1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "block/qdict.h" 17 #include "qapi/error.h" 18 #include "qemu/timer.h" 19 #include "qemu/bswap.h" 20 #include "qemu/option.h" 21 #include "trace.h" 22 #include "qed.h" 23 #include "sysemu/block-backend.h" 24 #include "qapi/qmp/qdict.h" 25 #include "qapi/qobject-input-visitor.h" 26 #include "qapi/qapi-visit-block-core.h" 27 28 static QemuOptsList qed_create_opts; 29 30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 31 const char *filename) 32 { 33 const QEDHeader *header = (const QEDHeader *)buf; 34 35 if (buf_size < sizeof(*header)) { 36 return 0; 37 } 38 if (le32_to_cpu(header->magic) != QED_MAGIC) { 39 return 0; 40 } 41 return 100; 42 } 43 44 /** 45 * Check whether an image format is raw 46 * 47 * @fmt: Backing file format, may be NULL 48 */ 49 static bool qed_fmt_is_raw(const char *fmt) 50 { 51 return fmt && strcmp(fmt, "raw") == 0; 52 } 53 54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 55 { 56 cpu->magic = le32_to_cpu(le->magic); 57 cpu->cluster_size = le32_to_cpu(le->cluster_size); 58 cpu->table_size = le32_to_cpu(le->table_size); 59 cpu->header_size = le32_to_cpu(le->header_size); 60 cpu->features = le64_to_cpu(le->features); 61 cpu->compat_features = le64_to_cpu(le->compat_features); 62 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 63 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 64 cpu->image_size = le64_to_cpu(le->image_size); 65 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 66 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 67 } 68 69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 70 { 71 le->magic = cpu_to_le32(cpu->magic); 72 le->cluster_size = cpu_to_le32(cpu->cluster_size); 73 le->table_size = cpu_to_le32(cpu->table_size); 74 le->header_size = cpu_to_le32(cpu->header_size); 75 le->features = cpu_to_le64(cpu->features); 76 le->compat_features = cpu_to_le64(cpu->compat_features); 77 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 78 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 79 le->image_size = cpu_to_le64(cpu->image_size); 80 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 81 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 82 } 83 84 int qed_write_header_sync(BDRVQEDState *s) 85 { 86 QEDHeader le; 87 int ret; 88 89 qed_header_cpu_to_le(&s->header, &le); 90 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 91 if (ret != sizeof(le)) { 92 return ret; 93 } 94 return 0; 95 } 96 97 /** 98 * Update header in-place (does not rewrite backing filename or other strings) 99 * 100 * This function only updates known header fields in-place and does not affect 101 * extra data after the QED header. 102 * 103 * No new allocating reqs can start while this function runs. 104 */ 105 static int coroutine_fn qed_write_header(BDRVQEDState *s) 106 { 107 /* We must write full sectors for O_DIRECT but cannot necessarily generate 108 * the data following the header if an unrecognized compat feature is 109 * active. Therefore, first read the sectors containing the header, update 110 * them, and write back. 111 */ 112 113 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 114 size_t len = nsectors * BDRV_SECTOR_SIZE; 115 uint8_t *buf; 116 struct iovec iov; 117 QEMUIOVector qiov; 118 int ret; 119 120 assert(s->allocating_acb || s->allocating_write_reqs_plugged); 121 122 buf = qemu_blockalign(s->bs, len); 123 iov = (struct iovec) { 124 .iov_base = buf, 125 .iov_len = len, 126 }; 127 qemu_iovec_init_external(&qiov, &iov, 1); 128 129 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0); 130 if (ret < 0) { 131 goto out; 132 } 133 134 /* Update header */ 135 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf); 136 137 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0); 138 if (ret < 0) { 139 goto out; 140 } 141 142 ret = 0; 143 out: 144 qemu_vfree(buf); 145 return ret; 146 } 147 148 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 149 { 150 uint64_t table_entries; 151 uint64_t l2_size; 152 153 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 154 l2_size = table_entries * cluster_size; 155 156 return l2_size * table_entries; 157 } 158 159 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 160 { 161 if (cluster_size < QED_MIN_CLUSTER_SIZE || 162 cluster_size > QED_MAX_CLUSTER_SIZE) { 163 return false; 164 } 165 if (cluster_size & (cluster_size - 1)) { 166 return false; /* not power of 2 */ 167 } 168 return true; 169 } 170 171 static bool qed_is_table_size_valid(uint32_t table_size) 172 { 173 if (table_size < QED_MIN_TABLE_SIZE || 174 table_size > QED_MAX_TABLE_SIZE) { 175 return false; 176 } 177 if (table_size & (table_size - 1)) { 178 return false; /* not power of 2 */ 179 } 180 return true; 181 } 182 183 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 184 uint32_t table_size) 185 { 186 if (image_size % BDRV_SECTOR_SIZE != 0) { 187 return false; /* not multiple of sector size */ 188 } 189 if (image_size > qed_max_image_size(cluster_size, table_size)) { 190 return false; /* image is too large */ 191 } 192 return true; 193 } 194 195 /** 196 * Read a string of known length from the image file 197 * 198 * @file: Image file 199 * @offset: File offset to start of string, in bytes 200 * @n: String length in bytes 201 * @buf: Destination buffer 202 * @buflen: Destination buffer length in bytes 203 * @ret: 0 on success, -errno on failure 204 * 205 * The string is NUL-terminated. 