         /* Read-only images cannot be fixed.  There is no risk of corruption
503          * since write operations are not possible.  Therefore, allow
504          * potentially inconsistent images to be opened read-only.  This can
505          * aid data recovery from an otherwise inconsistent image.
506          */
507         if (!bdrv_is_read_only(bs->file->bs) &&
508             !(flags & BDRV_O_INCOMING)) {
509             BdrvCheckResult result = {0};
510 
511             ret = qed_check(s, &result, true);
512             if (ret) {
513                 goto out;
514             }
515         }
516     }
517 
518     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
519 
520 out:
521     if (ret) {
522         qed_free_l2_cache(&s->l2_cache);
523         qemu_vfree(s->l1_table);
524     }
525     return ret;
526 }
527 
528 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
529 {
530     BDRVQEDState *s = bs->opaque;
531 
532     bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
533 }
534 
535 /* We have nothing to do for QED reopen, stubs just return
536  * success */
537 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
538                                    BlockReopenQueue *queue, Error **errp)
539 {
540     return 0;
541 }
542 
543 static void bdrv_qed_close(BlockDriverState *bs)
544 {
545     BDRVQEDState *s = bs->opaque;
546 
547     bdrv_qed_detach_aio_context(bs);
548 
549     /* Ensure writes reach stable storage */
550     bdrv_flush(bs->file->bs);
551 
552     /* Clean shutdown, no check required on next open */
553     if (s->header.features & QED_F_NEED_CHECK) {
554         s->header.features &= ~QED_F_NEED_CHECK;
555         qed_write_header_sync(s);
556     }
557 
558     qed_free_l2_cache(&s->l2_cache);
559     qemu_vfree(s->l1_table);
560 }
561 
562 static int qed_create(const char *filename, uint32_t cluster_size,
563                       uint64_t image_size, uint32_t table_size,
564                       const char *backing_file, const char *backing_fmt,
565                       QemuOpts *opts, Error **errp)
566 {
567     QEDHeader header = {
568         .magic = QED_MAGIC,
569         .cluster_size = cluster_size,
570         .table_size = table_size,
571         .header_size = 1,
572         .features = 0,
573         .compat_features = 0,
574         .l1_table_offset = cluster_size,
575         .image_size = image_size,
576     };
577     QEDHeader le_header;
578     uint8_t *l1_table = NULL;
579     size_t l1_size = header.cluster_size * header.table_size;
580     Error *local_err = NULL;
581     int ret = 0;
582     BlockDriverState *bs;
583 
584     ret = bdrv_create_file(filename, opts, &local_err);
585     if (ret < 0) {
586         error_propagate(errp, local_err);
587         return ret;
588     }
589 
590     bs = NULL;
591     ret = bdrv_open(&bs, filename, NULL, NULL,
592                     BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL,
593                     &local_err);
594     if (ret < 0) {
595         error_propagate(errp, local_err);
596         return ret;
597     }
598 
599     /* File must start empty and grow, check truncate is supported */
600     ret = bdrv_truncate(bs, 0);
601     if (ret < 0) {
602         goto out;
603     }
604 
605     if (backing_file) {
606         header.features |= QED_F_BACKING_FILE;
607         header.backing_filename_offset = sizeof(le_header);
608         header.backing_filename_size = strlen(backing_file);
609 
610         if (qed_fmt_is_raw(backing_fmt)) {
611             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
612         }
613     }
614 
615     qed_header_cpu_to_le(&header, &le_header);
616     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
617     if (ret < 0) {
618         goto out;
619     }
620     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
621                       header.backing_filename_size);
622     if (ret < 0) {
623         goto out;
624     }
625 
626     l1_table = g_malloc0(l1_size);
627     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
628     if (ret < 0) {
629         goto out;
630     }
631 
632     ret = 0; /* success */
633 out:
634     g_free(l1_table);
635     bdrv_unref(bs);
636     return ret;
637 }
638 
639 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
640 {
641     uint64_t image_size = 0;
642     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
643     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
644     char *backing_file = NULL;
645     char *backing_fmt = NULL;
646     int ret;
647 
648     image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
649                           BDRV_SECTOR_SIZE);
