1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace/trace-root.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 104 105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 107 } 108 } 109 110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 111 { 112 /* Discard jump cache entries for any tb which might potentially 113 overlap the flushed page. */ 114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 115 tb_jmp_cache_clear_page(cpu, addr); 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->iotlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->iotlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->iotlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->iotlb = g_new(CPUIOTLBEntry, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->iotlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 cpu_tb_jmp_cache_clear(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 target_ulong page, target_ulong mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 442 target_ulong page) 443 { 444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 445 } 446 447 /** 448 * tlb_entry_is_empty - return true if the entry is not in use 449 * @te: pointer to CPUTLBEntry 450 */ 451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 452 { 453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 454 } 455 456 /* Called with tlb_c.lock held */ 457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 458 target_ulong page, 459 target_ulong mask) 460 { 461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 462 memset(tlb_entry, -1, sizeof(*tlb_entry)); 463 return true; 464 } 465 return false; 466 } 467 468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 469 target_ulong page) 470 { 471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 472 } 473 474 /* Called with tlb_c.lock held */ 475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 476 target_ulong page, 477 target_ulong mask) 478 { 479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 480 int k; 481 482 assert_cpu_is_self(env_cpu(env)); 483 for (k = 0; k < CPU_VTLB_SIZE; k++) { 484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 485 tlb_n_used_entries_dec(env, mmu_idx); 486 } 487 } 488 } 489 490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 491 target_ulong page) 492 { 493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 494 } 495 496 static void tlb_flush_page_locked(CPUArchState *env, int midx, 497 target_ulong page) 498 { 499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 501 502 /* Check if we need to flush due to large pages. */ 503 if ((page & lp_mask) == lp_addr) { 504 tlb_debug("forcing full flush midx %d (" 505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 506 midx, lp_addr, lp_mask); 507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 508 } else { 509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 510 tlb_n_used_entries_dec(env, midx); 511 } 512 tlb_flush_vtlb_page_locked(env, midx, page); 513 } 514 } 515 516 /** 517 * tlb_flush_page_by_mmuidx_async_0: 518 * @cpu: cpu on which to flush 519 * @addr: page of virtual address to flush 520 * @idxmap: set of mmu_idx to flush 521 * 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 523 * at @addr from the tlbs indicated by @idxmap from @cpu. 524 */ 525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 526 target_ulong addr, 527 uint16_t idxmap) 528 { 529 CPUArchState *env = cpu->env_ptr; 530 int mmu_idx; 531 532 assert_cpu_is_self(cpu); 533 534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 535 536 qemu_spin_lock(&env_tlb(env)->c.lock); 537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 538 if ((idxmap >> mmu_idx) & 1) { 539 tlb_flush_page_locked(env, mmu_idx, addr); 540 } 541 } 542 qemu_spin_unlock(&env_tlb(env)->c.lock); 543 544 tb_flush_jmp_cache(cpu, addr); 545 } 546 547 /** 548 * tlb_flush_page_by_mmuidx_async_1: 549 * @cpu: cpu on which to flush 550 * @data: encoded addr + idxmap 551 * 552 * Helper for tlb_flush_page_by_mmuidx and friends, called through 553 * async_run_on_cpu. The idxmap parameter is encoded in the page 554 * offset of the target_ptr field. This limits the set of mmu_idx 555 * that can be passed via this method. 556 */ 557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 558 run_on_cpu_data data) 559 { 560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 563 564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 565 } 566 567 typedef struct { 568 target_ulong addr; 569 uint16_t idxmap; 570 } TLBFlushPageByMMUIdxData; 571 572 /** 573 * tlb_flush_page_by_mmuidx_async_2: 574 * @cpu: cpu on which to flush 575 * @data: allocated addr + idxmap 576 * 577 * Helper for tlb_flush_page_by_mmuidx and friends, called through 578 * async_run_on_cpu. The addr+idxmap parameters are stored in a 579 * TLBFlushPageByMMUIdxData structure that has been allocated 580 * specifically for this helper. Free the structure when done. 581 */ 582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 583 run_on_cpu_data data) 584 { 585 TLBFlushPageByMMUIdxData *d = data.host_ptr; 586 587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 588 g_free(d); 589 } 590 591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 592 { 593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 594 595 /* This should already be page aligned */ 596 addr &= TARGET_PAGE_MASK; 597 598 if (qemu_cpu_is_self(cpu)) { 599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 600 } else if (idxmap < TARGET_PAGE_SIZE) { 601 /* 602 * Most targets have only a few mmu_idx. In the case where 603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 604 * allocating memory for this operation. 605 */ 606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 607 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 608 } else { 609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 610 611 /* Otherwise allocate a structure, freed by the worker. */ 612 d->addr = addr; 613 d->idxmap = idxmap; 614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 615 RUN_ON_CPU_HOST_PTR(d)); 616 } 617 } 618 619 void tlb_flush_page(CPUState *cpu, target_ulong addr) 620 { 621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 622 } 623 624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 625 uint16_t idxmap) 626 { 627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 628 629 /* This should already be page aligned */ 630 addr &= TARGET_PAGE_MASK; 631 632 /* 633 * Allocate memory to hold addr+idxmap only when needed. 634 * See tlb_flush_page_by_mmuidx for details. 635 */ 636 if (idxmap < TARGET_PAGE_SIZE) { 637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 638 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 639 } else { 640 CPUState *dst_cpu; 641 642 /* Allocate a separate data block for each destination cpu. */ 643 CPU_FOREACH(dst_cpu) { 644 if (dst_cpu != src_cpu) { 645 TLBFlushPageByMMUIdxData *d 646 = g_new(TLBFlushPageByMMUIdxData, 1); 647 648 d->addr = addr; 649 d->idxmap = idxmap; 650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 651 RUN_ON_CPU_HOST_PTR(d)); 652 } 653 } 654 } 655 656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 657 } 658 659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 660 { 661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 662 } 663 664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 665 target_ulong addr, 666 uint16_t idxmap) 667 { 668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 669 670 /* This should already be page aligned */ 671 addr &= TARGET_PAGE_MASK; 672 673 /* 674 * Allocate memory to hold addr+idxmap only when needed. 675 * See tlb_flush_page_by_mmuidx for details. 