206 */ 207 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 208 char *buf, size_t buflen) 209 { 210 int ret; 211 if (n >= buflen) { 212 return -EINVAL; 213 } 214 ret = bdrv_pread(file, offset, buf, n); 215 if (ret < 0) { 216 return ret; 217 } 218 buf[n] = '\0'; 219 return 0; 220 } 221 222 /** 223 * Allocate new clusters 224 * 225 * @s: QED state 226 * @n: Number of contiguous clusters to allocate 227 * @ret: Offset of first allocated cluster 228 * 229 * This function only produces the offset where the new clusters should be 230 * written. It updates BDRVQEDState but does not make any changes to the image 231 * file. 232 * 233 * Called with table_lock held. 234 */ 235 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 236 { 237 uint64_t offset = s->file_size; 238 s->file_size += n * s->header.cluster_size; 239 return offset; 240 } 241 242 QEDTable *qed_alloc_table(BDRVQEDState *s) 243 { 244 /* Honor O_DIRECT memory alignment requirements */ 245 return qemu_blockalign(s->bs, 246 s->header.cluster_size * s->header.table_size); 247 } 248 249 /** 250 * Allocate a new zeroed L2 table 251 * 252 * Called with table_lock held. 253 */ 254 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 255 { 256 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 257 258 l2_table->table = qed_alloc_table(s); 259 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 260 261 memset(l2_table->table->offsets, 0, 262 s->header.cluster_size * s->header.table_size); 263 return l2_table; 264 } 265 266 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s) 267 { 268 qemu_co_mutex_lock(&s->table_lock); 269 270 /* No reentrancy is allowed. */ 271 assert(!s->allocating_write_reqs_plugged); 272 if (s->allocating_acb != NULL) { 273 /* Another allocating write came concurrently. This cannot happen 274 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs. 275 */ 276 qemu_co_mutex_unlock(&s->table_lock); 277 return false; 278 } 279 280 s->allocating_write_reqs_plugged = true; 281 qemu_co_mutex_unlock(&s->table_lock); 282 return true; 283 } 284 285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 286 { 287 qemu_co_mutex_lock(&s->table_lock); 288 assert(s->allocating_write_reqs_plugged); 289 s->allocating_write_reqs_plugged = false; 290 qemu_co_queue_next(&s->allocating_write_reqs); 291 qemu_co_mutex_unlock(&s->table_lock); 292 } 293 294 static void coroutine_fn qed_need_check_timer_entry(void *opaque) 295 { 296 BDRVQEDState *s = opaque; 297 int ret; 298 299 trace_qed_need_check_timer_cb(s); 300 301 if (!qed_plug_allocating_write_reqs(s)) { 302 return; 303 } 304 305 /* Ensure writes are on disk before clearing flag */ 306 ret = bdrv_co_flush(s->bs->file->bs); 307 if (ret < 0) { 308 qed_unplug_allocating_write_reqs(s); 309 return; 310 } 311 312 s->header.features &= ~QED_F_NEED_CHECK; 313 ret = qed_write_header(s); 314 (void) ret; 315 316 qed_unplug_allocating_write_reqs(s); 317 318 ret = bdrv_co_flush(s->bs); 319 (void) ret; 320 } 321 322 static void qed_need_check_timer_cb(void *opaque) 323 { 324 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque); 325 qemu_coroutine_enter(co); 326 } 327 328 static void qed_start_need_check_timer(BDRVQEDState *s) 329 { 330 trace_qed_start_need_check_timer(s); 331 332 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 333 * migration. 334 */ 335 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 336 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 337 } 338 339 /* It's okay to call this multiple times or when no timer is started */ 340 static void qed_cancel_need_check_timer(BDRVQEDState *s) 341 { 342 trace_qed_cancel_need_check_timer(s); 343 timer_del(s->need_check_timer); 344 } 345 346 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 347 { 348 BDRVQEDState *s = bs->opaque; 349 350 qed_cancel_need_check_timer(s); 351 timer_free(s->need_check_timer); 352 } 353 354 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 355 AioContext *new_context) 356 { 357 BDRVQEDState *s = bs->opaque; 358 359 s->need_check_timer = aio_timer_new(new_context, 360 QEMU_CLOCK_VIRTUAL, SCALE_NS, 361 qed_need_check_timer_cb, s); 362 if (s->header.features & QED_F_NEED_CHECK) { 363 qed_start_need_check_timer(s); 364 } 365 } 366 367 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs) 368 { 369 BDRVQEDState *s = bs->opaque; 370 371 /* Fire the timer immediately in order to start doing I/O as soon as the 372 * header is flushed. 373 */ 374 if (s->need_check_timer && timer_pending(s->need_check_timer)) { 375 qed_cancel_need_check_timer(s); 376 qed_need_check_timer_entry(s); 377 } 378 } 379 380 static void bdrv_qed_init_state(BlockDriverState *bs) 381 { 382 BDRVQEDState *s = bs->opaque; 383 384 memset(s, 0, sizeof(BDRVQEDState)); 385 s->bs = bs; 386 qemu_co_mutex_init(&s->table_lock); 387 qemu_co_queue_init(&s->allocating_write_reqs); 388 } 389 390 /* Called with table_lock held. */ 391 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options, 392 int flags, Error **errp) 393 { 394 BDRVQEDState *s = bs->opaque; 395 QEDHeader le_header; 396 int64_t file_size; 397 int ret; 398 399 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 400 if (ret < 0) { 401 return ret; 402 } 403 qed_header_le_to_cpu(&le_header, &s->header); 404 405 if (s->header.magic != QED_MAGIC) { 406 error_setg(errp, "Image not in QED format"); 407 return -EINVAL; 408 } 409 if (s->header.features & ~QED_FEATURE_MASK) { 410 /* image uses unsupported feature bits */ 411 error_setg(errp, "Unsupported QED features: %" PRIx64, 412 s->header.features & ~QED_FEATURE_MASK); 413 return -ENOTSUP; 414 } 415 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 416 return -EINVAL; 417 } 418 419 /* Round down file size to the last cluster */ 420 file_size = bdrv_getlength(bs->file->bs); 421 if (file_size < 0) { 422 return file_size; 423 } 424 s->file_size = qed_start_of_cluster(s, file_size); 425 426 if (!qed_is_table_size_valid(s->header.table_size)) { 427 return -EINVAL; 428 } 429 if (!qed_is_image_size_valid(s->header.image_size, 430 s->header.cluster_size, 431 s->header.table_size)) { 432 return -EINVAL; 433 } 434 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 435 return -EINVAL; 436 } 437 438 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 439 sizeof(uint64_t); 440 s->l2_shift = ctz32(s->header.cluster_size); 441 s->l2_mask = s->table_nelems - 1; 442 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 443 444 /* Header size calculation must not overflow uint32_t */ 445 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 446 return -EINVAL; 447 } 448 449 if ((s->header.features & QED_F_BACKING_FILE)) { 450 if ((uint64_t)s->header.backing_filename_offset + 451 s->header.backing_filename_size > 452 s->header.cluster_size * s->header.header_size) { 453 return -EINVAL; 454 } 455 456 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 457 s->header.backing_filename_size, bs->backing_file, 458 sizeof(bs->backing_file)); 459 if (ret < 0) { 460 return ret; 461 } 462 463 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 464 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 465 } 466 } 467 468 /* Reset unknown autoclear feature bits. This is a backwards 469 * compatibility mechanism that allows images to be opened by older 470 * programs, which "knock out" unknown feature bits. When an image is 471 * opened by a newer program again it can detect that the autoclear 472 * feature is no longer valid. 473 */ 474 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 475 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 476 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 477 478 ret = qed_write_header_sync(s); 479 if (ret) { 480 return ret; 481 } 482 483 /* From here on only known autoclear feature bits are valid */ 484 bdrv_flush(bs->file->bs); 485 } 486 487 s->l1_table = qed_alloc_table(s); 488 qed_init_l2_cache(&s->l2_cache); 489 490 ret = qed_read_l1_table_sync(s); 491 if (ret) { 492 goto out; 493 } 494 495 /* If image was not closed cleanly, check consistency */ 496 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 497 /* Read-only images cannot be fixed. There is no risk of corruption 498 * since write operations are not possible. Therefore, allow 499 * potentially inconsistent images to be opened read-only. This can 500 * aid data recovery from an otherwise inconsistent image. 501 */ 502 if (!bdrv_is_read_only(bs->file->bs) && 503 !(flags & BDRV_O_INACTIVE)) { 504 BdrvCheckResult result = {0}; 505 506 ret = qed_check(s, &result, true); 507 if (ret) { 508 goto out; 509 } 510 } 511 } 512 513 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 514 515 out: 516 if (ret) { 517 qed_free_l2_cache(&s->l2_cache); 518 qemu_vfree(s->l1_table); 519 } 520 return ret; 521 } 522 523 typedef struct QEDOpenCo { 524 BlockDriverState *bs; 525 QDict *options; 526 int flags; 527 Error **errp; 528 int ret; 529 } QEDOpenCo; 530 531 static void coroutine_fn bdrv_qed_open_entry(void *opaque) 532 { 533 QEDOpenCo *qoc = opaque; 534 BDRVQEDState *s = qoc->bs->opaque; 535 536 qemu_co_mutex_lock(&s->table_lock); 537 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp); 538 qemu_co_mutex_unlock(&s->table_lock); 539 } 540 541 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 542 Error **errp) 543 { 544 QEDOpenCo qoc = { 545 .bs = bs, 546 .options = options, 547 .flags = flags, 548 .errp = errp, 549 .ret = -EINPROGRESS 550 }; 551 552 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, 553 false, errp); 554 if (!bs->file) { 555 return -EINVAL; 556 } 557 558 bdrv_qed_init_state(bs); 559 if (qemu_in_coroutine()) { 560 bdrv_qed_open_entry(&qoc); 561 } else { 562 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 563 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc)); 564 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 565 } 566 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS); 567 return qoc.ret; 568 } 569 570 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 571 { 572 BDRVQEDState *s = bs->opaque; 573 574 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 575 } 576 577 /* We have nothing to do for QED reopen, stubs just return 578 * success */ 579 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 580 BlockReopenQueue *queue, Error **errp) 581 { 582 return 0; 583 } 584 585 static void bdrv_qed_close(BlockDriverState *bs) 586 { 587 BDRVQEDState *s = bs->opaque; 588 589 bdrv_qed_detach_aio_context(bs); 590 591 /* Ensure writes reach stable storage */ 592 bdrv_flush(bs->file->bs); 593 594 /* Clean shutdown, no check required on next open */ 595 if (s->header.features & QED_F_NEED_CHECK) { 596 s->header.features &= ~QED_F_NEED_CHECK; 597 qed_write_header_sync(s); 598 } 599 600 qed_free_l2_cache(&s->l2_cache); 601 qemu_vfree(s->l1_table); 602 } 603 604 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts, 605 Error **errp) 606 { 607 BlockdevCreateOptionsQed *qed_opts; 608 BlockBackend *blk = NULL; 609 BlockDriverState *bs = NULL; 610 611 QEDHeader header; 612 QEDHeader le_header; 613 uint8_t *l1_table = NULL; 614 size_t l1_size; 615 int ret = 0; 616 617 assert(opts->driver == BLOCKDEV_DRIVER_QED); 618 qed_opts = &opts->u.qed; 619 620 /* Validate options and set default values */ 621 if (!qed_opts->has_cluster_size) { 622 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE; 623 } 624 if (!qed_opts->has_table_size) { 625 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE; 626 } 627 628 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) { 629 error_setg(errp, "QED cluster size must be within range [%u, %u] " 630 "and power of 2", 631 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 632 return -EINVAL; 633 } 634 if (!qed_is_table_size_valid(qed_opts->table_size)) { 635 error_setg(errp, "QED table size must be within range [%u, %u] " 636 "and power of 2", 637 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 638 return -EINVAL; 639 } 640 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size, 641 qed_opts->table_size)) 642 { 643 error_setg(errp, "QED image size must be a non-zero multiple of " 644 "cluster size and less than %" PRIu64 " bytes", 645 qed_max_image_size(qed_opts->cluster_size, 