650     backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
651     backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
652     cluster_size = qemu_opt_get_size_del(opts,
653                                          BLOCK_OPT_CLUSTER_SIZE,
654                                          QED_DEFAULT_CLUSTER_SIZE);
655     table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
656                                        QED_DEFAULT_TABLE_SIZE);
657 
658     if (!qed_is_cluster_size_valid(cluster_size)) {
659         error_setg(errp, "QED cluster size must be within range [%u, %u] "
660                          "and power of 2",
661                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
662         ret = -EINVAL;
663         goto finish;
664     }
665     if (!qed_is_table_size_valid(table_size)) {
666         error_setg(errp, "QED table size must be within range [%u, %u] "
667                          "and power of 2",
668                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
669         ret = -EINVAL;
670         goto finish;
671     }
672     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
673         error_setg(errp, "QED image size must be a non-zero multiple of "
674                          "cluster size and less than %" PRIu64 " bytes",
675                    qed_max_image_size(cluster_size, table_size));
676         ret = -EINVAL;
677         goto finish;
678     }
679 
680     ret = qed_create(filename, cluster_size, image_size, table_size,
681                      backing_file, backing_fmt, opts, errp);
682 
683 finish:
684     g_free(backing_file);
685     g_free(backing_fmt);
686     return ret;
687 }
688 
689 typedef struct {
690     BlockDriverState *bs;
691     Coroutine *co;
692     uint64_t pos;
693     int64_t status;
694     int *pnum;
695 } QEDIsAllocatedCB;
696 
697 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
698 {
699     QEDIsAllocatedCB *cb = opaque;
700     BDRVQEDState *s = cb->bs->opaque;
701     *cb->pnum = len / BDRV_SECTOR_SIZE;
702     switch (ret) {
703     case QED_CLUSTER_FOUND:
704         offset |= qed_offset_into_cluster(s, cb->pos);
705         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
706         break;
707     case QED_CLUSTER_ZERO:
708         cb->status = BDRV_BLOCK_ZERO;
709         break;
710     case QED_CLUSTER_L2:
711     case QED_CLUSTER_L1:
712         cb->status = 0;
713         break;
714     default:
715         assert(ret < 0);
716         cb->status = ret;
717         break;
718     }
719 
720     if (cb->co) {
721         qemu_coroutine_enter(cb->co, NULL);
722     }
723 }
724 
725 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
726                                                  int64_t sector_num,
727                                                  int nb_sectors, int *pnum)
728 {
729     BDRVQEDState *s = bs->opaque;
730     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
731     QEDIsAllocatedCB cb = {
732         .bs = bs,
733         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
734         .status = BDRV_BLOCK_OFFSET_MASK,
735         .pnum = pnum,
736     };
737     QEDRequest request = { .l2_table = NULL };
738 
739     qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
740 
741     /* Now sleep if the callback wasn't invoked immediately */
742     while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
743         cb.co = qemu_coroutine_self();
744         qemu_coroutine_yield();
745     }
746 
747     qed_unref_l2_cache_entry(request.l2_table);
748 
749     return cb.status;
750 }
751 
752 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
753 {
754     return acb->common.bs->opaque;
755 }
756 
757 /**
758  * Read from the backing file or zero-fill if no backing file
759  *
760  * @s:              QED state
761  * @pos:            Byte position in device
762  * @qiov:           Destination I/O vector
763  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
764  * @cb:             Completion function
765  * @opaque:         User data for completion function
766  *
767  * This function reads qiov->size bytes starting at pos from the backing file.
768  * If there is no backing file then zeroes are read.
769  */
770 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
771                                   QEMUIOVector *qiov,
772                                   QEMUIOVector **backing_qiov,
773                                   BlockCompletionFunc *cb, void *opaque)
774 {
775     uint64_t backing_length = 0;
776     size_t size;
777 
778     /* If there is a backing file, get its length.  Treat the absence of a
779      * backing file like a zero length backing file.