676 */ 677 if (idxmap < TARGET_PAGE_SIZE) { 678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 679 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 } else { 683 CPUState *dst_cpu; 684 TLBFlushPageByMMUIdxData *d; 685 686 /* Allocate a separate data block for each destination cpu. */ 687 CPU_FOREACH(dst_cpu) { 688 if (dst_cpu != src_cpu) { 689 d = g_new(TLBFlushPageByMMUIdxData, 1); 690 d->addr = addr; 691 d->idxmap = idxmap; 692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 693 RUN_ON_CPU_HOST_PTR(d)); 694 } 695 } 696 697 d = g_new(TLBFlushPageByMMUIdxData, 1); 698 d->addr = addr; 699 d->idxmap = idxmap; 700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 701 RUN_ON_CPU_HOST_PTR(d)); 702 } 703 } 704 705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 706 { 707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 708 } 709 710 static void tlb_flush_range_locked(CPUArchState *env, int midx, 711 target_ulong addr, target_ulong len, 712 unsigned bits) 713 { 714 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 715 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 716 target_ulong mask = MAKE_64BIT_MASK(0, bits); 717 718 /* 719 * If @bits is smaller than the tlb size, there may be multiple entries 720 * within the TLB; otherwise all addresses that match under @mask hit 721 * the same TLB entry. 722 * TODO: Perhaps allow bits to be a few bits less than the size. 723 * For now, just flush the entire TLB. 724 * 725 * If @len is larger than the tlb size, then it will take longer to 726 * test all of the entries in the TLB than it will to flush it all. 727 */ 728 if (mask < f->mask || len > f->mask) { 729 tlb_debug("forcing full flush midx %d (" 730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 731 midx, addr, mask, len); 732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 733 return; 734 } 735 736 /* 737 * Check if we need to flush due to large pages. 738 * Because large_page_mask contains all 1's from the msb, 739 * we only need to test the end of the range. 740 */ 741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 742 tlb_debug("forcing full flush midx %d (" 743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 744 midx, d->large_page_addr, d->large_page_mask); 745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 746 return; 747 } 748 749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 750 target_ulong page = addr + i; 751 CPUTLBEntry *entry = tlb_entry(env, midx, page); 752 753 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 754 tlb_n_used_entries_dec(env, midx); 755 } 756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 757 } 758 } 759 760 typedef struct { 761 target_ulong addr; 762 target_ulong len; 763 uint16_t idxmap; 764 uint16_t bits; 765 } TLBFlushRangeData; 766 767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 768 TLBFlushRangeData d) 769 { 770 CPUArchState *env = cpu->env_ptr; 771 int mmu_idx; 772 773 assert_cpu_is_self(cpu); 774 775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 776 d.addr, d.bits, d.len, d.idxmap); 777 778 qemu_spin_lock(&env_tlb(env)->c.lock); 779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 780 if ((d.idxmap >> mmu_idx) & 1) { 781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 782 } 783 } 784 qemu_spin_unlock(&env_tlb(env)->c.lock); 785 786 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { 787 tb_flush_jmp_cache(cpu, d.addr + i); 788 } 789 } 790 791 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 792 run_on_cpu_data data) 793 { 794 TLBFlushRangeData *d = data.host_ptr; 795 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 796 g_free(d); 797 } 798 799 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 800 target_ulong len, uint16_t idxmap, 801 unsigned bits) 802 { 803 TLBFlushRangeData d; 804 805 /* 806 * If all bits are significant, and len is small, 807 * this devolves to tlb_flush_page. 808 */ 809 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 810 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 811 return; 812 } 813 /* If no page bits are significant, this devolves to tlb_flush. */ 814 if (bits < TARGET_PAGE_BITS) { 815 tlb_flush_by_mmuidx(cpu, idxmap); 816 return; 817 } 818 819 /* This should already be page aligned */ 820 d.addr = addr & TARGET_PAGE_MASK; 821 d.len = len; 822 d.idxmap = idxmap; 823 d.bits = bits; 824 825 if (qemu_cpu_is_self(cpu)) { 826 tlb_flush_range_by_mmuidx_async_0(cpu, d); 827 } else { 828 /* Otherwise allocate a structure, freed by the worker. */ 829 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 830 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 831 RUN_ON_CPU_HOST_PTR(p)); 832 } 833 } 834 835 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 836 uint16_t idxmap, unsigned bits) 837 { 838 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 839 } 840 841 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 842 target_ulong addr, target_ulong len, 843 uint16_t idxmap, unsigned bits) 844 { 845 TLBFlushRangeData d; 846 CPUState *dst_cpu; 847 848 /* 849 * If all bits are significant, and len is small, 850 * this devolves to tlb_flush_page. 851 */ 852 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 853 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 854 return; 855 } 856 /* If no page bits are significant, this devolves to tlb_flush. */ 857 if (bits < TARGET_PAGE_BITS) { 858 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 859 return; 860 } 861 862 /* This should already be page aligned */ 863 d.addr = addr & TARGET_PAGE_MASK; 864 d.len = len; 865 d.idxmap = idxmap; 866 d.bits = bits; 867 868 /* Allocate a separate data block for each destination cpu. */ 869 CPU_FOREACH(dst_cpu) { 870 if (dst_cpu != src_cpu) { 871 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 872 async_run_on_cpu(dst_cpu, 873 tlb_flush_range_by_mmuidx_async_1, 874 RUN_ON_CPU_HOST_PTR(p)); 875 } 876 } 877 878 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 879 } 880 881 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 882 target_ulong addr, 883 uint16_t idxmap, unsigned bits) 884 { 885 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 886 idxmap, bits); 887 } 888 889 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 890 target_ulong addr, 891 target_ulong len, 892 uint16_t idxmap, 893 unsigned bits) 894 { 895 TLBFlushRangeData d, *p; 896 CPUState *dst_cpu; 897 898 /* 899 * If all bits are significant, and len is small, 900 * this devolves to tlb_flush_page. 901 */ 902 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 903 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 904 return; 905 } 906 /* If no page bits are significant, this devolves to tlb_flush. */ 907 if (bits < TARGET_PAGE_BITS) { 908 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 909 return; 910 } 911 912 /* This should already be page aligned */ 913 d.addr = addr & TARGET_PAGE_MASK; 914 d.len = len; 915 d.idxmap = idxmap; 916 d.bits = bits; 917 918 /* Allocate a separate data block for each destination cpu. */ 919 CPU_FOREACH(dst_cpu) { 920 if (dst_cpu != src_cpu) { 921 p = g_memdup(&d, sizeof(d)); 922 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 923 RUN_ON_CPU_HOST_PTR(p)); 924 } 925 } 926 927 p = g_memdup(&d, sizeof(d)); 928 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 929 RUN_ON_CPU_HOST_PTR(p)); 930 } 931 932 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 933 target_ulong addr, 934 uint16_t idxmap, 935 unsigned bits) 936 { 937 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 938 idxmap, bits); 939 } 940 941 /* update the TLBs so that writes to code in the virtual page 'addr' 942 can be detected */ 943 void tlb_protect_code(ram_addr_t ram_addr) 944 { 945 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 946 DIRTY_MEMORY_CODE); 947 } 948 949 /* update the TLB so that writes in physical page 'phys_addr' are no longer 950 tested for self modifying code */ 951 void tlb_unprotect_code(ram_addr_t ram_addr) 952 { 953 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 954 } 955 956 957 /* 958 * Dirty write flag handling 959 * 960 * When the TCG code writes to a location it looks up the address in 961 * the TLB and uses that data to compute the final address. If any of 962 * the lower bits of the address are set then the slow path is forced. 