xref: /openbmc/qemu/block/qed.c (revision 09a274d8)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
27 
28 static QemuOptsList qed_create_opts;
29 
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31                           const char *filename)
32 {
33     const QEDHeader *header = (const QEDHeader *)buf;
34 
35     if (buf_size < sizeof(*header)) {
36         return 0;
37     }
38     if (le32_to_cpu(header->magic) != QED_MAGIC) {
39         return 0;
40     }
41     return 100;
42 }
43 
44 /**
45  * Check whether an image format is raw
46  *
47  * @fmt:    Backing file format, may be NULL
48  */
49 static bool qed_fmt_is_raw(const char *fmt)
50 {
51     return fmt && strcmp(fmt, "raw") == 0;
52 }
53 
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
55 {
56     cpu->magic = le32_to_cpu(le->magic);
57     cpu->cluster_size = le32_to_cpu(le->cluster_size);
58     cpu->table_size = le32_to_cpu(le->table_size);
59     cpu->header_size = le32_to_cpu(le->header_size);
60     cpu->features = le64_to_cpu(le->features);
61     cpu->compat_features = le64_to_cpu(le->compat_features);
62     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64     cpu->image_size = le64_to_cpu(le->image_size);
65     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 }
68 
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
70 {
71     le->magic = cpu_to_le32(cpu->magic);
72     le->cluster_size = cpu_to_le32(cpu->cluster_size);
73     le->table_size = cpu_to_le32(cpu->table_size);
74     le->header_size = cpu_to_le32(cpu->header_size);
75     le->features = cpu_to_le64(cpu->features);
76     le->compat_features = cpu_to_le64(cpu->compat_features);
77     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79     le->image_size = cpu_to_le64(cpu->image_size);
80     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 }
83 
84 int qed_write_header_sync(BDRVQEDState *s)
85 {
86     QEDHeader le;
87     int ret;
88 
89     qed_header_cpu_to_le(&s->header, &le);
90     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91     if (ret != sizeof(le)) {
92         return ret;
93     }
94     return 0;
95 }
96 
97 /**
98  * Update header in-place (does not rewrite backing filename or other strings)
99  *
100  * This function only updates known header fields in-place and does not affect
101  * extra data after the QED header.
102  *
103  * No new allocating reqs can start while this function runs.
104  */
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
106 {
107     /* We must write full sectors for O_DIRECT but cannot necessarily generate
108      * the data following the header if an unrecognized compat feature is
109      * active.  Therefore, first read the sectors containing the header, update
110      * them, and write back.
111      */
112 
113     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114     size_t len = nsectors * BDRV_SECTOR_SIZE;
115     uint8_t *buf;
116     struct iovec iov;
117     QEMUIOVector qiov;
118     int ret;
119 
120     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121 
122     buf = qemu_blockalign(s->bs, len);
123     iov = (struct iovec) {
124         .iov_base = buf,
125         .iov_len = len,
126     };
127     qemu_iovec_init_external(&qiov, &iov, 1);
128 
129     ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
130     if (ret < 0) {
131         goto out;
132     }
133 
134     /* Update header */
135     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
136 
137     ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size,  &qiov, 0);
138     if (ret < 0) {
139         goto out;
140     }
141 
142     ret = 0;
143 out:
144     qemu_vfree(buf);
145     return ret;
146 }
147 
148 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
149 {
150     uint64_t table_entries;
151     uint64_t l2_size;
152 
153     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
154     l2_size = table_entries * cluster_size;
155 
156     return l2_size * table_entries;
157 }
158 
159 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
160 {
161     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
162         cluster_size > QED_MAX_CLUSTER_SIZE) {
163         return false;
164     }
165     if (cluster_size & (cluster_size - 1)) {
166         return false; /* not power of 2 */
167     }
168     return true;
169 }
170 
171 static bool qed_is_table_size_valid(uint32_t table_size)
172 {
173     if (table_size < QED_MIN_TABLE_SIZE ||
174         table_size > QED_MAX_TABLE_SIZE) {
175         return false;
176     }
177     if (table_size & (table_size - 1)) {
178         return false; /* not power of 2 */
179     }
180     return true;
181 }
182 
183 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
184                                     uint32_t table_size)
185 {
186     if (image_size % BDRV_SECTOR_SIZE != 0) {
187         return false; /* not multiple of sector size */
188     }
189     if (image_size > qed_max_image_size(cluster_size, table_size)) {
190         return false; /* image is too large */
191     }
192     return true;
193 }
194 
195 /**
196  * Read a string of known length from the image file
197  *
198  * @file:       Image file
199  * @offset:     File offset to start of string, in bytes
200  * @n:          String length in bytes
201  * @buf:        Destination buffer
202  * @buflen:     Destination buffer length in bytes
203  * @ret:        0 on success, -errno on failure
204  *
205  * The string is NUL-terminated.
206  */
207 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
208                            char *buf, size_t buflen)
209 {
210     int ret;
211     if (n >= buflen) {
212         return -EINVAL;
213     }
214     ret = bdrv_pread(file, offset, buf, n);
215     if (ret < 0) {
216         return ret;
217     }
218     buf[n] = '\0';
219     return 0;
220 }
221 
222 /**
223  * Allocate new clusters
224  *
225  * @s:          QED state
226  * @n:          Number of contiguous clusters to allocate
227  * @ret:        Offset of first allocated cluster
228  *
229  * This function only produces the offset where the new clusters should be
230  * written.  It updates BDRVQEDState but does not make any changes to the image
231  * file.
232  *
233  * Called with table_lock held.
234  */
235 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
236 {
237     uint64_t offset = s->file_size;
238     s->file_size += n * s->header.cluster_size;
239     return offset;
240 }
241 
242 QEDTable *qed_alloc_table(BDRVQEDState *s)
243 {
244     /* Honor O_DIRECT memory alignment requirements */
245     return qemu_blockalign(s->bs,
246                            s->header.cluster_size * s->header.table_size);
247 }
248 
249 /**
250  * Allocate a new zeroed L2 table
251  *
252  * Called with table_lock held.