780      */
781     if (s->bs->backing) {
782         int64_t l = bdrv_getlength(s->bs->backing->bs);
783         if (l < 0) {
784             cb(opaque, l);
785             return;
786         }
787         backing_length = l;
788     }
789 
790     /* Zero all sectors if reading beyond the end of the backing file */
791     if (pos >= backing_length ||
792         pos + qiov->size > backing_length) {
793         qemu_iovec_memset(qiov, 0, 0, qiov->size);
794     }
795 
796     /* Complete now if there are no backing file sectors to read */
797     if (pos >= backing_length) {
798         cb(opaque, 0);
799         return;
800     }
801 
802     /* If the read straddles the end of the backing file, shorten it */
803     size = MIN((uint64_t)backing_length - pos, qiov->size);
804 
805     assert(*backing_qiov == NULL);
806     *backing_qiov = g_new(QEMUIOVector, 1);
807     qemu_iovec_init(*backing_qiov, qiov->niov);
808     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
809 
810     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
811     bdrv_aio_readv(s->bs->backing->bs, pos / BDRV_SECTOR_SIZE,
812                    *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
813 }
814 
815 typedef struct {
816     GenericCB gencb;
817     BDRVQEDState *s;
818     QEMUIOVector qiov;
819     QEMUIOVector *backing_qiov;
820     struct iovec iov;
821     uint64_t offset;
822 } CopyFromBackingFileCB;
823 
824 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
825 {
826     CopyFromBackingFileCB *copy_cb = opaque;
827     qemu_vfree(copy_cb->iov.iov_base);
828     gencb_complete(&copy_cb->gencb, ret);
829 }
830 
831 static void qed_copy_from_backing_file_write(void *opaque, int ret)
832 {
833     CopyFromBackingFileCB *copy_cb = opaque;
834     BDRVQEDState *s = copy_cb->s;
835 
836     if (copy_cb->backing_qiov) {
837         qemu_iovec_destroy(copy_cb->backing_qiov);
838         g_free(copy_cb->backing_qiov);
839         copy_cb->backing_qiov = NULL;
840     }
841 
842     if (ret) {
843         qed_copy_from_backing_file_cb(copy_cb, ret);
844         return;
845     }
846 
847     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
848     bdrv_aio_writev(s->bs->file->bs, copy_cb->offset / BDRV_SECTOR_SIZE,
849                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
850                     qed_copy_from_backing_file_cb, copy_cb);
851 }
852 
853 /**
854  * Copy data from backing file into the image
855  *
856  * @s:          QED state
857  * @pos:        Byte position in device
858  * @len:        Number of bytes
859  * @offset:     Byte offset in image file
860  * @cb:         Completion function
861  * @opaque:     User data for completion function
862  */
863 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
864                                        uint64_t len, uint64_t offset,
865                                        BlockCompletionFunc *cb,
866                                        void *opaque)
867 {
868     CopyFromBackingFileCB *copy_cb;
869 
870     /* Skip copy entirely if there is no work to do */
871     if (len == 0) {
872         cb(opaque, 0);
873         return;
874     }
875 
876     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
877     copy_cb->s = s;
878     copy_cb->offset = offset;
879     copy_cb->backing_qiov = NULL;
880     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
881     copy_cb->iov.iov_len = len;
882     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
883 
884     qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
885                           qed_copy_from_backing_file_write, copy_cb);
886 }
887 
888 /**
889  * Link one or more contiguous clusters into a table
890  *
891  * @s:              QED state
892  * @table:          L2 table
893  * @index:          First cluster index
894  * @n:              Number of contiguous clusters
895  * @cluster:        First cluster offset
896  *
897  * The cluster offset may be an allocated byte offset in the image file, the
898  * zero cluster marker, or the unallocated cluster marker.
899  */
900 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
901                                 unsigned int n, uint64_t cluster)
902 {
903     int i;
904     for (i = index; i < index + n; i++) {
905         table->offsets[i] = cluster;
906         if (!qed_offset_is_unalloc_cluster(cluster) &&
907             !qed_offset_is_zero_cluster(cluster)) {
908             cluster += s->header.cluster_size;
909         }
910     }
911 }
912 
913 static void qed_aio_complete_bh(void *opaque)
914 {
915     QEDAIOCB *acb = opaque;
916     BlockCompletionFunc *cb = acb->common.cb;
917     void *user_opaque = acb->common.opaque;
918     int ret = acb->bh_ret;
919 
920     qemu_bh_delete(acb->bh);
921     qemu_aio_unref(acb);
922 
923     /* Invoke callback */
924     cb(user_opaque, ret);
925 }
926 
927 static void qed_aio_complete(QEDAIOCB *acb, int ret)
928 {
929     BDRVQEDState *s = acb_to_s(acb);
930 
931     trace_qed_aio_complete(s, acb, ret);
932 
933     /* Free resources */
934     qemu_iovec_destroy(&acb->cur_qiov);
935     qed_unref_l2_cache_entry(acb->request.l2_table);
936 
937     /* Free the buffer we may have allocated for zero writes */
938     if (acb->flags & QED_AIOCB_ZERO) {
939         qemu_vfree(acb->qiov->iov[0].iov_base);
940         acb->qiov->iov[0].iov_base = NULL;
941     }
942 
943     /* Arrange for a bh to invoke the completion function */
944     acb->bh_ret = ret;
945     acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs),
946                          qed_aio_complete_bh, acb);
947     qemu_bh_schedule(acb->bh);
948 
949     /* Start next allocating write request waiting behind this one.  Note that
950      * requests enqueue themselves when they first hit an unallocated cluster
951      * but they wait until the entire request is finished before waking up the
952      * next request in the queue.  This ensures that we don't cycle through
953      * requests multiple times but rather finish one at a time completely.