963 * There are a number of reasons to do this but for normal RAM the 964 * most usual is detecting writes to code regions which may invalidate 965 * generated code. 966 * 967 * Other vCPUs might be reading their TLBs during guest execution, so we update 968 * te->addr_write with qatomic_set. We don't need to worry about this for 969 * oversized guests as MTTCG is disabled for them. 970 * 971 * Called with tlb_c.lock held. 972 */ 973 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 974 uintptr_t start, uintptr_t length) 975 { 976 uintptr_t addr = tlb_entry->addr_write; 977 978 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 979 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 980 addr &= TARGET_PAGE_MASK; 981 addr += tlb_entry->addend; 982 if ((addr - start) < length) { 983 #if TCG_OVERSIZED_GUEST 984 tlb_entry->addr_write |= TLB_NOTDIRTY; 985 #else 986 qatomic_set(&tlb_entry->addr_write, 987 tlb_entry->addr_write | TLB_NOTDIRTY); 988 #endif 989 } 990 } 991 } 992 993 /* 994 * Called with tlb_c.lock held. 995 * Called only from the vCPU context, i.e. the TLB's owner thread. 996 */ 997 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 998 { 999 *d = *s; 1000 } 1001 1002 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1003 * the target vCPU). 1004 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1005 * thing actually updated is the target TLB entry ->addr_write flags. 1006 */ 1007 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1008 { 1009 CPUArchState *env; 1010 1011 int mmu_idx; 1012 1013 env = cpu->env_ptr; 1014 qemu_spin_lock(&env_tlb(env)->c.lock); 1015 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1016 unsigned int i; 1017 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1018 1019 for (i = 0; i < n; i++) { 1020 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1021 start1, length); 1022 } 1023 1024 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1025 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1026 start1, length); 1027 } 1028 } 1029 qemu_spin_unlock(&env_tlb(env)->c.lock); 1030 } 1031 1032 /* Called with tlb_c.lock held */ 1033 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1034 target_ulong vaddr) 1035 { 1036 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1037 tlb_entry->addr_write = vaddr; 1038 } 1039 } 1040 1041 /* update the TLB corresponding to virtual page vaddr 1042 so that it is no longer dirty */ 1043 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1044 { 1045 CPUArchState *env = cpu->env_ptr; 1046 int mmu_idx; 1047 1048 assert_cpu_is_self(cpu); 1049 1050 vaddr &= TARGET_PAGE_MASK; 1051 qemu_spin_lock(&env_tlb(env)->c.lock); 1052 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1053 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1054 } 1055 1056 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1057 int k; 1058 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1059 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1060 } 1061 } 1062 qemu_spin_unlock(&env_tlb(env)->c.lock); 1063 } 1064 1065 /* Our TLB does not support large pages, so remember the area covered by 1066 large pages and trigger a full TLB flush if these are invalidated. */ 1067 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1068 target_ulong vaddr, target_ulong size) 1069 { 1070 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1071 target_ulong lp_mask = ~(size - 1); 1072 1073 if (lp_addr == (target_ulong)-1) { 1074 /* No previous large page. */ 1075 lp_addr = vaddr; 1076 } else { 1077 /* Extend the existing region to include the new page. 1078 This is a compromise between unnecessary flushes and 1079 the cost of maintaining a full variable size TLB. */ 1080 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1081 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1082 lp_mask <<= 1; 1083 } 1084 } 1085 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1086 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1087 } 1088 1089 /* Add a new TLB entry. At most one entry for a given virtual address 1090 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1091 * supplied size is only used by tlb_flush_page. 1092 * 1093 * Called from TCG-generated code, which is under an RCU read-side 1094 * critical section. 1095 */ 1096 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1097 hwaddr paddr, MemTxAttrs attrs, int prot, 1098 int mmu_idx, target_ulong size) 1099 { 1100 CPUArchState *env = cpu->env_ptr; 1101 CPUTLB *tlb = env_tlb(env); 1102 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1103 MemoryRegionSection *section; 1104 unsigned int index; 1105 target_ulong address; 1106 target_ulong write_address; 1107 uintptr_t addend; 1108 CPUTLBEntry *te, tn; 1109 hwaddr iotlb, xlat, sz, paddr_page; 1110 target_ulong vaddr_page; 1111 int asidx = cpu_asidx_from_attrs(cpu, attrs); 1112 int wp_flags; 1113 bool is_ram, is_romd; 1114 1115 assert_cpu_is_self(cpu); 1116 1117 if (size <= TARGET_PAGE_SIZE) { 1118 sz = TARGET_PAGE_SIZE; 1119 } else { 1120 tlb_add_large_page(env, mmu_idx, vaddr, size); 1121 sz = size; 1122 } 1123 vaddr_page = vaddr & TARGET_PAGE_MASK; 1124 paddr_page = paddr & TARGET_PAGE_MASK; 1125 1126 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1127 &xlat, &sz, attrs, &prot); 1128 assert(sz >= TARGET_PAGE_SIZE); 1129 1130 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 1131 " prot=%x idx=%d\n", 1132 vaddr, paddr, prot, mmu_idx); 1133 1134 address = vaddr_page; 1135 if (size < TARGET_PAGE_SIZE) { 1136 /* Repeat the MMU check and TLB fill on every access. */ 1137 address |= TLB_INVALID_MASK; 1138 } 1139 if (attrs.byte_swap) { 1140 address |= TLB_BSWAP; 1141 } 1142 1143 is_ram = memory_region_is_ram(section->mr); 1144 is_romd = memory_region_is_romd(section->mr); 1145 1146 if (is_ram || is_romd) { 1147 /* RAM and ROMD both have associated host memory. */ 1148 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1149 } else { 1150 /* I/O does not; force the host address to NULL. */ 1151 addend = 0; 1152 } 1153 1154 write_address = address; 1155 if (is_ram) { 1156 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1157 /* 1158 * Computing is_clean is expensive; avoid all that unless 1159 * the page is actually writable. 1160 */ 1161 if (prot & PAGE_WRITE) { 1162 if (section->readonly) { 1163 write_address |= TLB_DISCARD_WRITE; 1164 } else if (cpu_physical_memory_is_clean(iotlb)) { 1165 write_address |= TLB_NOTDIRTY; 1166 } 1167 } 1168 } else { 1169 /* I/O or ROMD */ 1170 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1171 /* 1172 * Writes to romd devices must go through MMIO to enable write. 1173 * Reads to romd devices go through the ram_ptr found above, 1174 * but of course reads to I/O must go through MMIO. 1175 */ 1176 write_address |= TLB_MMIO; 1177 if (!is_romd) { 1178 address = write_address; 1179 } 1180 } 1181 1182 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1183 TARGET_PAGE_SIZE); 1184 1185 index = tlb_index(env, mmu_idx, vaddr_page); 1186 te = tlb_entry(env, mmu_idx, vaddr_page); 1187 1188 /* 1189 * Hold the TLB lock for the rest of the function. We could acquire/release 1190 * the lock several times in the function, but it is faster to amortize the 1191 * acquisition cost by acquiring it just once. Note that this leads to 1192 * a longer critical section, but this is not a concern since the TLB lock 1193 * is unlikely to be contended. 