253  */
254 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
255 {
256     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
257 
258     l2_table->table = qed_alloc_table(s);
259     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
260 
261     memset(l2_table->table->offsets, 0,
262            s->header.cluster_size * s->header.table_size);
263     return l2_table;
264 }
265 
266 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
267 {
268     qemu_co_mutex_lock(&s->table_lock);
269 
270     /* No reentrancy is allowed.  */
271     assert(!s->allocating_write_reqs_plugged);
272     if (s->allocating_acb != NULL) {
273         /* Another allocating write came concurrently.  This cannot happen
274          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
275          */
276         qemu_co_mutex_unlock(&s->table_lock);
277         return false;
278     }
279 
280     s->allocating_write_reqs_plugged = true;
281     qemu_co_mutex_unlock(&s->table_lock);
282     return true;
283 }
284 
285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
286 {
287     qemu_co_mutex_lock(&s->table_lock);
288     assert(s->allocating_write_reqs_plugged);
289     s->allocating_write_reqs_plugged = false;
290     qemu_co_queue_next(&s->allocating_write_reqs);
291     qemu_co_mutex_unlock(&s->table_lock);
292 }
293 
294 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
295 {
296     BDRVQEDState *s = opaque;
297     int ret;
298 
299     trace_qed_need_check_timer_cb(s);
300 
301     if (!qed_plug_allocating_write_reqs(s)) {
302         return;
303     }
304 
305     /* Ensure writes are on disk before clearing flag */
306     ret = bdrv_co_flush(s->bs->file->bs);
307     if (ret < 0) {
308         qed_unplug_allocating_write_reqs(s);
309         return;
310     }
311 
312     s->header.features &= ~QED_F_NEED_CHECK;
313     ret = qed_write_header(s);
314     (void) ret;
315 
316     qed_unplug_allocating_write_reqs(s);
317 
318     ret = bdrv_co_flush(s->bs);
319     (void) ret;
320 }
321 
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
325     qemu_coroutine_enter(co);
326 }
327 
328 static void qed_start_need_check_timer(BDRVQEDState *s)
329 {
330     trace_qed_start_need_check_timer(s);
331 
332     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
333      * migration.
334      */
335     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
336                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
337 }
338 
339 /* It's okay to call this multiple times or when no timer is started */
340 static void qed_cancel_need_check_timer(BDRVQEDState *s)
341 {
342     trace_qed_cancel_need_check_timer(s);
343     timer_del(s->need_check_timer);
344 }
345 
346 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
347 {
348     BDRVQEDState *s = bs->opaque;
349 
350     qed_cancel_need_check_timer(s);
351     timer_free(s->need_check_timer);
352 }
353 
354 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
355                                         AioContext *new_context)
356 {
357     BDRVQEDState *s = bs->opaque;
358 
359     s->need_check_timer = aio_timer_new(new_context,
360                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
361                                         qed_need_check_timer_cb, s);
362     if (s->header.features & QED_F_NEED_CHECK) {
363         qed_start_need_check_timer(s);
364     }
365 }
366 
367 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
368 {
369     BDRVQEDState *s = bs->opaque;
370 
371     /* Fire the timer immediately in order to start doing I/O as soon as the
372      * header is flushed.
373      */
374     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
375         qed_cancel_need_check_timer(s);
376         qed_need_check_timer_entry(s);
377     }
378 }
379 
380 static void bdrv_qed_init_state(BlockDriverState *bs)
381 {
382     BDRVQEDState *s = bs->opaque;
383 
384     memset(s, 0, sizeof(BDRVQEDState));
385     s->bs = bs;
386     qemu_co_mutex_init(&s->table_lock);
387     qemu_co_queue_init(&s->allocating_write_reqs);
388 }
389 
390 /* Called with table_lock held.  */
391 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
392                                          int flags, Error **errp)
393 {
394     BDRVQEDState *s = bs->opaque;
395     QEDHeader le_header;
396     int64_t file_size;
397     int ret;
398 
399     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
400     if (ret < 0) {
401         return ret;
402     }
403     qed_header_le_to_cpu(&le_header, &s->header);
404 
405     if (s->header.magic != QED_MAGIC) {
406         error_setg(errp, "Image not in QED format");
407         return -EINVAL;
408     }
409     if (s->header.features & ~QED_FEATURE_MASK) {
410         /* image uses unsupported feature bits */
411         error_setg(errp, "Unsupported QED features: %" PRIx64,
412                    s->header.features & ~QED_FEATURE_MASK);
413         return -ENOTSUP;
414     }
415     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
416         return -EINVAL;
417     }
418 
419     /* Round down file size to the last cluster */
420     file_size = bdrv_getlength(bs->file->bs);
421     if (file_size < 0) {
422         return file_size;
423     }
424     s->file_size = qed_start_of_cluster(s, file_size);
425 
426     if (!qed_is_table_size_valid(s->header.table_size)) {
427         return -EINVAL;
428     }
429     if (!qed_is_image_size_valid(s->header.image_size,
430                                  s->header.cluster_size,
431                                  s->header.table_size)) {
432         return -EINVAL;
433     }
434     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
435         return -EINVAL;
436     }
437 
438     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
439                       sizeof(uint64_t);
440     s->l2_shift = ctz32(s->header.cluster_size);
441     s->l2_mask = s->table_nelems - 1;
442     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
443 
444     /* Header size calculation must not overflow uint32_t */
445     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
446         return -EINVAL;
447     }
448 
449     if ((s->header.features & QED_F_BACKING_FILE)) {
450         if ((uint64_t)s->header.backing_filename_offset +
451             s->header.backing_filename_size >
452             s->header.cluster_size * s->header.header_size) {
453             return -EINVAL;
454         }
455 
456         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
457                               s->header.backing_filename_size, bs->backing_file,
458                               sizeof(bs->backing_file));
459         if (ret < 0) {
460             return ret;
461         }
462 
463         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
464             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
465         }
466     }
467 
468     /* Reset unknown autoclear feature bits.  This is a backwards
469      * compatibility mechanism that allows images to be opened by older
470      * programs, which "knock out" unknown feature bits.  When an image is
471      * opened by a newer program again it can detect that the autoclear
472      * feature is no longer valid.