954      */
955     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
956         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
957         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
958         if (acb) {
959             qed_aio_next_io(acb, 0);
960         } else if (s->header.features & QED_F_NEED_CHECK) {
961             qed_start_need_check_timer(s);
962         }
963     }
964 }
965 
966 /**
967  * Commit the current L2 table to the cache
968  */
969 static void qed_commit_l2_update(void *opaque, int ret)
970 {
971     QEDAIOCB *acb = opaque;
972     BDRVQEDState *s = acb_to_s(acb);
973     CachedL2Table *l2_table = acb->request.l2_table;
974     uint64_t l2_offset = l2_table->offset;
975 
976     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
977 
978     /* This is guaranteed to succeed because we just committed the entry to the
979      * cache.
980      */
981     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
982     assert(acb->request.l2_table != NULL);
983 
984     qed_aio_next_io(opaque, ret);
985 }
986 
987 /**
988  * Update L1 table with new L2 table offset and write it out
989  */
990 static void qed_aio_write_l1_update(void *opaque, int ret)
991 {
992     QEDAIOCB *acb = opaque;
993     BDRVQEDState *s = acb_to_s(acb);
994     int index;
995 
996     if (ret) {
997         qed_aio_complete(acb, ret);
998         return;
999     }
1000 
1001     index = qed_l1_index(s, acb->cur_pos);
1002     s->l1_table->offsets[index] = acb->request.l2_table->offset;
1003 
1004     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1005 }
1006 
1007 /**
1008  * Update L2 table with new cluster offsets and write them out
1009  */
1010 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1011 {
1012     BDRVQEDState *s = acb_to_s(acb);
1013     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1014     int index;
1015 
1016     if (ret) {
1017         goto err;
1018     }
1019 
1020     if (need_alloc) {
1021         qed_unref_l2_cache_entry(acb->request.l2_table);
1022         acb->request.l2_table = qed_new_l2_table(s);
1023     }
1024 
1025     index = qed_l2_index(s, acb->cur_pos);
1026     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1027                          offset);
1028 
1029     if (need_alloc) {
1030         /* Write out the whole new L2 table */
1031         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1032                             qed_aio_write_l1_update, acb);
1033     } else {
1034         /* Write out only the updated part of the L2 table */
1035         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1036                             qed_aio_next_io, acb);
1037     }
1038     return;
1039 
1040 err:
1041     qed_aio_complete(acb, ret);
1042 }
1043 
1044 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1045 {
1046     QEDAIOCB *acb = opaque;
1047     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1048 }
1049 
1050 /**
1051  * Flush new data clusters before updating the L2 table
1052  *
1053  * This flush is necessary when a backing file is in use.  A crash during an
1054  * allocating write could result in empty clusters in the image.  If the write
1055  * only touched a subregion of the cluster, then backing image sectors have
1056  * been lost in the untouched region.  The solution is to flush after writing a
1057  * new data cluster and before updating the L2 table.