1194 */ 1195 qemu_spin_lock(&tlb->c.lock); 1196 1197 /* Note that the tlb is no longer clean. */ 1198 tlb->c.dirty |= 1 << mmu_idx; 1199 1200 /* Make sure there's no cached translation for the new page. */ 1201 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1202 1203 /* 1204 * Only evict the old entry to the victim tlb if it's for a 1205 * different page; otherwise just overwrite the stale data. 1206 */ 1207 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1208 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1209 CPUTLBEntry *tv = &desc->vtable[vidx]; 1210 1211 /* Evict the old entry into the victim tlb. */ 1212 copy_tlb_helper_locked(tv, te); 1213 desc->viotlb[vidx] = desc->iotlb[index]; 1214 tlb_n_used_entries_dec(env, mmu_idx); 1215 } 1216 1217 /* refill the tlb */ 1218 /* 1219 * At this point iotlb contains a physical section number in the lower 1220 * TARGET_PAGE_BITS, and either 1221 * + the ram_addr_t of the page base of the target RAM (RAM) 1222 * + the offset within section->mr of the page base (I/O, ROMD) 1223 * We subtract the vaddr_page (which is page aligned and thus won't 1224 * disturb the low bits) to give an offset which can be added to the 1225 * (non-page-aligned) vaddr of the eventual memory access to get 1226 * the MemoryRegion offset for the access. Note that the vaddr we 1227 * subtract here is that of the page base, and not the same as the 1228 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1229 */ 1230 desc->iotlb[index].addr = iotlb - vaddr_page; 1231 desc->iotlb[index].attrs = attrs; 1232 1233 /* Now calculate the new entry */ 1234 tn.addend = addend - vaddr_page; 1235 if (prot & PAGE_READ) { 1236 tn.addr_read = address; 1237 if (wp_flags & BP_MEM_READ) { 1238 tn.addr_read |= TLB_WATCHPOINT; 1239 } 1240 } else { 1241 tn.addr_read = -1; 1242 } 1243 1244 if (prot & PAGE_EXEC) { 1245 tn.addr_code = address; 1246 } else { 1247 tn.addr_code = -1; 1248 } 1249 1250 tn.addr_write = -1; 1251 if (prot & PAGE_WRITE) { 1252 tn.addr_write = write_address; 1253 if (prot & PAGE_WRITE_INV) { 1254 tn.addr_write |= TLB_INVALID_MASK; 1255 } 1256 if (wp_flags & BP_MEM_WRITE) { 1257 tn.addr_write |= TLB_WATCHPOINT; 1258 } 1259 } 1260 1261 copy_tlb_helper_locked(te, &tn); 1262 tlb_n_used_entries_inc(env, mmu_idx); 1263 qemu_spin_unlock(&tlb->c.lock); 1264 } 1265 1266 /* Add a new TLB entry, but without specifying the memory 1267 * transaction attributes to be used. 1268 */ 1269 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1270 hwaddr paddr, int prot, 1271 int mmu_idx, target_ulong size) 1272 { 1273 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1274 prot, mmu_idx, size); 1275 } 1276 1277 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 1278 { 1279 ram_addr_t ram_addr; 1280 1281 ram_addr = qemu_ram_addr_from_host(ptr); 1282 if (ram_addr == RAM_ADDR_INVALID) { 1283 error_report("Bad ram pointer %p", ptr); 1284 abort(); 1285 } 1286 return ram_addr; 1287 } 1288 1289 /* 1290 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1291 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1292 * be discarded and looked up again (e.g. via tlb_entry()). 1293 */ 1294 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1295 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1296 { 1297 CPUClass *cc = CPU_GET_CLASS(cpu); 1298 bool ok; 1299 1300 /* 1301 * This is not a probe, so only valid return is success; failure 1302 * should result in exception + longjmp to the cpu loop. 1303 */ 1304 ok = cc->tcg_ops->tlb_fill(cpu, addr, size, 1305 access_type, mmu_idx, false, retaddr); 1306 assert(ok); 1307 } 1308 1309 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1310 MMUAccessType access_type, 1311 int mmu_idx, uintptr_t retaddr) 1312 { 1313 CPUClass *cc = CPU_GET_CLASS(cpu); 1314 1315 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 1316 } 1317 1318 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1319 vaddr addr, unsigned size, 1320 MMUAccessType access_type, 1321 int mmu_idx, MemTxAttrs attrs, 1322 MemTxResult response, 1323 uintptr_t retaddr) 1324 { 1325 CPUClass *cc = CPU_GET_CLASS(cpu); 1326 1327 if (!cpu->ignore_memory_transaction_failures && 1328 cc->tcg_ops->do_transaction_failed) { 1329 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1330 access_type, mmu_idx, attrs, 1331 response, retaddr); 1332 } 1333 } 1334 1335 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1336 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1337 MMUAccessType access_type, MemOp op) 1338 { 1339 CPUState *cpu = env_cpu(env); 1340 hwaddr mr_offset; 1341 MemoryRegionSection *section; 1342 MemoryRegion *mr; 1343 uint64_t val; 1344 bool locked = false; 1345 MemTxResult r; 1346 1347 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1348 mr = section->mr; 1349 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1350 cpu->mem_io_pc = retaddr; 1351 if (!cpu->can_do_io) { 1352 cpu_io_recompile(cpu, retaddr); 1353 } 1354 1355 if (!qemu_mutex_iothread_locked()) { 1356 qemu_mutex_lock_iothread(); 1357 locked = true; 1358 } 1359 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); 1360 if (r != MEMTX_OK) { 1361 hwaddr physaddr = mr_offset + 1362 section->offset_within_address_space - 1363 section->offset_within_region; 1364 1365 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1366 mmu_idx, iotlbentry->attrs, r, retaddr); 1367 } 1368 if (locked) { 1369 qemu_mutex_unlock_iothread(); 1370 } 1371 1372 return val; 1373 } 1374 1375 /* 1376 * Save a potentially trashed IOTLB entry for later lookup by plugin. 1377 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match 1378 * because of the side effect of io_writex changing memory layout. 1379 */ 1380 static void save_iotlb_data(CPUState *cs, hwaddr addr, 1381 MemoryRegionSection *section, hwaddr mr_offset) 1382 { 1383 #ifdef CONFIG_PLUGIN 1384 SavedIOTLB *saved = &cs->saved_iotlb; 1385 saved->addr = addr; 1386 saved->section = section; 1387 saved->mr_offset = mr_offset; 1388 #endif 1389 } 1390 1391 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 1392 int mmu_idx, uint64_t val, target_ulong addr, 1393 uintptr_t retaddr, MemOp op) 1394 { 1395 CPUState *cpu = env_cpu(env); 1396 hwaddr mr_offset; 1397 MemoryRegionSection *section; 1398 MemoryRegion *mr; 1399 bool locked = false; 1400 MemTxResult r; 1401 1402 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1403 mr = section->mr; 1404 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1405 if (!cpu->can_do_io) { 1406 cpu_io_recompile(cpu, retaddr); 1407 } 1408 cpu->mem_io_pc = retaddr; 1409 1410 /* 1411 * The memory_region_dispatch may trigger a flush/resize 1412 * so for plugins we save the iotlb_data just in case. 1413 */ 1414 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset); 1415 1416 if (!qemu_mutex_iothread_locked()) { 1417 qemu_mutex_lock_iothread(); 1418 locked = true; 1419 } 1420 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); 1421 if (r != MEMTX_OK) { 1422 hwaddr physaddr = mr_offset + 1423 section->offset_within_address_space - 1424 section->offset_within_region; 1425 1426 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1427 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, 1428 retaddr); 1429 } 1430 if (locked) { 1431 qemu_mutex_unlock_iothread(); 1432 } 1433 } 1434 1435 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1436 { 1437 #if TCG_OVERSIZED_GUEST 1438 return *(target_ulong *)((uintptr_t)entry + ofs); 1439 #else 1440 /* ofs might correspond to .addr_write, so use qatomic_read */ 1441 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1442 #endif 1443 } 1444 1445 /* Return true if ADDR is present in the victim tlb, and has been copied 1446 back to the main tlb. */ 1447 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1448 size_t elt_ofs, target_ulong page) 1449 { 1450 size_t vidx; 1451 1452 assert_cpu_is_self(env_cpu(env)); 1453 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1454 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1455 target_ulong cmp; 1456 1457 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1458 #if TCG_OVERSIZED_GUEST 1459 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1460 #else 1461 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1462 #endif 1463 1464 if (cmp == page) { 1465 /* Found entry in victim tlb, swap tlb and iotlb. */ 1466 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1467 1468 qemu_spin_lock(&env_tlb(env)->c.lock); 1469 copy_tlb_helper_locked(&tmptlb, tlb); 1470 copy_tlb_helper_locked(tlb, vtlb); 1471 copy_tlb_helper_locked(vtlb, &tmptlb); 1472 qemu_spin_unlock(&env_tlb(env)->c.lock); 1473 1474 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1475 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; 1476 tmpio = *io; *io = *vio; *vio = tmpio; 1477 return true; 1478 } 1479 } 1480 return false; 1481 } 1482 1483 /* Macro to call the above, with local variables from the use context. */ 1484 #define VICTIM_TLB_HIT(TY, ADDR) \ 1485 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1486 (ADDR) & TARGET_PAGE_MASK) 1487 1488 /* 1489 * Return a ram_addr_t for the virtual address for execution. 