473      */
474     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
475         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
476         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
477 
478         ret = qed_write_header_sync(s);
479         if (ret) {
480             return ret;
481         }
482 
483         /* From here on only known autoclear feature bits are valid */
484         bdrv_flush(bs->file->bs);
485     }
486 
487     s->l1_table = qed_alloc_table(s);
488     qed_init_l2_cache(&s->l2_cache);
489 
490     ret = qed_read_l1_table_sync(s);
491     if (ret) {
492         goto out;
493     }
494 
495     /* If image was not closed cleanly, check consistency */
496     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
497         /* Read-only images cannot be fixed.  There is no risk of corruption
498          * since write operations are not possible.  Therefore, allow
499          * potentially inconsistent images to be opened read-only.  This can
500          * aid data recovery from an otherwise inconsistent image.
501          */
502         if (!bdrv_is_read_only(bs->file->bs) &&
503             !(flags & BDRV_O_INACTIVE)) {
504             BdrvCheckResult result = {0};
505 
506             ret = qed_check(s, &result, true);
507             if (ret) {
508                 goto out;
509             }
510         }
511     }
512 
513     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
514 
515 out:
516     if (ret) {
517         qed_free_l2_cache(&s->l2_cache);
518         qemu_vfree(s->l1_table);
519     }
520     return ret;
521 }
522 
523 typedef struct QEDOpenCo {
524     BlockDriverState *bs;
525     QDict *options;
526     int flags;
527     Error **errp;
528     int ret;
529 } QEDOpenCo;
530 
531 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
532 {
533     QEDOpenCo *qoc = opaque;
534     BDRVQEDState *s = qoc->bs->opaque;
535 
536     qemu_co_mutex_lock(&s->table_lock);
537     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
538     qemu_co_mutex_unlock(&s->table_lock);
539 }
540 
541 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
542                          Error **errp)
543 {
544     QEDOpenCo qoc = {
545         .bs = bs,
546         .options = options,
547         .flags = flags,
548         .errp = errp,
549         .ret = -EINPROGRESS
550     };
551 
552     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
553                                false, errp);
554     if (!bs->file) {
555         return -EINVAL;
556     }
557 
558     bdrv_qed_init_state(bs);
559     if (qemu_in_coroutine()) {
560         bdrv_qed_open_entry(&qoc);
561     } else {
562         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
563         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
564         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
565     }
566     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
567     return qoc.ret;
568 }
569 
570 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
571 {
572     BDRVQEDState *s = bs->opaque;
573 
574     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
575 }
576 
577 /* We have nothing to do for QED reopen, stubs just return
578  * success */
579 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
580                                    BlockReopenQueue *queue, Error **errp)
581 {
582     return 0;
583 }
584 
585 static void bdrv_qed_close(BlockDriverState *bs)
586 {
587     BDRVQEDState *s = bs->opaque;
588 
589     bdrv_qed_detach_aio_context(bs);
590 
591     /* Ensure writes reach stable storage */
592     bdrv_flush(bs->file->bs);
593 
594     /* Clean shutdown, no check required on next open */
595     if (s->header.features & QED_F_NEED_CHECK) {
596         s->header.features &= ~QED_F_NEED_CHECK;
597         qed_write_header_sync(s);
598     }
599 
600     qed_free_l2_cache(&s->l2_cache);
601     qemu_vfree(s->l1_table);
602 }
603 
604 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
605                                            Error **errp)
606 {
607     BlockdevCreateOptionsQed *qed_opts;
608     BlockBackend *blk = NULL;
609     BlockDriverState *bs = NULL;
610 
611     QEDHeader header;
612     QEDHeader le_header;
613     uint8_t *l1_table = NULL;
614     size_t l1_size;
615     int ret = 0;
616 
617     assert(opts->driver == BLOCKDEV_DRIVER_QED);
618     qed_opts = &opts->u.qed;
619 
620     /* Validate options and set default values */
621     if (!qed_opts->has_cluster_size) {
622         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
623     }
624     if (!qed_opts->has_table_size) {
625         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
626     }
627 
628     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
629         error_setg(errp, "QED cluster size must be within range [%u, %u] "
630                          "and power of 2",
631                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
632         return -EINVAL;
633     }
634     if (!qed_is_table_size_valid(qed_opts->table_size)) {
635         error_setg(errp, "QED table size must be within range [%u, %u] "
636                          "and power of 2",
637                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
638         return -EINVAL;
639     }
640     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
641                                  qed_opts->table_size))
642     {
643         error_setg(errp, "QED image size must be a non-zero multiple of "
644                          "cluster size and less than %" PRIu64 " bytes",
645                    qed_max_image_size(qed_opts->cluster_size,
646                                       qed_opts->table_size));
647         return -EINVAL;
648     }
649 
650     /* Create BlockBackend to write to the image */
651     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
652     if (bs == NULL) {
653         return -EIO;
654     }
655 
656     blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
657     ret = blk_insert_bs(blk, bs, errp);
658     if (ret < 0) {
659         goto out;
660     }
661     blk_set_allow_write_beyond_eof(blk, true);
662 
663     /* Prepare image format */
664     header = (QEDHeader) {
665         .magic = QED_MAGIC,
666         .cluster_size = qed_opts->cluster_size,
667         .table_size = qed_opts->table_size,
668         .header_size = 1,
669         .features = 0,