1058  */
1059 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1060 {
1061     QEDAIOCB *acb = opaque;
1062     BDRVQEDState *s = acb_to_s(acb);
1063 
1064     if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1065         qed_aio_complete(acb, -EIO);
1066     }
1067 }
1068 
1069 /**
1070  * Write data to the image file
1071  */
1072 static void qed_aio_write_main(void *opaque, int ret)
1073 {
1074     QEDAIOCB *acb = opaque;
1075     BDRVQEDState *s = acb_to_s(acb);
1076     uint64_t offset = acb->cur_cluster +
1077                       qed_offset_into_cluster(s, acb->cur_pos);
1078     BlockCompletionFunc *next_fn;
1079 
1080     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1081 
1082     if (ret) {
1083         qed_aio_complete(acb, ret);
1084         return;
1085     }
1086 
1087     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1088         next_fn = qed_aio_next_io;
1089     } else {
1090         if (s->bs->backing) {
1091             next_fn = qed_aio_write_flush_before_l2_update;
1092         } else {
1093             next_fn = qed_aio_write_l2_update_cb;
1094         }
1095     }
1096 
1097     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1098     bdrv_aio_writev(s->bs->file->bs, offset / BDRV_SECTOR_SIZE,
1099                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1100                     next_fn, acb);
1101 }
1102 
1103 /**
1104  * Populate back untouched region of new data cluster
1105  */
1106 static void qed_aio_write_postfill(void *opaque, int ret)
1107 {
1108     QEDAIOCB *acb = opaque;
1109     BDRVQEDState *s = acb_to_s(acb);
1110     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1111     uint64_t len =
1112         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1113     uint64_t offset = acb->cur_cluster +
1114                       qed_offset_into_cluster(s, acb->cur_pos) +
1115                       acb->cur_qiov.size;
1116 
1117     if (ret) {
1118         qed_aio_complete(acb, ret);
1119         return;
1120     }
1121 
1122     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1123     qed_copy_from_backing_file(s, start, len, offset,
1124                                 qed_aio_write_main, acb);
1125 }
1126 
1127 /**
1128  * Populate front untouched region of new data cluster
1129  */
1130 static void qed_aio_write_prefill(void *opaque, int ret)
1131 {
1132     QEDAIOCB *acb = opaque;
1133     BDRVQEDState *s = acb_to_s(acb);
1134     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1135     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1136 
1137     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1138     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1139                                 qed_aio_write_postfill, acb);
1140 }
1141 
1142 /**
1143  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1144  */
1145 static bool qed_should_set_need_check(BDRVQEDState *s)
1146 {
1147     /* The flush before L2 update path ensures consistency */
1148     if (s->bs->backing) {
1149         return false;
1150     }
1151 
1152     return !(s->header.features & QED_F_NEED_CHECK);
1153 }
1154 
1155 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1156 {
1157     QEDAIOCB *acb = opaque;
1158 
1159     if (ret) {
1160         qed_aio_complete(acb, ret);
1161         return;
1162     }
1163 
1164     qed_aio_write_l2_update(acb, 0, 1);
1165 }
1166 
1167 /**
1168  * Write new data cluster
1169  *
1170  * @acb:        Write request
1171  * @len:        Length in bytes
1172  *
1173  * This path is taken when writing to previously unallocated clusters.
1174  */
1175 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1176 {
1177     BDRVQEDState *s = acb_to_s(acb);
1178     BlockCompletionFunc *cb;
1179 
1180     /* Cancel timer when the first allocating request comes in */
1181     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1182         qed_cancel_need_check_timer(s);
1183     }
1184 
1185     /* Freeze this request if another allocating write is in progress */
1186     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1187         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1188     }
1189     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1190         s->allocating_write_reqs_plugged) {
1191         return; /* wait for existing request to finish */
1192     }
1193 
1194     acb->cur_nclusters = qed_bytes_to_clusters(s,
1195             qed_offset_into_cluster(s, acb->cur_pos) + len);
1196     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1197 
1198     if (acb->flags & QED_AIOCB_ZERO) {
1199         /* Skip ahead if the clusters are already zero */
1200         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1201             qed_aio_next_io(acb, 0);
1202             return;
1203         }
1204 
1205         cb = qed_aio_write_zero_cluster;
1206     } else {
1207         cb = qed_aio_write_prefill;
1208         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1209     }
1210 
1211     if (qed_should_set_need_check(s)) {
1212         s->header.features |= QED_F_NEED_CHECK;
1213         qed_write_header(s, cb, acb);
1214     } else {
1215         cb(acb, 0);
1216     }
1217 }
1218 
1219 /**
1220  * Write data cluster in place
1221  *
1222  * @acb:        Write request
1223  * @offset:     Cluster offset in bytes
1224  * @len:        Length in bytes
1225  *
1226  * This path is taken when writing to already allocated clusters.
1227  */
1228 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1229 {
1230     /* Allocate buffer for zero writes */
1231     if (acb->flags & QED_AIOCB_ZERO) {
1232         struct iovec *iov = acb->qiov->iov;
1233 
1234         if (!iov->iov_base) {
1235             iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1236             if (iov->iov_base == NULL) {
1237                 qed_aio_complete(acb, -ENOMEM);
1238                 return;
1239             }
1240             memset(iov->iov_base, 0, iov->iov_len);
1241         }
1242     }
1243 
1244     /* Calculate the I/O vector */
1245     acb->cur_cluster = offset;
1246     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1247 
1248     /* Do the actual write */
1249     qed_aio_write_main(acb, 0);
1250 }
1251 
1252 /**
1253  * Write data cluster
1254  *
1255  * @opaque:     Write request
1256  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1257  *              or -errno
1258  * @offset:     Cluster offset in bytes
1259  * @len:        Length in bytes
1260  *
1261  * Callback from qed_find_cluster().