1490 * 1491 * Return -1 if we can't translate and execute from an entire page 1492 * of RAM. This will force us to execute by loading and translating 1493 * one insn at a time, without caching. 1494 * 1495 * NOTE: This function will trigger an exception if the page is 1496 * not executable. 1497 */ 1498 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1499 void **hostp) 1500 { 1501 uintptr_t mmu_idx = cpu_mmu_index(env, true); 1502 uintptr_t index = tlb_index(env, mmu_idx, addr); 1503 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1504 void *p; 1505 1506 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 1507 if (!VICTIM_TLB_HIT(addr_code, addr)) { 1508 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 1509 index = tlb_index(env, mmu_idx, addr); 1510 entry = tlb_entry(env, mmu_idx, addr); 1511 1512 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) { 1513 /* 1514 * The MMU protection covers a smaller range than a target 1515 * page, so we must redo the MMU check for every insn. 1516 */ 1517 return -1; 1518 } 1519 } 1520 assert(tlb_hit(entry->addr_code, addr)); 1521 } 1522 1523 if (unlikely(entry->addr_code & TLB_MMIO)) { 1524 /* The region is not backed by RAM. */ 1525 if (hostp) { 1526 *hostp = NULL; 1527 } 1528 return -1; 1529 } 1530 1531 p = (void *)((uintptr_t)addr + entry->addend); 1532 if (hostp) { 1533 *hostp = p; 1534 } 1535 return qemu_ram_addr_from_host_nofail(p); 1536 } 1537 1538 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 1539 { 1540 return get_page_addr_code_hostp(env, addr, NULL); 1541 } 1542 1543 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1544 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr) 1545 { 1546 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr; 1547 1548 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1549 1550 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1551 struct page_collection *pages 1552 = page_collection_lock(ram_addr, ram_addr + size); 1553 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); 1554 page_collection_unlock(pages); 1555 } 1556 1557 /* 1558 * Set both VGA and migration bits for simplicity and to remove 1559 * the notdirty callback faster. 1560 */ 1561 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1562 1563 /* We remove the notdirty callback only if the code has been flushed. */ 1564 if (!cpu_physical_memory_is_clean(ram_addr)) { 1565 trace_memory_notdirty_set_dirty(mem_vaddr); 1566 tlb_set_dirty(cpu, mem_vaddr); 1567 } 1568 } 1569 1570 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1571 int fault_size, MMUAccessType access_type, 1572 int mmu_idx, bool nonfault, 1573 void **phost, uintptr_t retaddr) 1574 { 1575 uintptr_t index = tlb_index(env, mmu_idx, addr); 1576 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1577 target_ulong tlb_addr, page_addr; 1578 size_t elt_ofs; 1579 int flags; 1580 1581 switch (access_type) { 1582 case MMU_DATA_LOAD: 1583 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1584 break; 1585 case MMU_DATA_STORE: 1586 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1587 break; 1588 case MMU_INST_FETCH: 1589 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1590 break; 1591 default: 1592 g_assert_not_reached(); 1593 } 1594 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1595 1596 page_addr = addr & TARGET_PAGE_MASK; 1597 if (!tlb_hit_page(tlb_addr, page_addr)) { 1598 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1599 CPUState *cs = env_cpu(env); 1600 CPUClass *cc = CPU_GET_CLASS(cs); 1601 1602 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1603 mmu_idx, nonfault, retaddr)) { 1604 /* Non-faulting page table read failed. */ 1605 *phost = NULL; 1606 return TLB_INVALID_MASK; 1607 } 1608 1609 /* TLB resize via tlb_fill may have moved the entry. */ 1610 entry = tlb_entry(env, mmu_idx, addr); 1611 } 1612 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1613 } 1614 flags = tlb_addr & TLB_FLAGS_MASK; 1615 1616 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1617 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1618 *phost = NULL; 1619 return TLB_MMIO; 1620 } 1621 1622 /* Everything else is RAM. */ 1623 *phost = (void *)((uintptr_t)addr + entry->addend); 1624 return flags; 1625 } 1626 1627 int probe_access_flags(CPUArchState *env, target_ulong addr, 1628 MMUAccessType access_type, int mmu_idx, 1629 bool nonfault, void **phost, uintptr_t retaddr) 1630 { 1631 int flags; 1632 1633 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, 1634 nonfault, phost, retaddr); 1635 1636 /* Handle clean RAM pages. */ 1637 if (unlikely(flags & TLB_NOTDIRTY)) { 1638 uintptr_t index = tlb_index(env, mmu_idx, addr); 1639 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1640 1641 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1642 flags &= ~TLB_NOTDIRTY; 1643 } 1644 1645 return flags; 1646 } 1647 1648 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1649 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1650 { 1651 void *host; 1652 int flags; 1653 1654 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1655 1656 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1657 false, &host, retaddr); 1658 1659 /* Per the interface, size == 0 merely faults the access. */ 1660 if (size == 0) { 1661 return NULL; 1662 } 1663 1664 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1665 uintptr_t index = tlb_index(env, mmu_idx, addr); 1666 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1667 1668 /* Handle watchpoints. */ 1669 if (flags & TLB_WATCHPOINT) { 1670 int wp_access = (access_type == MMU_DATA_STORE 1671 ? BP_MEM_WRITE : BP_MEM_READ); 1672 cpu_check_watchpoint(env_cpu(env), addr, size, 1673 iotlbentry->attrs, wp_access, retaddr); 1674 } 1675 1676 /* Handle clean RAM pages. */ 1677 if (flags & TLB_NOTDIRTY) { 1678 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); 1679 } 1680 } 1681 1682 return host; 1683 } 1684 1685 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1686 MMUAccessType access_type, int mmu_idx) 1687 { 1688 void *host; 1689 int flags; 1690 1691 flags = probe_access_internal(env, addr, 0, access_type, 1692 mmu_idx, true, &host, 0); 1693 1694 /* No combination of flags are expected by the caller. */ 1695 return flags ? NULL : host; 1696 } 1697 1698 #ifdef CONFIG_PLUGIN 1699 /* 1700 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1701 * This should be a hot path as we will have just looked this path up 1702 * in the softmmu lookup code (or helper). We don't handle re-fills or 1703 * checking the victim table. This is purely informational. 