670         .compat_features = 0,
671         .l1_table_offset = qed_opts->cluster_size,
672         .image_size = qed_opts->size,
673     };
674 
675     l1_size = header.cluster_size * header.table_size;
676 
677     /* File must start empty and grow, check truncate is supported */
678     ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
679     if (ret < 0) {
680         goto out;
681     }
682 
683     if (qed_opts->has_backing_file) {
684         header.features |= QED_F_BACKING_FILE;
685         header.backing_filename_offset = sizeof(le_header);
686         header.backing_filename_size = strlen(qed_opts->backing_file);
687 
688         if (qed_opts->has_backing_fmt) {
689             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
690             if (qed_fmt_is_raw(backing_fmt)) {
691                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
692             }
693         }
694     }
695 
696     qed_header_cpu_to_le(&header, &le_header);
697     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
698     if (ret < 0) {
699         goto out;
700     }
701     ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
702                      header.backing_filename_size, 0);
703     if (ret < 0) {
704         goto out;
705     }
706 
707     l1_table = g_malloc0(l1_size);
708     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
709     if (ret < 0) {
710         goto out;
711     }
712 
713     ret = 0; /* success */
714 out:
715     g_free(l1_table);
716     blk_unref(blk);
717     bdrv_unref(bs);
718     return ret;
719 }
720 
721 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
722                                                 QemuOpts *opts,
723                                                 Error **errp)
724 {
725     BlockdevCreateOptions *create_options = NULL;
726     QDict *qdict;
727     Visitor *v;
728     BlockDriverState *bs = NULL;
729     Error *local_err = NULL;
730     int ret;
731 
732     static const QDictRenames opt_renames[] = {
733         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
734         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
735         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
736         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
737         { NULL, NULL },
738     };
739 
740     /* Parse options and convert legacy syntax */
741     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
742 
743     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
744         ret = -EINVAL;
745         goto fail;
746     }
747 
748     /* Create and open the file (protocol layer) */
749     ret = bdrv_create_file(filename, opts, &local_err);
750     if (ret < 0) {
751         error_propagate(errp, local_err);
752         goto fail;
753     }
754 
755     bs = bdrv_open(filename, NULL, NULL,
756                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
757     if (bs == NULL) {
758         ret = -EIO;
759         goto fail;
760     }
761 
762     /* Now get the QAPI type BlockdevCreateOptions */
763     qdict_put_str(qdict, "driver", "qed");
764     qdict_put_str(qdict, "file", bs->node_name);
765 
766     v = qobject_input_visitor_new_flat_confused(qdict, errp);
767     if (!v) {
768         ret = -EINVAL;
769         goto fail;
770     }
771 
772     visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
773     visit_free(v);
774 
775     if (local_err) {
776         error_propagate(errp, local_err);
777         ret = -EINVAL;
778         goto fail;
779     }
780 
781     /* Silently round up size */
782     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
783     create_options->u.qed.size =
784         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
785 
786     /* Create the qed image (format layer) */
787     ret = bdrv_qed_co_create(create_options, errp);
788 
789 fail:
790     qobject_unref(qdict);
791     bdrv_unref(bs);
792     qapi_free_BlockdevCreateOptions(create_options);
793     return ret;
794 }
795 
796 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
797                                                  bool want_zero,
798                                                  int64_t pos, int64_t bytes,
799                                                  int64_t *pnum, int64_t *map,
800                                                  BlockDriverState **file)
801 {
802     BDRVQEDState *s = bs->opaque;
803     size_t len = MIN(bytes, SIZE_MAX);
804     int status;
805     QEDRequest request = { .l2_table = NULL };
806     uint64_t offset;
807     int ret;
808 
809     qemu_co_mutex_lock(&s->table_lock);
810     ret = qed_find_cluster(s, &request, pos, &len, &offset);
811 
812     *pnum = len;
813     switch (ret) {
814     case QED_CLUSTER_FOUND:
815         *map = offset | qed_offset_into_cluster(s, pos);
816         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
817         *file = bs->file->bs;
818         break;
819     case QED_CLUSTER_ZERO:
820         status = BDRV_BLOCK_ZERO;
821         break;
822     case QED_CLUSTER_L2:
823     case QED_CLUSTER_L1:
824         status = 0;
825         break;
826     default:
827         assert(ret < 0);
828         status = ret;
829         break;
830     }
831 
832     qed_unref_l2_cache_entry(request.l2_table);
833     qemu_co_mutex_unlock(&s->table_lock);
834 
835     return status;
836 }
837 
838 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
839 {
840     return acb->bs->opaque;
841 }
842 
843 /**
844  * Read from the backing file or zero-fill if no backing file
845  *
846  * @s:              QED state
847  * @pos:            Byte position in device
848  * @qiov:           Destination I/O vector
849  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
850  * @cb:             Completion function
851  * @opaque:         User data for completion function
852  *
853  * This function reads qiov->size bytes starting at pos from the backing file.
854  * If there is no backing file then zeroes are read.
855  */
856 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
857                                               QEMUIOVector *qiov,
858                                               QEMUIOVector **backing_qiov)
859 {
860     uint64_t backing_length = 0;
861     size_t size;
862     int ret;
863 
864     /* If there is a backing file, get its length.  Treat the absence of a
865      * backing file like a zero length backing file.