1262  */
1263 static void qed_aio_write_data(void *opaque, int ret,
1264                                uint64_t offset, size_t len)
1265 {
1266     QEDAIOCB *acb = opaque;
1267 
1268     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1269 
1270     acb->find_cluster_ret = ret;
1271 
1272     switch (ret) {
1273     case QED_CLUSTER_FOUND:
1274         qed_aio_write_inplace(acb, offset, len);
1275         break;
1276 
1277     case QED_CLUSTER_L2:
1278     case QED_CLUSTER_L1:
1279     case QED_CLUSTER_ZERO:
1280         qed_aio_write_alloc(acb, len);
1281         break;
1282 
1283     default:
1284         qed_aio_complete(acb, ret);
1285         break;
1286     }
1287 }
1288 
1289 /**
1290  * Read data cluster
1291  *
1292  * @opaque:     Read request
1293  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1294  *              or -errno
1295  * @offset:     Cluster offset in bytes
1296  * @len:        Length in bytes
1297  *
1298  * Callback from qed_find_cluster().
1299  */
1300 static void qed_aio_read_data(void *opaque, int ret,
1301                               uint64_t offset, size_t len)
1302 {
1303     QEDAIOCB *acb = opaque;
1304     BDRVQEDState *s = acb_to_s(acb);
1305     BlockDriverState *bs = acb->common.bs;
1306 
1307     /* Adjust offset into cluster */
1308     offset += qed_offset_into_cluster(s, acb->cur_pos);
1309 
1310     trace_qed_aio_read_data(s, acb, ret, offset, len);
1311 
1312     if (ret < 0) {
1313         goto err;
1314     }
1315 
1316     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1317 
1318     /* Handle zero cluster and backing file reads */
1319     if (ret == QED_CLUSTER_ZERO) {
1320         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1321         qed_aio_next_io(acb, 0);
1322         return;
1323     } else if (ret != QED_CLUSTER_FOUND) {
1324         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1325                               &acb->backing_qiov, qed_aio_next_io, acb);
1326         return;
1327     }
1328 
1329     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1330     bdrv_aio_readv(bs->file->bs, offset / BDRV_SECTOR_SIZE,
1331                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1332                    qed_aio_next_io, acb);
1333     return;
1334 
1335 err:
1336     qed_aio_complete(acb, ret);
1337 }
1338 
1339 /**
1340  * Begin next I/O or complete the request
1341  */
1342 static void qed_aio_next_io(void *opaque, int ret)
1343 {
1344     QEDAIOCB *acb = opaque;
1345     BDRVQEDState *s = acb_to_s(acb);
1346     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1347                                 qed_aio_write_data : qed_aio_read_data;
1348 
1349     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1350 
1351     if (acb->backing_qiov) {
1352         qemu_iovec_destroy(acb->backing_qiov);
1353         g_free(acb->backing_qiov);
1354         acb->backing_qiov = NULL;
1355     }
1356 
1357     /* Handle I/O error */
1358     if (ret) {
1359         qed_aio_complete(acb, ret);
1360         return;
1361     }
1362 
1363     acb->qiov_offset += acb->cur_qiov.size;
1364     acb->cur_pos += acb->cur_qiov.size;
1365     qemu_iovec_reset(&acb->cur_qiov);
1366 
1367     /* Complete request */
1368     if (acb->cur_pos >= acb->end_pos) {
1369         qed_aio_complete(acb, 0);
1370         return;
1371     }
1372 
1373     /* Find next cluster and start I/O */
1374     qed_find_cluster(s, &acb->request,
1375                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1376                       io_fn, acb);
1377 }
1378 
1379 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1380                                  int64_t sector_num,
1381                                  QEMUIOVector *qiov, int nb_sectors,
1382                                  BlockCompletionFunc *cb,
1383                                  void *opaque, int flags)
1384 {
1385     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1386 
1387     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1388                         opaque, flags);
1389 
1390     acb->flags = flags;
1391     acb->qiov = qiov;
1392     acb->qiov_offset = 0;
1393     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1394     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1395     acb->backing_qiov = NULL;
1396     acb->request.l2_table = NULL;
1397     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1398 
1399     /* Start request */
1400     qed_aio_next_io(acb, 0);
1401     return &acb->common;
1402 }
1403 
1404 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1405                                       int64_t sector_num,