1704 * 1705 * This almost never fails as the memory access being instrumented 1706 * should have just filled the TLB. The one corner case is io_writex 1707 * which can cause TLB flushes and potential resizing of the TLBs 1708 * losing the information we need. In those cases we need to recover 1709 * data from a copy of the iotlbentry. As long as this always occurs 1710 * from the same thread (which a mem callback will be) this is safe. 1711 */ 1712 1713 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1714 bool is_store, struct qemu_plugin_hwaddr *data) 1715 { 1716 CPUArchState *env = cpu->env_ptr; 1717 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1718 uintptr_t index = tlb_index(env, mmu_idx, addr); 1719 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1720 1721 if (likely(tlb_hit(tlb_addr, addr))) { 1722 /* We must have an iotlb entry for MMIO */ 1723 if (tlb_addr & TLB_MMIO) { 1724 CPUIOTLBEntry *iotlbentry; 1725 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1726 data->is_io = true; 1727 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 1728 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 1729 } else { 1730 data->is_io = false; 1731 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1732 } 1733 return true; 1734 } else { 1735 SavedIOTLB *saved = &cpu->saved_iotlb; 1736 data->is_io = true; 1737 data->v.io.section = saved->section; 1738 data->v.io.offset = saved->mr_offset; 1739 return true; 1740 } 1741 } 1742 1743 #endif 1744 1745 /* 1746 * Probe for an atomic operation. Do not allow unaligned operations, 1747 * or io operations to proceed. Return the host address. 1748 * 1749 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1750 */ 1751 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1752 MemOpIdx oi, int size, int prot, 1753 uintptr_t retaddr) 1754 { 1755 size_t mmu_idx = get_mmuidx(oi); 1756 MemOp mop = get_memop(oi); 1757 int a_bits = get_alignment_bits(mop); 1758 uintptr_t index; 1759 CPUTLBEntry *tlbe; 1760 target_ulong tlb_addr; 1761 void *hostaddr; 1762 1763 /* Adjust the given return address. */ 1764 retaddr -= GETPC_ADJ; 1765 1766 /* Enforce guest required alignment. */ 1767 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1768 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1769 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1770 mmu_idx, retaddr); 1771 } 1772 1773 /* Enforce qemu required alignment. */ 1774 if (unlikely(addr & (size - 1))) { 1775 /* We get here if guest alignment was not requested, 1776 or was not enforced by cpu_unaligned_access above. 1777 We might widen the access and emulate, but for now 1778 mark an exception and exit the cpu loop. */ 1779 goto stop_the_world; 1780 } 1781 1782 index = tlb_index(env, mmu_idx, addr); 1783 tlbe = tlb_entry(env, mmu_idx, addr); 1784 1785 /* Check TLB entry and enforce page permissions. */ 1786 if (prot & PAGE_WRITE) { 1787 tlb_addr = tlb_addr_write(tlbe); 1788 if (!tlb_hit(tlb_addr, addr)) { 1789 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1790 tlb_fill(env_cpu(env), addr, size, 1791 MMU_DATA_STORE, mmu_idx, retaddr); 1792 index = tlb_index(env, mmu_idx, addr); 1793 tlbe = tlb_entry(env, mmu_idx, addr); 1794 } 1795 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1796 } 1797 1798 /* Let the guest notice RMW on a write-only page. */ 1799 if ((prot & PAGE_READ) && 1800 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1801 tlb_fill(env_cpu(env), addr, size, 1802 MMU_DATA_LOAD, mmu_idx, retaddr); 1803 /* 1804 * Since we don't support reads and writes to different addresses, 1805 * and we do have the proper page loaded for write, this shouldn't 1806 * ever return. But just in case, handle via stop-the-world. 1807 */ 1808 goto stop_the_world; 1809 } 1810 } else /* if (prot & PAGE_READ) */ { 1811 tlb_addr = tlbe->addr_read; 1812 if (!tlb_hit(tlb_addr, addr)) { 1813 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1814 tlb_fill(env_cpu(env), addr, size, 1815 MMU_DATA_LOAD, mmu_idx, retaddr); 1816 index = tlb_index(env, mmu_idx, addr); 1817 tlbe = tlb_entry(env, mmu_idx, addr); 1818 } 1819 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1820 } 1821 } 1822 1823 /* Notice an IO access or a needs-MMU-lookup access */ 1824 if (unlikely(tlb_addr & TLB_MMIO)) { 1825 /* There's really nothing that can be done to 1826 support this apart from stop-the-world. */ 1827 goto stop_the_world; 1828 } 1829 1830 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1831 1832 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1833 notdirty_write(env_cpu(env), addr, size, 1834 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr); 1835 } 1836 1837 return hostaddr; 1838 1839 stop_the_world: 1840 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1841 } 1842 1843 /* 1844 * Verify that we have passed the correct MemOp to the correct function. 1845 * 1846 * In the case of the helper_*_mmu functions, we will have done this by 1847 * using the MemOp to look up the helper during code generation. 1848 * 1849 * In the case of the cpu_*_mmu functions, this is up to the caller. 1850 * We could present one function to target code, and dispatch based on 1851 * the MemOp, but so far we have worked hard to avoid an indirect function 1852 * call along the memory path. 1853 */ 1854 static void validate_memop(MemOpIdx oi, MemOp expected) 1855 { 1856 #ifdef CONFIG_DEBUG_TCG 1857 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 1858 assert(have == expected); 1859 #endif 1860 } 1861 1862 /* 1863 * Load Helpers 1864 * 1865 * We support two different access types. SOFTMMU_CODE_ACCESS is 1866 * specifically for reading instructions from system memory. It is 1867 * called by the translation loop and in some helpers where the code 1868 * is disassembled. It shouldn't be called directly by guest code. 1869 */ 1870 1871 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1872 MemOpIdx oi, uintptr_t retaddr); 1873 1874 static inline uint64_t QEMU_ALWAYS_INLINE 1875 load_memop(const void *haddr, MemOp op) 1876 { 1877 switch (op) { 1878 case MO_UB: 1879 return ldub_p(haddr); 1880 case MO_BEUW: 1881 return lduw_be_p(haddr); 1882 case MO_LEUW: 1883 return lduw_le_p(haddr); 1884 case MO_BEUL: 1885 return (uint32_t)ldl_be_p(haddr); 1886 case MO_LEUL: 1887 return (uint32_t)ldl_le_p(haddr); 1888 case MO_BEUQ: 1889 return ldq_be_p(haddr); 1890 case MO_LEUQ: 1891 return ldq_le_p(haddr); 1892 default: 1893 qemu_build_not_reached(); 1894 } 1895 } 1896 1897 static inline uint64_t QEMU_ALWAYS_INLINE 1898 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1899 uintptr_t retaddr, MemOp op, bool code_read, 1900 FullLoadHelper *full_load) 1901 { 1902 uintptr_t mmu_idx = get_mmuidx(oi); 1903 uintptr_t index = tlb_index(env, mmu_idx, addr); 1904 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1905 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1906 const size_t tlb_off = code_read ? 1907 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1908 const MMUAccessType access_type = 1909 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1910 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1911 void *haddr; 1912 uint64_t res; 1913 size_t size = memop_size(op); 1914 1915 /* Handle CPU specific unaligned behaviour */ 1916 if (addr & ((1 << a_bits) - 1)) { 1917 cpu_unaligned_access(env_cpu(env), addr, access_type, 1918 mmu_idx, retaddr); 1919 } 1920 1921 /* If the TLB entry is for a different page, reload and try again. */ 1922 if (!tlb_hit(tlb_addr, addr)) { 1923 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1924 addr & TARGET_PAGE_MASK)) { 1925 tlb_fill(env_cpu(env), addr, size, 1926 access_type, mmu_idx, retaddr); 1927 index = tlb_index(env, mmu_idx, addr); 1928 entry = tlb_entry(env, mmu_idx, addr); 1929 } 1930 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1931 tlb_addr &= ~TLB_INVALID_MASK; 1932 } 1933 1934 /* Handle anything that isn't just a straight memory access. */ 1935 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1936 CPUIOTLBEntry *iotlbentry; 1937 bool need_swap; 1938 1939 /* For anything that is unaligned, recurse through full_load. */ 1940 if ((addr & (size - 1)) != 0) { 1941 goto do_unaligned_access; 1942 } 1943 1944 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 1945 1946 /* Handle watchpoints. */ 1947 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1948 /* On watchpoint hit, this will longjmp out. */ 1949 cpu_check_watchpoint(env_cpu(env), addr, size, 1950 iotlbentry->attrs, BP_MEM_READ, retaddr); 1951 } 1952 1953 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1954 1955 /* Handle I/O access. */ 1956 if (likely(tlb_addr & TLB_MMIO)) { 1957 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, 1958 access_type, op ^ (need_swap * MO_BSWAP)); 1959 } 1960 1961 haddr = (void *)((uintptr_t)addr + entry->addend); 1962 1963 /* 1964 * Keep these two load_memop separate to ensure that the compiler 1965 * is able to fold the entire function to a single instruction. 