866      */
867     if (s->bs->backing) {
868         int64_t l = bdrv_getlength(s->bs->backing->bs);
869         if (l < 0) {
870             return l;
871         }
872         backing_length = l;
873     }
874 
875     /* Zero all sectors if reading beyond the end of the backing file */
876     if (pos >= backing_length ||
877         pos + qiov->size > backing_length) {
878         qemu_iovec_memset(qiov, 0, 0, qiov->size);
879     }
880 
881     /* Complete now if there are no backing file sectors to read */
882     if (pos >= backing_length) {
883         return 0;
884     }
885 
886     /* If the read straddles the end of the backing file, shorten it */
887     size = MIN((uint64_t)backing_length - pos, qiov->size);
888 
889     assert(*backing_qiov == NULL);
890     *backing_qiov = g_new(QEMUIOVector, 1);
891     qemu_iovec_init(*backing_qiov, qiov->niov);
892     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
893 
894     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
895     ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
896     if (ret < 0) {
897         return ret;
898     }
899     return 0;
900 }
901 
902 /**
903  * Copy data from backing file into the image
904  *
905  * @s:          QED state
906  * @pos:        Byte position in device
907  * @len:        Number of bytes
908  * @offset:     Byte offset in image file
909  */
910 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
911                                                    uint64_t pos, uint64_t len,
912                                                    uint64_t offset)
913 {
914     QEMUIOVector qiov;
915     QEMUIOVector *backing_qiov = NULL;
916     struct iovec iov;
917     int ret;
918 
919     /* Skip copy entirely if there is no work to do */
920     if (len == 0) {
921         return 0;
922     }
923 
924     iov = (struct iovec) {
925         .iov_base = qemu_blockalign(s->bs, len),
926         .iov_len = len,
927     };
928     qemu_iovec_init_external(&qiov, &iov, 1);
929 
930     ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
931 
932     if (backing_qiov) {
933         qemu_iovec_destroy(backing_qiov);
934         g_free(backing_qiov);
935         backing_qiov = NULL;
936     }
937 
938     if (ret) {
939         goto out;
940     }
941 
942     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
943     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
944     if (ret < 0) {
945         goto out;
946     }
947     ret = 0;
948 out:
949     qemu_vfree(iov.iov_base);
950     return ret;
951 }
952 
953 /**
954  * Link one or more contiguous clusters into a table
955  *
956  * @s:              QED state
957  * @table:          L2 table
958  * @index:          First cluster index
959  * @n:              Number of contiguous clusters
960  * @cluster:        First cluster offset
961  *
962  * The cluster offset may be an allocated byte offset in the image file, the
963  * zero cluster marker, or the unallocated cluster marker.
964  *
965  * Called with table_lock held.
966  */
967 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
968                                              int index, unsigned int n,
969                                              uint64_t cluster)
970 {
971     int i;
972     for (i = index; i < index + n; i++) {
973         table->offsets[i] = cluster;
974         if (!qed_offset_is_unalloc_cluster(cluster) &&
975             !qed_offset_is_zero_cluster(cluster)) {
976             cluster += s->header.cluster_size;
977         }
978     }
979 }
980 
981 /* Called with table_lock held.  */
982 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
983 {
984     BDRVQEDState *s = acb_to_s(acb);
985 
986     /* Free resources */
987     qemu_iovec_destroy(&acb->cur_qiov);
988     qed_unref_l2_cache_entry(acb->request.l2_table);
989 
990     /* Free the buffer we may have allocated for zero writes */
991     if (acb->flags & QED_AIOCB_ZERO) {
992         qemu_vfree(acb->qiov->iov[0].iov_base);
993         acb->qiov->iov[0].iov_base = NULL;
994     }
995 
996     /* Start next allocating write request waiting behind this one.  Note that
997      * requests enqueue themselves when they first hit an unallocated cluster
998      * but they wait until the entire request is finished before waking up the
999      * next request in the queue.  This ensures that we don't cycle through
1000      * requests multiple times but rather finish one at a time completely.
1001      */
1002     if (acb == s->allocating_acb) {
1003         s->allocating_acb = NULL;
1004         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
1005             qemu_co_queue_next(&s->allocating_write_reqs);
1006         } else if (s->header.features & QED_F_NEED_CHECK) {
1007             qed_start_need_check_timer(s);
1008         }
1009     }
1010 }
1011 
1012 /**
1013  * Update L1 table with new L2 table offset and write it out
1014  *
1015  * Called with table_lock held.
1016  */
1017 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1018 {
1019     BDRVQEDState *s = acb_to_s(acb);
1020     CachedL2Table *l2_table = acb->request.l2_table;
1021     uint64_t l2_offset = l2_table->offset;
1022     int index, ret;
1023 
1024     index = qed_l1_index(s, acb->cur_pos);
1025     s->l1_table->offsets[index] = l2_table->offset;
1026 
1027     ret = qed_write_l1_table(s, index, 1);
1028 
1029     /* Commit the current L2 table to the cache */
1030     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1031 
1032     /* This is guaranteed to succeed because we just committed the entry to the
1033      * cache.
1034      */
1035     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1036     assert(acb->request.l2_table != NULL);
1037 
1038     return ret;
1039 }
1040 
1041 
1042 /**
1043  * Update L2 table with new cluster offsets and write them out
1044  *
1045  * Called with table_lock held.
1046  */
1047 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1048 {
1049     BDRVQEDState *s = acb_to_s(acb);
1050     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1051     int index, ret;
1052 
1053     if (need_alloc) {
1054         qed_unref_l2_cache_entry(acb->request.l2_table);
1055         acb->request.l2_table = qed_new_l2_table(s);
1056     }
1057 
1058     index = qed_l2_index(s, acb->cur_pos);
1059     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1060                          offset);
1061 
1062     if (need_alloc) {
1063         /* Write out the whole new L2 table */
1064         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1065         if (ret) {
1066             return ret;
1067         }
1068         return qed_aio_write_l1_update(acb);
1069     } else {
1070         /* Write out only the updated part of the L2 table */
1071         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1072                                  false);
1073         if (ret) {
1074             return ret;
1075         }
1076     }
1077     return 0;
1078 }
1079 
1080 /**
1081  * Write data to the image file
1082  *
1083  * Called with table_lock *not* held.
1084  */
1085 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1086 {
1087     BDRVQEDState *s = acb_to_s(acb);
1088     uint64_t offset = acb->cur_cluster +
1089                       qed_offset_into_cluster(s, acb->cur_pos);
1090 
1091     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1092 
1093     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1094     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1095                            &acb->cur_qiov, 0);
1096 }
1097 
1098 /**
1099  * Populate untouched regions of new data cluster
1100  *
1101  * Called with table_lock held.