646 qed_opts->table_size)); 647 return -EINVAL; 648 } 649 650 /* Create BlockBackend to write to the image */ 651 bs = bdrv_open_blockdev_ref(qed_opts->file, errp); 652 if (bs == NULL) { 653 return -EIO; 654 } 655 656 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL); 657 ret = blk_insert_bs(blk, bs, errp); 658 if (ret < 0) { 659 goto out; 660 } 661 blk_set_allow_write_beyond_eof(blk, true); 662 663 /* Prepare image format */ 664 header = (QEDHeader) { 665 .magic = QED_MAGIC, 666 .cluster_size = qed_opts->cluster_size, 667 .table_size = qed_opts->table_size, 668 .header_size = 1, 669 .features = 0, 670 .compat_features = 0, 671 .l1_table_offset = qed_opts->cluster_size, 672 .image_size = qed_opts->size, 673 }; 674 675 l1_size = header.cluster_size * header.table_size; 676 677 /* File must start empty and grow, check truncate is supported */ 678 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp); 679 if (ret < 0) { 680 goto out; 681 } 682 683 if (qed_opts->has_backing_file) { 684 header.features |= QED_F_BACKING_FILE; 685 header.backing_filename_offset = sizeof(le_header); 686 header.backing_filename_size = strlen(qed_opts->backing_file); 687 688 if (qed_opts->has_backing_fmt) { 689 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt); 690 if (qed_fmt_is_raw(backing_fmt)) { 691 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 692 } 693 } 694 } 695 696 qed_header_cpu_to_le(&header, &le_header); 697 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 698 if (ret < 0) { 699 goto out; 700 } 701 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file, 702 header.backing_filename_size, 0); 703 if (ret < 0) { 704 goto out; 705 } 706 707 l1_table = g_malloc0(l1_size); 708 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 709 if (ret < 0) { 710 goto out; 711 } 712 713 ret = 0; /* success */ 714 out: 715 g_free(l1_table); 716 blk_unref(blk); 717 bdrv_unref(bs); 718 return ret; 719 } 720 721 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename, 722 QemuOpts *opts, 723 Error **errp) 724 { 725 BlockdevCreateOptions *create_options = NULL; 726 QDict *qdict; 727 Visitor *v; 728 BlockDriverState *bs = NULL; 729 Error *local_err = NULL; 730 int ret; 731 732 static const QDictRenames opt_renames[] = { 733 { BLOCK_OPT_BACKING_FILE, "backing-file" }, 734 { BLOCK_OPT_BACKING_FMT, "backing-fmt" }, 735 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" }, 736 { BLOCK_OPT_TABLE_SIZE, "table-size" }, 737 { NULL, NULL }, 738 }; 739 740 /* Parse options and convert legacy syntax */ 741 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true); 742 743 if (!qdict_rename_keys(qdict, opt_renames, errp)) { 744 ret = -EINVAL; 745 goto fail; 746 } 747 748 /* Create and open the file (protocol layer) */ 749 ret = bdrv_create_file(filename, opts, &local_err); 750 if (ret < 0) { 751 error_propagate(errp, local_err); 752 goto fail; 753 } 754 755 bs = bdrv_open(filename, NULL, NULL, 756 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp); 757 if (bs == NULL) { 758 ret = -EIO; 759 goto fail; 760 } 761 762 /* Now get the QAPI type BlockdevCreateOptions */ 763 qdict_put_str(qdict, "driver", "qed"); 764 qdict_put_str(qdict, "file", bs->node_name); 765 766 v = qobject_input_visitor_new_flat_confused(qdict, errp); 767 if (!v) { 768 ret = -EINVAL; 769 goto fail; 770 } 771 772 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err); 773 visit_free(v); 774 775 if (local_err) { 776 error_propagate(errp, local_err); 777 ret = -EINVAL; 778 goto fail; 779 } 780 781 /* Silently round up size */ 782 assert(create_options->driver == BLOCKDEV_DRIVER_QED); 783 create_options->u.qed.size = 784 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE); 785 786 /* Create the qed image (format layer) */ 787 ret = bdrv_qed_co_create(create_options, errp); 788 789 fail: 790 qobject_unref(qdict); 791 bdrv_unref(bs); 792 qapi_free_BlockdevCreateOptions(create_options); 793 return ret; 794 } 795 796 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs, 797 bool want_zero, 798 int64_t pos, int64_t bytes, 799 int64_t *pnum, int64_t *map, 800 BlockDriverState **file) 801 { 802 BDRVQEDState *s = bs->opaque; 803 size_t len = MIN(bytes, SIZE_MAX); 804 int status; 805 QEDRequest request = { .l2_table = NULL }; 806 uint64_t offset; 807 int ret; 808 809 qemu_co_mutex_lock(&s->table_lock); 810 ret = qed_find_cluster(s, &request, pos, &len, &offset); 811 812 *pnum = len; 813 switch (ret) { 814 case QED_CLUSTER_FOUND: 815 *map = offset | qed_offset_into_cluster(s, pos); 816 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 817 *file = bs->file->bs; 818 break; 819 case QED_CLUSTER_ZERO: 820 status = BDRV_BLOCK_ZERO; 821 break; 822 case QED_CLUSTER_L2: 823 case QED_CLUSTER_L1: 824 status = 0; 825 break; 826 default: 827 assert(ret < 0); 828 status = ret; 829 break; 830 } 831 832 qed_unref_l2_cache_entry(request.l2_table); 833 qemu_co_mutex_unlock(&s->table_lock); 834 835 return status; 836 } 837 838 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 839 { 840 return acb->bs->opaque; 841 } 842 843 /** 844 * Read from the backing file or zero-fill if no backing file 845 * 846 * @s: QED state 847 * @pos: Byte position in device 848 * @qiov: Destination I/O vector 849 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 850 * @cb: Completion function 851 * @opaque: User data for completion function 852 * 853 * This function reads qiov->size bytes starting at pos from the backing file. 854 * If there is no backing file then zeroes are read. 855 */ 856 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 857 QEMUIOVector *qiov, 858 QEMUIOVector **backing_qiov) 859 { 860 uint64_t backing_length = 0; 861 size_t size; 862 int ret; 863 864 /* If there is a backing file, get its length. Treat the absence of a 865 * backing file like a zero length backing file. 866 */ 867 if (s->bs->backing) { 868 int64_t l = bdrv_getlength(s->bs->backing->bs); 869 if (l < 0) { 870 return l; 871 } 872 backing_length = l; 873 } 874 875 /* Zero all sectors if reading beyond the end of the backing file */ 876 if (pos >= backing_length || 877 pos + qiov->size > backing_length) { 878 qemu_iovec_memset(qiov, 0, 0, qiov->size); 879 } 880 881 /* Complete now if there are no backing file sectors to read */ 882 if (pos >= backing_length) { 883 return 0; 884 } 885 886 /* If the read straddles the end of the backing file, shorten it */ 887 size = MIN((uint64_t)backing_length - pos, qiov->size); 888 889 assert(*backing_qiov == NULL); 890 *backing_qiov = g_new(QEMUIOVector, 1); 891 qemu_iovec_init(*backing_qiov, qiov->niov); 892 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 893 894 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 895 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0); 896 if (ret < 0) { 897 return ret; 898 } 899 return 0; 900 } 901 902 /** 903 * Copy data from backing file into the image 904 * 905 * @s: QED state 906 * @pos: Byte position in device 907 * @len: Number of bytes 908 * @offset: Byte offset in image file 909 */ 910 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s, 911 uint64_t pos, uint64_t len, 912 uint64_t offset) 913 { 914 QEMUIOVector qiov; 915 QEMUIOVector *backing_qiov = NULL; 916 struct iovec iov; 917 int ret; 918 919 /* Skip copy entirely if there is no work to do */ 920 if (len == 0) { 921 return 0; 922 } 923 924 iov = (struct iovec) { 925 .iov_base = qemu_blockalign(s->bs, len), 926 .iov_len = len, 927 }; 928 qemu_iovec_init_external(&qiov, &iov, 1); 929 930 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov); 931 932 if (backing_qiov) { 933 qemu_iovec_destroy(backing_qiov); 934 g_free(backing_qiov); 935 backing_qiov = NULL; 936 } 937 938 if (ret) { 939 goto out; 940 } 941 942 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 943 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0); 944 if (ret < 0) { 945 goto out; 946 } 947 ret = 0; 948 out: 949 qemu_vfree(iov.iov_base); 950 return ret; 951 } 952 953 /** 954 * Link one or more contiguous clusters into a table 955 * 956 * @s: QED state 957 * @table: L2 table 958 * @index: First cluster index 959 * @n: Number of contiguous clusters 960 * @cluster: First cluster offset 961 * 962 * The cluster offset may be an allocated byte offset in the image file, the 963 * zero cluster marker, or the unallocated cluster marker. 964 * 965 * Called with table_lock held. 966 */ 967 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table, 968 int index, unsigned int n, 969 uint64_t cluster) 970 { 971 int i; 972 for (i = index; i < index + n; i++) { 973 table->offsets[i] = cluster; 974 if (!qed_offset_is_unalloc_cluster(cluster) && 975 !qed_offset_is_zero_cluster(cluster)) { 976 cluster += s->header.cluster_size; 977 } 978 } 979 } 980 981 /* Called with table_lock held. */ 982 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb) 983 { 984 BDRVQEDState *s = acb_to_s(acb); 985 986 /* Free resources */ 987 qemu_iovec_destroy(&acb->cur_qiov); 988 qed_unref_l2_cache_entry(acb->request.l2_table); 989 990 /* Free the buffer we may have allocated for zero writes */ 991 if (acb->flags & QED_AIOCB_ZERO) { 992 qemu_vfree(acb->qiov->iov[0].iov_base); 993 acb->qiov->iov[0].iov_base = NULL; 994 } 995 996 /* Start next allocating write request waiting behind this one. Note that 997 * requests enqueue themselves when they first hit an unallocated cluster 998 * but they wait until the entire request is finished before waking up the 999 * next request in the queue. This ensures that we don't cycle through 1000 * requests multiple times but rather finish one at a time completely. 1001 */ 1002 if (acb == s->allocating_acb) { 1003 s->allocating_acb = NULL; 1004 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) { 1005 qemu_co_queue_next(&s->allocating_write_reqs); 1006 } else if (s->header.features & QED_F_NEED_CHECK) { 1007 qed_start_need_check_timer(s); 1008 } 1009 } 1010 } 1011 1012 /** 1013 * Update L1 table with new L2 table offset and write it out 1014 * 1015 * Called with table_lock held. 1016 */ 1017 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb) 1018 { 1019 BDRVQEDState *s = acb_to_s(acb); 1020 CachedL2Table *l2_table = acb->request.l2_table; 1021 uint64_t l2_offset = l2_table->offset; 1022 int index, ret; 1023 1024 index = qed_l1_index(s, acb->cur_pos); 1025 s->l1_table->offsets[index] = l2_table->offset; 1026 1027 ret = qed_write_l1_table(s, index, 1); 1028 1029 /* Commit the current L2 table to the cache */ 1030 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 1031 1032 /* This is guaranteed to succeed because we just committed the entry to the 1033 * cache. 1034 */ 1035 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 1036 assert(acb->request.l2_table != NULL); 1037 1038 return ret; 1039 } 1040 1041 1042 /** 1043 * Update L2 table with new cluster offsets and write them out 1044 * 1045 * Called with table_lock held. 1046 */ 1047 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset) 1048 { 1049 BDRVQEDState *s = acb_to_s(acb); 1050 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1051 int index, ret; 1052 1053 if (need_alloc) { 1054 qed_unref_l2_cache_entry(acb->request.l2_table); 1055 acb->request.l2_table = qed_new_l2_table(s); 1056 } 1057 1058 index = qed_l2_index(s, acb->cur_pos); 1059 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1060 offset); 1061 1062 if (need_alloc) { 1063 /* Write out the whole new L2 table */ 1064 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true); 1065 if (ret) { 1066 return ret; 1067 } 1068 return qed_aio_write_l1_update(acb); 1069 } else { 1070 /* Write out only the updated part of the L2 table */ 1071 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, 1072 false); 1073 if (ret) { 1074 return ret; 1075 } 1076 } 1077 return 0; 1078 } 1079 1080 /** 1081 * Write data to the image file 1082 * 1083 * Called with table_lock *not* held. 1084 */ 1085 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb) 1086 { 1087 BDRVQEDState *s = acb_to_s(acb); 1088 uint64_t offset = acb->cur_cluster + 1089 qed_offset_into_cluster(s, acb->cur_pos); 1090 1091 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size); 1092 1093 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1094 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size, 1095 &acb->cur_qiov, 0); 1096 } 1097 1098 /** 1099 * Populate untouched regions of new data cluster 1100 * 1101 * Called with table_lock held. 1102 */ 1103 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb) 1104 { 1105 BDRVQEDState *s = acb_to_s(acb); 1106 uint64_t start, len, offset; 1107 int ret; 1108 1109 qemu_co_mutex_unlock(&s->table_lock); 1110 1111 /* Populate front untouched region of new data cluster */ 1112 start = qed_start_of_cluster(s, acb->cur_pos); 1113 len = qed_offset_into_cluster(s, acb->cur_pos); 1114 1115 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1116 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster); 1117 if (ret < 0) { 1118 goto out; 1119 } 1120 1121 /* Populate back untouched region of new data cluster */ 1122 start = acb->cur_pos + acb->cur_qiov.size; 1123 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1124 offset = acb->cur_cluster + 1125 qed_offset_into_cluster(s, acb->cur_pos) + 1126 acb->cur_qiov.size; 1127 1128 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1129 ret = qed_copy_from_backing_file(s, start, len, offset); 1130 if (ret < 0) { 1131 goto out; 1132 } 1133 1134 ret = qed_aio_write_main(acb); 1135 if (ret < 0) { 1136 goto out; 1137 } 1138 1139 if (s->bs->backing) { 1140 /* 1141 * Flush new data clusters before updating the L2 table 1142 * 1143 * This flush is necessary when a backing file is in use. A crash 1144 * during an allocating write could result in empty clusters in the 1145 * image. If the write only touched a subregion of the cluster, 1146 * then backing image sectors have been lost in the untouched 1147 * region. The solution is to flush after writing a new data 1148 * cluster and before updating the L2 table. 1149 */ 1150 ret = bdrv_co_flush(s->bs->file->bs); 1151 } 1152 1153 out: 1154 qemu_co_mutex_lock(&s->table_lock); 1155 return ret; 1156 } 1157 1158 /** 1159 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1160 */ 1161 static bool qed_should_set_need_check(BDRVQEDState *s) 1162 { 1163 /* The flush before L2 update path ensures consistency */ 1164 if (s->bs->backing) { 1165 return false; 1166 } 1167 1168 return !(s->header.features & QED_F_NEED_CHECK); 1169 } 1170 1171 /** 1172 * Write new data cluster 1173 * 1174 * @acb: Write request 1175 * @len: Length in bytes 1176 * 1177 * This path is taken when writing to previously unallocated clusters. 1178 * 1179 * Called with table_lock held. 1180 */ 1181 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1182 { 1183 BDRVQEDState *s = acb_to_s(acb); 1184 int ret; 1185 1186 /* Cancel timer when the first allocating request comes in */ 1187 if (s->allocating_acb == NULL) { 1188 qed_cancel_need_check_timer(s); 1189 } 1190 1191 /* Freeze this request if another allocating write is in progress */ 1192 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) { 1193 if (s->allocating_acb != NULL) { 1194 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock); 1195 assert(s->allocating_acb == NULL); 1196 } 1197 s->allocating_acb = acb; 1198 return -EAGAIN; /* start over with looking up table entries */ 1199 } 1200 1201 acb->cur_nclusters = qed_bytes_to_clusters(s, 1202 qed_offset_into_cluster(s, acb->cur_pos) + len); 1203 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1204 1205 if (acb->flags & QED_AIOCB_ZERO) { 1206 /* Skip ahead if the clusters are already zero */ 1207 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1208 return 0; 1209 } 1210 acb->cur_cluster = 1; 1211 } else { 1212 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1213 } 1214 1215 if (qed_should_set_need_check(s)) { 1216 s->header.features |= QED_F_NEED_CHECK; 1217 ret = qed_write_header(s); 1218 if (ret < 0) { 1219 return ret; 1220 } 1221 } 1222 1223 if (!(acb->flags & QED_AIOCB_ZERO)) { 1224 ret = qed_aio_write_cow(acb); 1225 if (ret < 0) { 1226 return ret; 1227 } 1228 } 1229 1230 return qed_aio_write_l2_update(acb, acb->cur_cluster); 1231 } 1232 1233 /** 1234 * Write data cluster in place 1235 * 1236 * @acb: Write request 1237 * @offset: Cluster offset in bytes 1238 * @len: Length in bytes 1239 * 1240 * This path is taken when writing to already allocated clusters. 1241 * 1242 * Called with table_lock held. 1243 */ 1244 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, 1245 size_t len) 1246 { 1247 BDRVQEDState *s = acb_to_s(acb); 1248 int r; 1249 1250 qemu_co_mutex_unlock(&s->table_lock); 1251 1252 /* Allocate buffer for zero writes */ 1253 if (acb->flags & QED_AIOCB_ZERO) { 1254 struct iovec *iov = acb->qiov->iov; 1255 1256 if (!iov->iov_base) { 1257 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len); 1258 if (iov->iov_base == NULL) { 1259 r = -ENOMEM; 1260 goto out; 1261 } 1262 memset(iov->iov_base, 0, iov->iov_len); 1263 } 1264 } 1265 1266 /* Calculate the I/O vector */ 1267 acb->cur_cluster = offset; 1268 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1269 1270 /* Do the actual write. */ 1271 r = qed_aio_write_main(acb); 1272 out: 1273 qemu_co_mutex_lock(&s->table_lock); 1274 return r; 1275 } 1276 1277 /** 1278 * Write data cluster 1279 * 1280 * @opaque: Write request 1281 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1282 * @offset: Cluster offset in bytes 1283 * @len: Length in bytes 1284 * 1285 * Called with table_lock held. 1286 */ 1287 static int