1966 * There is a build-time assert inside to remind you of this. ;-) 1967 */ 1968 if (unlikely(need_swap)) { 1969 return load_memop(haddr, op ^ MO_BSWAP); 1970 } 1971 return load_memop(haddr, op); 1972 } 1973 1974 /* Handle slow unaligned access (it spans two pages or IO). */ 1975 if (size > 1 1976 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1977 >= TARGET_PAGE_SIZE)) { 1978 target_ulong addr1, addr2; 1979 uint64_t r1, r2; 1980 unsigned shift; 1981 do_unaligned_access: 1982 addr1 = addr & ~((target_ulong)size - 1); 1983 addr2 = addr1 + size; 1984 r1 = full_load(env, addr1, oi, retaddr); 1985 r2 = full_load(env, addr2, oi, retaddr); 1986 shift = (addr & (size - 1)) * 8; 1987 1988 if (memop_big_endian(op)) { 1989 /* Big-endian combine. */ 1990 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1991 } else { 1992 /* Little-endian combine. */ 1993 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1994 } 1995 return res & MAKE_64BIT_MASK(0, size * 8); 1996 } 1997 1998 haddr = (void *)((uintptr_t)addr + entry->addend); 1999 return load_memop(haddr, op); 2000 } 2001 2002 /* 2003 * For the benefit of TCG generated code, we want to avoid the 2004 * complication of ABI-specific return type promotion and always 2005 * return a value extended to the register size of the host. This is 2006 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2007 * data, and for that we always have uint64_t. 2008 * 2009 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2010 */ 2011 2012 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 2013 MemOpIdx oi, uintptr_t retaddr) 2014 { 2015 validate_memop(oi, MO_UB); 2016 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 2017 } 2018 2019 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 2020 MemOpIdx oi, uintptr_t retaddr) 2021 { 2022 return full_ldub_mmu(env, addr, oi, retaddr); 2023 } 2024 2025 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2026 MemOpIdx oi, uintptr_t retaddr) 2027 { 2028 validate_memop(oi, MO_LEUW); 2029 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2030 full_le_lduw_mmu); 2031 } 2032 2033 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2034 MemOpIdx oi, uintptr_t retaddr) 2035 { 2036 return full_le_lduw_mmu(env, addr, oi, retaddr); 2037 } 2038 2039 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2040 MemOpIdx oi, uintptr_t retaddr) 2041 { 2042 validate_memop(oi, MO_BEUW); 2043 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2044 full_be_lduw_mmu); 2045 } 2046 2047 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2048 MemOpIdx oi, uintptr_t retaddr) 2049 { 2050 return full_be_lduw_mmu(env, addr, oi, retaddr); 2051 } 2052 2053 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2054 MemOpIdx oi, uintptr_t retaddr) 2055 { 2056 validate_memop(oi, MO_LEUL); 2057 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2058 full_le_ldul_mmu); 2059 } 2060 2061 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2062 MemOpIdx oi, uintptr_t retaddr) 2063 { 2064 return full_le_ldul_mmu(env, addr, oi, retaddr); 2065 } 2066 2067 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2068 MemOpIdx oi, uintptr_t retaddr) 2069 { 2070 validate_memop(oi, MO_BEUL); 2071 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2072 full_be_ldul_mmu); 2073 } 2074 2075 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2076 MemOpIdx oi, uintptr_t retaddr) 2077 { 2078 return full_be_ldul_mmu(env, addr, oi, retaddr); 2079 } 2080 2081 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2082 MemOpIdx oi, uintptr_t retaddr) 2083 { 2084 validate_memop(oi, MO_LEUQ); 2085 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, 2086 helper_le_ldq_mmu); 2087 } 2088 2089 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2090 MemOpIdx oi, uintptr_t retaddr) 2091 { 2092 validate_memop(oi, MO_BEUQ); 2093 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, 2094 helper_be_ldq_mmu); 2095 } 2096 2097 /* 2098 * Provide signed versions of the load routines as well. We can of course 2099 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2100 */ 2101 2102 2103 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2104 MemOpIdx oi, uintptr_t retaddr) 2105 { 2106 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2107 } 2108 2109 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2110 MemOpIdx oi, uintptr_t retaddr) 2111 { 2112 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2113 } 2114 2115 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2116 MemOpIdx oi, uintptr_t retaddr) 2117 { 2118 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2119 } 2120 2121 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2122 MemOpIdx oi, uintptr_t retaddr) 2123 { 2124 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2125 } 2126 2127 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2128 MemOpIdx oi, uintptr_t retaddr) 2129 { 2130 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2131 } 2132 2133 /* 2134 * Load helpers for cpu_ldst.h. 2135 */ 2136 2137 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2138 MemOpIdx oi, uintptr_t retaddr, 2139 FullLoadHelper *full_load) 2140 { 2141 uint64_t ret; 2142 2143 ret = full_load(env, addr, oi, retaddr); 2144 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2145 return ret; 2146 } 2147 2148 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2149 { 2150 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); 2151 } 2152 2153 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2154 MemOpIdx oi, uintptr_t ra) 2155 { 2156 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); 2157 } 2158 2159 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2160 MemOpIdx oi, uintptr_t ra) 2161 { 2162 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); 2163 } 2164 2165 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2166 MemOpIdx oi, uintptr_t ra) 2167 { 2168 return cpu_load_helper(env, addr, oi, MO_BEUQ, helper_be_ldq_mmu); 2169 } 2170 2171 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2172 MemOpIdx oi, uintptr_t ra) 2173 { 2174 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); 2175 } 2176 2177 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2178 MemOpIdx oi, uintptr_t ra) 2179 { 2180 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); 2181 } 2182 2183 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2184 MemOpIdx oi, uintptr_t ra) 2185 { 2186 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); 2187 } 2188 2189 /* 2190 * Store Helpers 2191 */ 2192 2193 static inline void QEMU_ALWAYS_INLINE 2194 store_memop(void *haddr, uint64_t val, MemOp op) 2195 { 2196 switch (op) { 2197 case MO_UB: 2198 stb_p(haddr, val); 2199 break; 2200 case MO_BEUW: 2201 stw_be_p(haddr, val); 2202 break; 2203 case MO_LEUW: 2204 stw_le_p(haddr, val); 2205 break; 2206 case MO_BEUL: 2207 stl_be_p(haddr, val); 2208 break; 2209 case MO_LEUL: 2210 stl_le_p(haddr, val); 2211 break; 2212 case MO_BEUQ: 2213 stq_be_p(haddr, val); 2214 break; 2215 case MO_LEUQ: 2216 stq_le_p(haddr, val); 2217 break; 2218 default: 2219 qemu_build_not_reached(); 2220 } 2221 } 2222 2223 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2224 MemOpIdx oi, uintptr_t retaddr); 2225 2226 static void __attribute__((noinline)) 2227 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2228 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2229 bool big_endian) 2230 { 2231 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2232 uintptr_t index, index2; 2233 CPUTLBEntry *entry, *entry2; 2234 target_ulong page2, tlb_addr, tlb_addr2; 2235 MemOpIdx oi; 2236 size_t size2; 2237 int i; 2238 2239 /* 2240 * Ensure the second page is in the TLB. Note that the first page 2241 * is already guaranteed to be filled, and that the second page 2242 * cannot evict the first. 