1102  */
1103 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1104 {
1105     BDRVQEDState *s = acb_to_s(acb);
1106     uint64_t start, len, offset;
1107     int ret;
1108 
1109     qemu_co_mutex_unlock(&s->table_lock);
1110 
1111     /* Populate front untouched region of new data cluster */
1112     start = qed_start_of_cluster(s, acb->cur_pos);
1113     len = qed_offset_into_cluster(s, acb->cur_pos);
1114 
1115     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1116     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1117     if (ret < 0) {
1118         goto out;
1119     }
1120 
1121     /* Populate back untouched region of new data cluster */
1122     start = acb->cur_pos + acb->cur_qiov.size;
1123     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1124     offset = acb->cur_cluster +
1125              qed_offset_into_cluster(s, acb->cur_pos) +
1126              acb->cur_qiov.size;
1127 
1128     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1129     ret = qed_copy_from_backing_file(s, start, len, offset);
1130     if (ret < 0) {
1131         goto out;
1132     }
1133 
1134     ret = qed_aio_write_main(acb);
1135     if (ret < 0) {
1136         goto out;
1137     }
1138 
1139     if (s->bs->backing) {
1140         /*
1141          * Flush new data clusters before updating the L2 table
1142          *
1143          * This flush is necessary when a backing file is in use.  A crash
1144          * during an allocating write could result in empty clusters in the
1145          * image.  If the write only touched a subregion of the cluster,
1146          * then backing image sectors have been lost in the untouched
1147          * region.  The solution is to flush after writing a new data
1148          * cluster and before updating the L2 table.
1149          */
1150         ret = bdrv_co_flush(s->bs->file->bs);
1151     }
1152 
1153 out:
1154     qemu_co_mutex_lock(&s->table_lock);
1155     return ret;
1156 }
1157 
1158 /**
1159  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1160  */
1161 static bool qed_should_set_need_check(BDRVQEDState *s)
1162 {
1163     /* The flush before L2 update path ensures consistency */
1164     if (s->bs->backing) {
1165         return false;
1166     }
1167 
1168     return !(s->header.features & QED_F_NEED_CHECK);
1169 }
1170 
1171 /**
1172  * Write new data cluster
1173  *
1174  * @acb:        Write request
1175  * @len:        Length in bytes
1176  *
1177  * This path is taken when writing to previously unallocated clusters.
1178  *
1179  * Called with table_lock held.
1180  */
1181 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1182 {
1183     BDRVQEDState *s = acb_to_s(acb);
1184     int ret;
1185 
1186     /* Cancel timer when the first allocating request comes in */
1187     if (s->allocating_acb == NULL) {
1188         qed_cancel_need_check_timer(s);
1189     }
1190 
1191     /* Freeze this request if another allocating write is in progress */
1192     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1193         if (s->allocating_acb != NULL) {
1194             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1195             assert(s->allocating_acb == NULL);
1196         }
1197         s->allocating_acb = acb;
1198         return -EAGAIN; /* start over with looking up table entries */
1199     }
1200 
1201     acb->cur_nclusters = qed_bytes_to_clusters(s,
1202             qed_offset_into_cluster(s, acb->cur_pos) + len);
1203     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1204 
1205     if (acb->flags & QED_AIOCB_ZERO) {
1206         /* Skip ahead if the clusters are already zero */
1207         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1208             return 0;
1209         }
1210         acb->cur_cluster = 1;
1211     } else {
1212         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1213     }
1214 
1215     if (qed_should_set_need_check(s)) {
1216         s->header.features |= QED_F_NEED_CHECK;
1217         ret = qed_write_header(s);
1218         if (ret < 0) {
1219             return ret;
1220         }
1221     }
1222 
1223     if (!(acb->flags & QED_AIOCB_ZERO)) {
1224         ret = qed_aio_write_cow(acb);
1225         if (ret < 0) {
1226             return ret;
1227         }
1228     }
1229 
1230     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1231 }
1232 
1233 /**
1234  * Write data cluster in place
1235  *
1236  * @acb:        Write request
1237  * @offset:     Cluster offset in bytes
1238  * @len:        Length in bytes
1239  *
1240  * This path is taken when writing to already allocated clusters.
1241  *
1242  * Called with table_lock held.
1243  */
1244 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1245                                               size_t len)
1246 {
1247     BDRVQEDState *s = acb_to_s(acb);
1248     int r;
1249 
1250     qemu_co_mutex_unlock(&s->table_lock);
1251 
1252     /* Allocate buffer for zero writes */
1253     if (acb->flags & QED_AIOCB_ZERO) {
1254         struct iovec *iov = acb->qiov->iov;
1255 
1256         if (!iov->iov_base) {
1257             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1258             if (iov->iov_base == NULL) {
1259                 r = -ENOMEM;
1260                 goto out;
1261             }
1262             memset(iov->iov_base, 0, iov->iov_len);
1263         }
1264     }
1265 
1266     /* Calculate the I/O vector */
1267     acb->cur_cluster = offset;
1268     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1269 
1270     /* Do the actual write.  */
1271     r = qed_aio_write_main(acb);
1272 out:
1273     qemu_co_mutex_lock(&s->table_lock);
1274     return r;
1275 }
1276 
1277 /**
1278  * Write data cluster
1279  *
1280  * @opaque:     Write request
1281  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1282  * @offset:     Cluster offset in bytes
1283  * @len:        Length in bytes
1284  *
1285  * Called with table_lock held.
1286  */
1287 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1288                                            uint64_t offset, size_t len)
1289 {
1290     QEDAIOCB *acb = opaque;
1291 
1292     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1293 
1294     acb->find_cluster_ret = ret;
1295 
1296     switch (ret) {
1297     case QED_CLUSTER_FOUND:
1298         return qed_aio_write_inplace(acb, offset, len);
1299 
1300     case QED_CLUSTER_L2:
1301     case QED_CLUSTER_L1:
1302     case QED_CLUSTER_ZERO:
1303         return qed_aio_write_alloc(acb, len);
1304 
1305     default:
1306         g_assert_not_reached();
1307     }
1308 }
1309 
1310 /**
1311  * Read data cluster
1312  *
1313  * @opaque:     Read request
1314  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1315  * @offset:     Cluster offset in bytes
1316  * @len:        Length in bytes
1317  *
1318  * Called with table_lock held.