coroutine_fn qed_aio_write_data(void *opaque, int ret, 1288 uint64_t offset, size_t len) 1289 { 1290 QEDAIOCB *acb = opaque; 1291 1292 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1293 1294 acb->find_cluster_ret = ret; 1295 1296 switch (ret) { 1297 case QED_CLUSTER_FOUND: 1298 return qed_aio_write_inplace(acb, offset, len); 1299 1300 case QED_CLUSTER_L2: 1301 case QED_CLUSTER_L1: 1302 case QED_CLUSTER_ZERO: 1303 return qed_aio_write_alloc(acb, len); 1304 1305 default: 1306 g_assert_not_reached(); 1307 } 1308 } 1309 1310 /** 1311 * Read data cluster 1312 * 1313 * @opaque: Read request 1314 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1 1315 * @offset: Cluster offset in bytes 1316 * @len: Length in bytes 1317 * 1318 * Called with table_lock held. 1319 */ 1320 static int coroutine_fn qed_aio_read_data(void *opaque, int ret, 1321 uint64_t offset, size_t len) 1322 { 1323 QEDAIOCB *acb = opaque; 1324 BDRVQEDState *s = acb_to_s(acb); 1325 BlockDriverState *bs = acb->bs; 1326 int r; 1327 1328 qemu_co_mutex_unlock(&s->table_lock); 1329 1330 /* Adjust offset into cluster */ 1331 offset += qed_offset_into_cluster(s, acb->cur_pos); 1332 1333 trace_qed_aio_read_data(s, acb, ret, offset, len); 1334 1335 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1336 1337 /* Handle zero cluster and backing file reads, otherwise read 1338 * data cluster directly. 1339 */ 1340 if (ret == QED_CLUSTER_ZERO) { 1341 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1342 r = 0; 1343 } else if (ret != QED_CLUSTER_FOUND) { 1344 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1345 &acb->backing_qiov); 1346 } else { 1347 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1348 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size, 1349 &acb->cur_qiov, 0); 1350 } 1351 1352 qemu_co_mutex_lock(&s->table_lock); 1353 return r; 1354 } 1355 1356 /** 1357 * Begin next I/O or complete the request 1358 */ 1359 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb) 1360 { 1361 BDRVQEDState *s = acb_to_s(acb); 1362 uint64_t offset; 1363 size_t len; 1364 int ret; 1365 1366 qemu_co_mutex_lock(&s->table_lock); 1367 while (1) { 1368 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size); 1369 1370 if (acb->backing_qiov) { 1371 qemu_iovec_destroy(acb->backing_qiov); 1372 g_free(acb->backing_qiov); 1373 acb->backing_qiov = NULL; 1374 } 1375 1376 acb->qiov_offset += acb->cur_qiov.size; 1377 acb->cur_pos += acb->cur_qiov.size; 1378 qemu_iovec_reset(&acb->cur_qiov); 1379 1380 /* Complete request */ 1381 if (acb->cur_pos >= acb->end_pos) { 1382 ret = 0; 1383 break; 1384 } 1385 1386 /* Find next cluster and start I/O */ 1387 len = acb->end_pos - acb->cur_pos; 1388 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset); 1389 if (ret < 0) { 1390 break; 1391 } 1392 1393 if (acb->flags & QED_AIOCB_WRITE) { 1394 ret = qed_aio_write_data(acb, ret, offset, len); 1395 } else { 1396 ret = qed_aio_read_data(acb, ret, offset, len); 1397 } 1398 1399 if (ret < 0 && ret != -EAGAIN) { 1400 break; 1401 } 1402 } 1403 1404 trace_qed_aio_complete(s, acb, ret); 1405 qed_aio_complete(acb); 1406 qemu_co_mutex_unlock(&s->table_lock); 1407 return ret; 1408 } 1409 1410 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num, 1411 QEMUIOVector *qiov, int nb_sectors, 1412 int flags) 1413 { 1414 QEDAIOCB acb = { 1415 .bs = bs, 1416 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE, 1417 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE, 1418 .qiov = qiov, 1419 .flags = flags, 1420 }; 1421 qemu_iovec_init(&acb.cur_qiov, qiov->niov); 1422 1423 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags); 1424 1425 /* Start request */ 1426 return qed_aio_next_io(&acb); 1427 } 1428 1429 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs, 1430 int64_t sector_num, int nb_sectors, 1431 QEMUIOVector *qiov) 1432 { 1433 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0); 1434 } 1435 1436 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs, 1437 int64_t sector_num, int nb_sectors, 1438 QEMUIOVector *qiov, int flags) 1439 { 1440 assert(!flags); 1441 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE); 1442 } 1443 1444 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1445 int64_t offset, 1446 int bytes, 1447 BdrvRequestFlags flags) 1448 { 1449 BDRVQEDState *s = bs->opaque; 1450 QEMUIOVector qiov; 1451 struct iovec iov; 1452 1453 /* Fall back if the request is not aligned */ 1454 if (qed_offset_into_cluster(s, offset) || 1455 qed_offset_into_cluster(s, bytes)) { 1456 return -ENOTSUP; 1457 } 1458 1459 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1460 * then it will be allocated during request processing. 1461 */ 1462 iov.iov_base = NULL; 1463 iov.iov_len = bytes; 1464 1465 qemu_iovec_init_external(&qiov, &iov, 1); 1466 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1467 bytes >> BDRV_SECTOR_BITS, 1468 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1469 } 1470 1471 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs, 1472 int64_t offset, 1473 PreallocMode prealloc, 1474 Error **errp) 1475 { 1476 BDRVQEDState *s = bs->opaque; 1477 uint64_t old_image_size; 1478 int ret; 1479 1480 if (prealloc != PREALLOC_MODE_OFF) { 1481 error_setg(errp, "Unsupported preallocation mode '%s'", 1482 PreallocMode_str(prealloc)); 1483 return -ENOTSUP; 1484 } 1485 1486 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1487 s->header.table_size)) { 1488 error_setg(errp, "Invalid image size specified"); 1489 return -EINVAL; 1490 } 1491 1492 if ((uint64_t)offset < s->header.image_size) { 1493 error_setg(errp, "Shrinking images is currently not supported"); 1494 return -ENOTSUP; 1495 } 1496 1497 old_image_size = s->header.image_size; 1498 s->header.image_size = offset; 1499 ret = qed_write_header_sync(s); 1500 if (ret < 0) { 1501 s->header.image_size = old_image_size; 1502 