1406                                       QEMUIOVector *qiov, int nb_sectors,
1407                                       BlockCompletionFunc *cb,
1408                                       void *opaque)
1409 {
1410     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1411 }
1412 
1413 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1414                                        int64_t sector_num,
1415                                        QEMUIOVector *qiov, int nb_sectors,
1416                                        BlockCompletionFunc *cb,
1417                                        void *opaque)
1418 {
1419     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1420                          opaque, QED_AIOCB_WRITE);
1421 }
1422 
1423 typedef struct {
1424     Coroutine *co;
1425     int ret;
1426     bool done;
1427 } QEDWriteZeroesCB;
1428 
1429 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1430 {
1431     QEDWriteZeroesCB *cb = opaque;
1432 
1433     cb->done = true;
1434     cb->ret = ret;
1435     if (cb->co) {
1436         qemu_coroutine_enter(cb->co, NULL);
1437     }
1438 }
1439 
1440 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1441                                                  int64_t sector_num,
1442                                                  int nb_sectors,
1443                                                  BdrvRequestFlags flags)
1444 {
1445     BlockAIOCB *blockacb;
1446     BDRVQEDState *s = bs->opaque;
1447     QEDWriteZeroesCB cb = { .done = false };
1448     QEMUIOVector qiov;
1449     struct iovec iov;
1450 
1451     /* Refuse if there are untouched backing file sectors */
1452     if (bs->backing) {
1453         if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1454             return -ENOTSUP;
1455         }
1456         if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1457             return -ENOTSUP;
1458         }
1459     }
1460 
1461     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1462      * then it will be allocated during request processing.
1463      */
1464     iov.iov_base = NULL,
1465     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1466 
1467     qemu_iovec_init_external(&qiov, &iov, 1);
1468     blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1469                              qed_co_write_zeroes_cb, &cb,
1470                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1471     if (!blockacb) {
1472         return -EIO;
1473     }
1474     if (!cb.done) {
1475         cb.co = qemu_coroutine_self();
1476         qemu_coroutine_yield();
1477     }
1478     assert(cb.done);
1479     return cb.ret;
1480 }
1481 
1482 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1483 {
1484     BDRVQEDState *s = bs->opaque;
1485     uint64_t old_image_size;
1486     int ret;
1487 
1488     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1489                                  s->header.table_size)) {
1490         return -EINVAL;
1491     }
1492 
1493     /* Shrinking is currently not supported */
1494     if ((uint64_t)offset < s->header.image_size) {
1495         return -ENOTSUP;
1496     }
1497 
1498     old_image_size = s->header.image_size;
1499     s->header.image_size = offset;
1500     ret = qed_write_header_sync(s);
1501     if (ret < 0) {
1502         s->header.image_size = old_image_size;
1503     }
1504     return ret;
1505 }
1506 
1507 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1508 {
1509     BDRVQEDState *s = bs->opaque;
1510     return s->header.image_size;
1511 }
1512 
1513 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1514 {
1515     BDRVQEDState *s = bs->opaque;
1516 
1517     memset(bdi, 0, sizeof(*bdi));
1518     bdi->cluster_size = s->header.cluster_size;
1519     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1520     bdi->unallocated_blocks_are_zero = true;
1521     bdi->can_write_zeroes_with_unmap = true;
1522     return 0;
1523 }
1524 
1525 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1526                                         const char *backing_file,
1527                                         const char *backing_fmt)
1528 {
1529     BDRVQEDState *s = bs->opaque;
1530     QEDHeader new_header, le_header;
1531     void *buffer;
1532     size_t buffer_len, backing_file_len;
1533     int ret;
1534 
1535     /* Refuse to set backing filename if unknown compat feature bits are
1536      * active.  If the image uses an unknown compat feature then we may not
1537      * know the layout of data following the header structure and cannot safely
1538      * add a new string.