1319  */
1320 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1321                                           uint64_t offset, size_t len)
1322 {
1323     QEDAIOCB *acb = opaque;
1324     BDRVQEDState *s = acb_to_s(acb);
1325     BlockDriverState *bs = acb->bs;
1326     int r;
1327 
1328     qemu_co_mutex_unlock(&s->table_lock);
1329 
1330     /* Adjust offset into cluster */
1331     offset += qed_offset_into_cluster(s, acb->cur_pos);
1332 
1333     trace_qed_aio_read_data(s, acb, ret, offset, len);
1334 
1335     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1336 
1337     /* Handle zero cluster and backing file reads, otherwise read
1338      * data cluster directly.
1339      */
1340     if (ret == QED_CLUSTER_ZERO) {
1341         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1342         r = 0;
1343     } else if (ret != QED_CLUSTER_FOUND) {
1344         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1345                                   &acb->backing_qiov);
1346     } else {
1347         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1348         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1349                            &acb->cur_qiov, 0);
1350     }
1351 
1352     qemu_co_mutex_lock(&s->table_lock);
1353     return r;
1354 }
1355 
1356 /**
1357  * Begin next I/O or complete the request
1358  */
1359 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1360 {
1361     BDRVQEDState *s = acb_to_s(acb);
1362     uint64_t offset;
1363     size_t len;
1364     int ret;
1365 
1366     qemu_co_mutex_lock(&s->table_lock);
1367     while (1) {
1368         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1369 
1370         if (acb->backing_qiov) {
1371             qemu_iovec_destroy(acb->backing_qiov);
1372             g_free(acb->backing_qiov);
1373             acb->backing_qiov = NULL;
1374         }
1375 
1376         acb->qiov_offset += acb->cur_qiov.size;
1377         acb->cur_pos += acb->cur_qiov.size;
1378         qemu_iovec_reset(&acb->cur_qiov);
1379 
1380         /* Complete request */
1381         if (acb->cur_pos >= acb->end_pos) {
1382             ret = 0;
1383             break;
1384         }
1385 
1386         /* Find next cluster and start I/O */
1387         len = acb->end_pos - acb->cur_pos;
1388         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1389         if (ret < 0) {
1390             break;
1391         }
1392 
1393         if (acb->flags & QED_AIOCB_WRITE) {
1394             ret = qed_aio_write_data(acb, ret, offset, len);
1395         } else {
1396             ret = qed_aio_read_data(acb, ret, offset, len);
1397         }
1398 
1399         if (ret < 0 && ret != -EAGAIN) {
1400             break;
1401         }
1402     }
1403 
1404     trace_qed_aio_complete(s, acb, ret);
1405     qed_aio_complete(acb);
1406     qemu_co_mutex_unlock(&s->table_lock);
1407     return ret;
1408 }
1409 
1410 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1411                                        QEMUIOVector *qiov, int nb_sectors,
1412                                        int flags)
1413 {
1414     QEDAIOCB acb = {
1415         .bs         = bs,
1416         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1417         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1418         .qiov       = qiov,
1419         .flags      = flags,
1420     };
1421     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1422 
1423     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1424 
1425     /* Start request */
1426     return qed_aio_next_io(&acb);
1427 }
1428 
1429 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1430                                           int64_t sector_num, int nb_sectors,
1431                                           QEMUIOVector *qiov)
1432 {
1433     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1434 }
1435 
1436 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1437                                            int64_t sector_num, int nb_sectors,
1438                                            QEMUIOVector *qiov, int flags)
1439 {
1440     assert(!flags);
1441     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1442 }
1443 
1444 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1445                                                   int64_t offset,
1446                                                   int bytes,
1447                                                   BdrvRequestFlags flags)
1448 {
1449     BDRVQEDState *s = bs->opaque;
1450     QEMUIOVector qiov;
1451     struct iovec iov;
1452 
1453     /* Fall back if the request is not aligned */
1454     if (qed_offset_into_cluster(s, offset) ||
1455         qed_offset_into_cluster(s, bytes)) {
1456         return -ENOTSUP;
1457     }
1458 
1459     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1460      * then it will be allocated during request processing.
1461      */
1462     iov.iov_base = NULL;
1463     iov.iov_len = bytes;
1464 
1465     qemu_iovec_init_external(&qiov, &iov, 1);
1466     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1467                           bytes >> BDRV_SECTOR_BITS,
1468                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1469 }
1470 
1471 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1472                                              int64_t offset,
1473                                              PreallocMode prealloc,
1474                                              Error **errp)
1475 {
1476     BDRVQEDState *s = bs->opaque;
1477     uint64_t old_image_size;
1478     int ret;
1479 
1480     if (prealloc != PREALLOC_MODE_OFF) {
1481         error_setg(errp, "Unsupported preallocation mode '%s'",
1482                    PreallocMode_str(prealloc));
1483         return -ENOTSUP;
1484     }
1485 
1486     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1487                                  s->header.table_size)) {
1488         error_setg(errp, "Invalid image size specified");
1489         return -EINVAL;
1490     }
1491 
1492     if ((uint64_t)offset < s->header.image_size) {
1493         error_setg(errp, "Shrinking images is currently not supported");
1494         return -ENOTSUP;
1495     }
1496 
1497     old_image_size = s->header.image_size;
1498     s->header.image_size = offset;
1499     ret = qed_write_header_sync(s);
1500     if (ret < 0) {
1501         s->header.image_size = old_image_size;
1502         error_setg_errno(errp, -ret, "Failed to update the image size");
1503     }
1504     return ret;
1505 }
1506 
1507 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1508 {
1509     BDRVQEDState *s = bs->opaque;
1510     return s->header.image_size;
1511 }
1512 
1513 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1514 {
1515     BDRVQEDState *s = bs->opaque;
1516 
1517     memset(bdi, 0, sizeof(*bdi));
1518     bdi->cluster_size = s->header.cluster_size;
1519     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1520     bdi->unallocated_blocks_are_zero = true;
1521     return 0;
1522 }
1523 
1524 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1525                                         const char *backing_file,
1526                                         const char *backing_fmt)
1527 {
1528     BDRVQEDState *s = bs->opaque;
1529     QEDHeader new_header, le_header;
1530     void *buffer;
1531     size_t buffer_len, backing_file_len;
1532     int ret;
1533 
1534     /* Refuse to set backing filename if unknown compat feature bits are
1535      * active.  If the image uses an unknown compat feature then we may not
1536      * know the layout of data following the header structure and cannot safely
1537      * add a new string.