error_setg_errno(errp, -ret, "Failed to update the image size"); 1503 } 1504 return ret; 1505 } 1506 1507 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1508 { 1509 BDRVQEDState *s = bs->opaque; 1510 return s->header.image_size; 1511 } 1512 1513 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1514 { 1515 BDRVQEDState *s = bs->opaque; 1516 1517 memset(bdi, 0, sizeof(*bdi)); 1518 bdi->cluster_size = s->header.cluster_size; 1519 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1520 bdi->unallocated_blocks_are_zero = true; 1521 return 0; 1522 } 1523 1524 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1525 const char *backing_file, 1526 const char *backing_fmt) 1527 { 1528 BDRVQEDState *s = bs->opaque; 1529 QEDHeader new_header, le_header; 1530 void *buffer; 1531 size_t buffer_len, backing_file_len; 1532 int ret; 1533 1534 /* Refuse to set backing filename if unknown compat feature bits are 1535 * active. If the image uses an unknown compat feature then we may not 1536 * know the layout of data following the header structure and cannot safely 1537 * add a new string. 1538 */ 1539 if (backing_file && (s->header.compat_features & 1540 ~QED_COMPAT_FEATURE_MASK)) { 1541 return -ENOTSUP; 1542 } 1543 1544 memcpy(&new_header, &s->header, sizeof(new_header)); 1545 1546 new_header.features &= ~(QED_F_BACKING_FILE | 1547 QED_F_BACKING_FORMAT_NO_PROBE); 1548 1549 /* Adjust feature flags */ 1550 if (backing_file) { 1551 new_header.features |= QED_F_BACKING_FILE; 1552 1553 if (qed_fmt_is_raw(backing_fmt)) { 1554 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1555 } 1556 } 1557 1558 /* Calculate new header size */ 1559 backing_file_len = 0; 1560 1561 if (backing_file) { 1562 backing_file_len = strlen(backing_file); 1563 } 1564 1565 buffer_len = sizeof(new_header); 1566 new_header.backing_filename_offset = buffer_len; 1567 new_header.backing_filename_size = backing_file_len; 1568 buffer_len += backing_file_len; 1569 1570 /* Make sure we can rewrite header without failing */ 1571 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1572 return -ENOSPC; 1573 } 1574 1575 /* Prepare new header */ 1576 buffer = g_malloc(buffer_len); 1577 1578 qed_header_cpu_to_le(&new_header, &le_header); 1579 memcpy(buffer, &le_header, sizeof(le_header)); 1580 buffer_len = sizeof(le_header); 1581 1582 if (backing_file) { 1583 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1584 buffer_len += backing_file_len; 1585 } 1586 1587 /* Write new header */ 1588 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1589 g_free(buffer); 1590 if (ret == 0) { 1591 memcpy(&s->header, &new_header, sizeof(new_header)); 1592 } 1593 return ret; 1594 } 1595 1596 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs, 1597 Error **errp) 1598 { 1599 BDRVQEDState *s = bs->opaque; 1600 Error *local_err = NULL; 1601 int ret; 1602 1603 bdrv_qed_close(bs); 1604 1605 bdrv_qed_init_state(bs); 1606 qemu_co_mutex_lock(&s->table_lock); 1607 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err); 1608 qemu_co_mutex_unlock(&s->table_lock); 1609 if (local_err) { 1610 error_propagate_prepend(errp, local_err, 1611 "Could not reopen qed layer: "); 1612 return; 1613 } else if (ret < 0) { 1614 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1615 return; 1616 } 1617 } 1618 1619 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result, 1620 BdrvCheckMode fix) 1621 { 1622 BDRVQEDState *s = bs->opaque; 1623 int ret; 1624 1625 qemu_co_mutex_lock(&s->table_lock); 1626 ret = qed_check(s, result, !!fix); 1627 qemu_co_mutex_unlock(&s->table_lock); 1628 1629 return ret; 1630 } 1631 1632 static QemuOptsList qed_create_opts = { 1633 .name = "qed-create-opts", 1634 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1635 .desc = { 1636 { 1637 .name = BLOCK_OPT_SIZE, 1638 .type = QEMU_OPT_SIZE, 1639 .help = "Virtual disk size" 1640 }, 1641 { 1642 .name = BLOCK_OPT_BACKING_FILE, 1643 .type = QEMU_OPT_STRING, 1644 .help = "File name of a base image" 1645 }, 1646 { 1647 .name = BLOCK_OPT_BACKING_FMT, 1648 .type = QEMU_OPT_STRING, 1649 .help = "Image format of the base image" 1650 }, 1651 { 1652 .name = BLOCK_OPT_CLUSTER_SIZE, 1653 .type = QEMU_OPT_SIZE, 1654 .help = "Cluster size (in bytes)", 1655 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1656 }, 1657 { 1658 .name = BLOCK_OPT_TABLE_SIZE, 1659 .type = QEMU_OPT_SIZE, 1660 .help = "L1/L2 table size (in clusters)" 1661 }, 1662 { /* end of list */ } 1663 } 1664 }; 1665 1666 static BlockDriver bdrv_qed = { 1667 .format_name = "qed", 1668 .instance_size = sizeof(BDRVQEDState), 1669 .create_opts = &qed_create_opts, 1670 .supports_backing = true, 1671 1672 .bdrv_probe = bdrv_qed_probe, 1673 .bdrv_open = bdrv_qed_open, 1674 .bdrv_close = bdrv_qed_close, 1675 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1676 .bdrv_child_perm = bdrv_format_default_perms, 1677 .bdrv_co_create = bdrv_qed_co_create, 1678 .bdrv_co_create_opts = bdrv_qed_co_create_opts, 1679 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1680 .bdrv_co_block_status = bdrv_qed_co_block_status, 1681 .bdrv_co_readv = bdrv_qed_co_readv, 1682 .bdrv_co_writev = bdrv_qed_co_writev, 1683 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1684 .bdrv_co_truncate = bdrv_qed_co_truncate, 1685 .bdrv_getlength = bdrv_qed_getlength, 1686 .bdrv_get_info = bdrv_qed_get_info, 1687 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1688 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1689 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache, 1690 .bdrv_co_check = bdrv_qed_co_check, 1691 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1692 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1693 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin, 1694 }; 1695 1696 static void bdrv_qed_init(void) 1697 { 1698 bdrv_register(&bdrv_qed); 1699 } 1700 1701 block_init(bdrv_qed_init); 1702