1539      */
1540     if (backing_file && (s->header.compat_features &
1541                          ~QED_COMPAT_FEATURE_MASK)) {
1542         return -ENOTSUP;
1543     }
1544 
1545     memcpy(&new_header, &s->header, sizeof(new_header));
1546 
1547     new_header.features &= ~(QED_F_BACKING_FILE |
1548                              QED_F_BACKING_FORMAT_NO_PROBE);
1549 
1550     /* Adjust feature flags */
1551     if (backing_file) {
1552         new_header.features |= QED_F_BACKING_FILE;
1553 
1554         if (qed_fmt_is_raw(backing_fmt)) {
1555             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1556         }
1557     }
1558 
1559     /* Calculate new header size */
1560     backing_file_len = 0;
1561 
1562     if (backing_file) {
1563         backing_file_len = strlen(backing_file);
1564     }
1565 
1566     buffer_len = sizeof(new_header);
1567     new_header.backing_filename_offset = buffer_len;
1568     new_header.backing_filename_size = backing_file_len;
1569     buffer_len += backing_file_len;
1570 
1571     /* Make sure we can rewrite header without failing */
1572     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1573         return -ENOSPC;
1574     }
1575 
1576     /* Prepare new header */
1577     buffer = g_malloc(buffer_len);
1578 
1579     qed_header_cpu_to_le(&new_header, &le_header);
1580     memcpy(buffer, &le_header, sizeof(le_header));
1581     buffer_len = sizeof(le_header);
1582 
1583     if (backing_file) {
1584         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1585         buffer_len += backing_file_len;
1586     }
1587 
1588     /* Write new header */
1589     ret = bdrv_pwrite_sync(bs->file->bs, 0, buffer, buffer_len);
1590     g_free(buffer);
1591     if (ret == 0) {
1592         memcpy(&s->header, &new_header, sizeof(new_header));
1593     }
1594     return ret;
1595 }
1596 
1597 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1598 {
1599     BDRVQEDState *s = bs->opaque;
1600     Error *local_err = NULL;
1601     int ret;
1602 
1603     bdrv_qed_close(bs);
1604 
1605     bdrv_invalidate_cache(bs->file->bs, &local_err);
1606     if (local_err) {
1607         error_propagate(errp, local_err);
1608         return;
1609     }
1610 
1611     memset(s, 0, sizeof(BDRVQEDState));
1612     ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1613     if (local_err) {
1614         error_setg(errp, "Could not reopen qed layer: %s",
1615                    error_get_pretty(local_err));
1616         error_free(local_err);
1617         return;
1618     } else if (ret < 0) {
1619         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1620         return;
1621     }
1622 }
1623 
1624 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1625                           BdrvCheckMode fix)
1626 {
1627     BDRVQEDState *s = bs->opaque;
1628 
1629     return qed_check(s, result, !!fix);
1630 }
1631 
1632 static QemuOptsList qed_create_opts = {
1633     .name = "qed-create-opts",
1634     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1635     .desc = {
1636         {
1637             .name = BLOCK_OPT_SIZE,
1638             .type = QEMU_OPT_SIZE,
1639             .help = "Virtual disk size"
1640         },
1641         {
1642             .name = BLOCK_OPT_BACKING_FILE,
1643             .type = QEMU_OPT_STRING,
1644             .help = "File name of a base image"
1645         },
1646         {
1647             .name = BLOCK_OPT_BACKING_FMT,
1648             .type = QEMU_OPT_STRING,
1649             .help = "Image format of the base image"
1650         },
1651         {
1652             .name = BLOCK_OPT_CLUSTER_SIZE,
1653             .type = QEMU_OPT_SIZE,
1654             .help = "Cluster size (in bytes)",
1655             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1656         },
1657         {
1658             .name = BLOCK_OPT_TABLE_SIZE,
1659             .type = QEMU_OPT_SIZE,
1660             .help = "L1/L2 table size (in clusters)"
1661         },
1662         { /* end of list */ }
1663     }
1664 };
1665 
1666 static BlockDriver bdrv_qed = {
1667     .format_name              = "qed",
1668     .instance_size            = sizeof(BDRVQEDState),
1669     .create_opts              = &qed_create_opts,
1670     .supports_backing         = true,
1671 
1672     .bdrv_probe               = bdrv_qed_probe,
1673     .bdrv_open                = bdrv_qed_open,
1674     .bdrv_close               = bdrv_qed_close,
1675     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1676     .bdrv_create              = bdrv_qed_create,
1677     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1678     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1679     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1680     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1681     .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1682     .bdrv_truncate            = bdrv_qed_truncate,
1683     .bdrv_getlength           = bdrv_qed_getlength,
1684     .bdrv_get_info            = bdrv_qed_get_info,
1685     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1686     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1687     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1688     .bdrv_check               = bdrv_qed_check,
1689     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1690     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1691     .bdrv_drain               = bdrv_qed_drain,
1692 };
1693 
1694 static void bdrv_qed_init(void)
1695 {
1696     bdrv_register(&bdrv_qed);
1697 }
1698 
1699 block_init(bdrv_qed_init);
1700