1538      */
1539     if (backing_file && (s->header.compat_features &
1540                          ~QED_COMPAT_FEATURE_MASK)) {
1541         return -ENOTSUP;
1542     }
1543 
1544     memcpy(&new_header, &s->header, sizeof(new_header));
1545 
1546     new_header.features &= ~(QED_F_BACKING_FILE |
1547                              QED_F_BACKING_FORMAT_NO_PROBE);
1548 
1549     /* Adjust feature flags */
1550     if (backing_file) {
1551         new_header.features |= QED_F_BACKING_FILE;
1552 
1553         if (qed_fmt_is_raw(backing_fmt)) {
1554             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1555         }
1556     }
1557 
1558     /* Calculate new header size */
1559     backing_file_len = 0;
1560 
1561     if (backing_file) {
1562         backing_file_len = strlen(backing_file);
1563     }
1564 
1565     buffer_len = sizeof(new_header);
1566     new_header.backing_filename_offset = buffer_len;
1567     new_header.backing_filename_size = backing_file_len;
1568     buffer_len += backing_file_len;
1569 
1570     /* Make sure we can rewrite header without failing */
1571     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1572         return -ENOSPC;
1573     }
1574 
1575     /* Prepare new header */
1576     buffer = g_malloc(buffer_len);
1577 
1578     qed_header_cpu_to_le(&new_header, &le_header);
1579     memcpy(buffer, &le_header, sizeof(le_header));
1580     buffer_len = sizeof(le_header);
1581 
1582     if (backing_file) {
1583         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1584         buffer_len += backing_file_len;
1585     }
1586 
1587     /* Write new header */
1588     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1589     g_free(buffer);
1590     if (ret == 0) {
1591         memcpy(&s->header, &new_header, sizeof(new_header));
1592     }
1593     return ret;
1594 }
1595 
1596 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1597                                                       Error **errp)
1598 {
1599     BDRVQEDState *s = bs->opaque;
1600     Error *local_err = NULL;
1601     int ret;
1602 
1603     bdrv_qed_close(bs);
1604 
1605     bdrv_qed_init_state(bs);
1606     qemu_co_mutex_lock(&s->table_lock);
1607     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1608     qemu_co_mutex_unlock(&s->table_lock);
1609     if (local_err) {
1610         error_propagate_prepend(errp, local_err,
1611                                 "Could not reopen qed layer: ");
1612         return;
1613     } else if (ret < 0) {
1614         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1615         return;
1616     }
1617 }
1618 
1619 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1620                              BdrvCheckMode fix)
1621 {
1622     BDRVQEDState *s = bs->opaque;
1623     int ret;
1624 
1625     qemu_co_mutex_lock(&s->table_lock);
1626     ret = qed_check(s, result, !!fix);
1627     qemu_co_mutex_unlock(&s->table_lock);
1628 
1629     return ret;
1630 }
1631 
1632 static QemuOptsList qed_create_opts = {
1633     .name = "qed-create-opts",
1634     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1635     .desc = {
1636         {
1637             .name = BLOCK_OPT_SIZE,
1638             .type = QEMU_OPT_SIZE,
1639             .help = "Virtual disk size"
1640         },
1641         {
1642             .name = BLOCK_OPT_BACKING_FILE,
1643             .type = QEMU_OPT_STRING,
1644             .help = "File name of a base image"
1645         },
1646         {
1647             .name = BLOCK_OPT_BACKING_FMT,
1648             .type = QEMU_OPT_STRING,
1649             .help = "Image format of the base image"
1650         },
1651         {
1652             .name = BLOCK_OPT_CLUSTER_SIZE,
1653             .type = QEMU_OPT_SIZE,
1654             .help = "Cluster size (in bytes)",
1655             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1656         },
1657         {
1658             .name = BLOCK_OPT_TABLE_SIZE,
1659             .type = QEMU_OPT_SIZE,
1660             .help = "L1/L2 table size (in clusters)"
1661         },
1662         { /* end of list */ }
1663     }
1664 };
1665 
1666 static BlockDriver bdrv_qed = {
1667     .format_name              = "qed",
1668     .instance_size            = sizeof(BDRVQEDState),
1669     .create_opts              = &qed_create_opts,
1670     .supports_backing         = true,
1671 
1672     .bdrv_probe               = bdrv_qed_probe,
1673     .bdrv_open                = bdrv_qed_open,
1674     .bdrv_close               = bdrv_qed_close,
1675     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1676     .bdrv_child_perm          = bdrv_format_default_perms,
1677     .bdrv_co_create           = bdrv_qed_co_create,
1678     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1679     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1680     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1681     .bdrv_co_readv            = bdrv_qed_co_readv,
1682     .bdrv_co_writev           = bdrv_qed_co_writev,
1683     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1684     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1685     .bdrv_getlength           = bdrv_qed_getlength,
1686     .bdrv_get_info            = bdrv_qed_get_info,
1687     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1688     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1689     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1690     .bdrv_co_check            = bdrv_qed_co_check,
1691     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1692     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1693     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1694 };
1695 
1696 static void bdrv_qed_init(void)
1697 {
1698     bdrv_register(&bdrv_qed);
1699 }
1700 
1701 block_init(bdrv_qed_init);
1702