2243 */ 2244 page2 = (addr + size) & TARGET_PAGE_MASK; 2245 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2246 index2 = tlb_index(env, mmu_idx, page2); 2247 entry2 = tlb_entry(env, mmu_idx, page2); 2248 2249 tlb_addr2 = tlb_addr_write(entry2); 2250 if (!tlb_hit_page(tlb_addr2, page2)) { 2251 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2252 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2253 mmu_idx, retaddr); 2254 index2 = tlb_index(env, mmu_idx, page2); 2255 entry2 = tlb_entry(env, mmu_idx, page2); 2256 } 2257 tlb_addr2 = tlb_addr_write(entry2); 2258 } 2259 2260 index = tlb_index(env, mmu_idx, addr); 2261 entry = tlb_entry(env, mmu_idx, addr); 2262 tlb_addr = tlb_addr_write(entry); 2263 2264 /* 2265 * Handle watchpoints. Since this may trap, all checks 2266 * must happen before any store. 2267 */ 2268 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2269 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2270 env_tlb(env)->d[mmu_idx].iotlb[index].attrs, 2271 BP_MEM_WRITE, retaddr); 2272 } 2273 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2274 cpu_check_watchpoint(env_cpu(env), page2, size2, 2275 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs, 2276 BP_MEM_WRITE, retaddr); 2277 } 2278 2279 /* 2280 * XXX: not efficient, but simple. 2281 * This loop must go in the forward direction to avoid issues 2282 * with self-modifying code in Windows 64-bit. 2283 */ 2284 oi = make_memop_idx(MO_UB, mmu_idx); 2285 if (big_endian) { 2286 for (i = 0; i < size; ++i) { 2287 /* Big-endian extract. */ 2288 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2289 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2290 } 2291 } else { 2292 for (i = 0; i < size; ++i) { 2293 /* Little-endian extract. */ 2294 uint8_t val8 = val >> (i * 8); 2295 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2296 } 2297 } 2298 } 2299 2300 static inline void QEMU_ALWAYS_INLINE 2301 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2302 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2303 { 2304 uintptr_t mmu_idx = get_mmuidx(oi); 2305 uintptr_t index = tlb_index(env, mmu_idx, addr); 2306 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 2307 target_ulong tlb_addr = tlb_addr_write(entry); 2308 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2309 unsigned a_bits = get_alignment_bits(get_memop(oi)); 2310 void *haddr; 2311 size_t size = memop_size(op); 2312 2313 /* Handle CPU specific unaligned behaviour */ 2314 if (addr & ((1 << a_bits) - 1)) { 2315 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2316 mmu_idx, retaddr); 2317 } 2318 2319 /* If the TLB entry is for a different page, reload and try again. */ 2320 if (!tlb_hit(tlb_addr, addr)) { 2321 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2322 addr & TARGET_PAGE_MASK)) { 2323 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2324 mmu_idx, retaddr); 2325 index = tlb_index(env, mmu_idx, addr); 2326 entry = tlb_entry(env, mmu_idx, addr); 2327 } 2328 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2329 } 2330 2331 /* Handle anything that isn't just a straight memory access. */ 2332 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2333 CPUIOTLBEntry *iotlbentry; 2334 bool need_swap; 2335 2336 /* For anything that is unaligned, recurse through byte stores. */ 2337 if ((addr & (size - 1)) != 0) { 2338 goto do_unaligned_access; 2339 } 2340 2341 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; 2342 2343 /* Handle watchpoints. */ 2344 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2345 /* On watchpoint hit, this will longjmp out. */ 2346 cpu_check_watchpoint(env_cpu(env), addr, size, 2347 iotlbentry->attrs, BP_MEM_WRITE, retaddr); 2348 } 2349 2350 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2351 2352 /* Handle I/O access. */ 2353 if (tlb_addr & TLB_MMIO) { 2354 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, 2355 op ^ (need_swap * MO_BSWAP)); 2356 return; 2357 } 2358 2359 /* Ignore writes to ROM. */ 2360 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2361 return; 2362 } 2363 2364 /* Handle clean RAM pages. */ 2365 if (tlb_addr & TLB_NOTDIRTY) { 2366 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr); 2367 } 2368 2369 haddr = (void *)((uintptr_t)addr + entry->addend); 2370 2371 /* 2372 * Keep these two store_memop separate to ensure that the compiler 2373 * is able to fold the entire function to a single instruction. 2374 * There is a build-time assert inside to remind you of this. ;-) 2375 */ 2376 if (unlikely(need_swap)) { 2377 store_memop(haddr, val, op ^ MO_BSWAP); 2378 } else { 2379 store_memop(haddr, val, op); 2380 } 2381 return; 2382 } 2383 2384 /* Handle slow unaligned access (it spans two pages or IO). */ 2385 if (size > 1 2386 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2387 >= TARGET_PAGE_SIZE)) { 2388 do_unaligned_access: 2389 store_helper_unaligned(env, addr, val, retaddr, size, 2390 mmu_idx, memop_big_endian(op)); 2391 return; 2392 } 2393 2394 haddr = (void *)((uintptr_t)addr + entry->addend); 2395 store_memop(haddr, val, op); 2396 } 2397 2398 static void __attribute__((noinline)) 2399 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2400 MemOpIdx oi, uintptr_t retaddr) 2401 { 2402 validate_memop(oi, MO_UB); 2403 store_helper(env, addr, val, oi, retaddr, MO_UB); 2404 } 2405 2406 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2407 MemOpIdx oi, uintptr_t retaddr) 2408 { 2409 full_stb_mmu(env, addr, val, oi, retaddr); 2410 } 2411 2412 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2413 MemOpIdx oi, uintptr_t retaddr) 2414 { 2415 validate_memop(oi, MO_LEUW); 2416 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2417 } 2418 2419 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2420 MemOpIdx oi, uintptr_t retaddr) 2421 { 2422 full_le_stw_mmu(env, addr, val, oi, retaddr); 2423 } 2424 2425 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2426 MemOpIdx oi, uintptr_t retaddr) 2427 { 2428 validate_memop(oi, MO_BEUW); 2429 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2430 } 2431 2432 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2433 MemOpIdx oi, uintptr_t retaddr) 2434 { 2435 full_be_stw_mmu(env, addr, val, oi, retaddr); 2436 } 2437 2438 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2439 MemOpIdx oi, uintptr_t retaddr) 2440 { 2441 validate_memop(oi, MO_LEUL); 2442 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2443 } 2444 2445 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2446 MemOpIdx oi, uintptr_t retaddr) 2447 { 2448 full_le_stl_mmu(env, addr, val, oi, retaddr); 2449 } 2450 2451 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2452 MemOpIdx oi, uintptr_t retaddr) 2453 { 2454 validate_memop(oi, MO_BEUL); 2455 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2456 } 2457 2458 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2459 MemOpIdx oi, uintptr_t retaddr) 2460 { 2461 full_be_stl_mmu(env, addr, val, oi, retaddr); 2462 } 2463 2464 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2465 MemOpIdx oi, uintptr_t retaddr) 2466 { 2467 validate_memop(oi, MO_LEUQ); 2468 store_helper(env, addr, val, oi, retaddr, MO_LEUQ); 2469 } 2470 2471 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2472 MemOpIdx oi, uintptr_t retaddr) 2473 { 2474 validate_memop(oi, MO_BEUQ); 2475 store_helper(env, addr, val, oi, retaddr, MO_BEUQ); 2476 } 2477 2478 /* 2479 * Store Helpers for cpu_ldst.h 2480 */ 2481 2482 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, 2483 uint64_t val, MemOpIdx oi, uintptr_t retaddr); 2484 2485 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, 2486 uint64_t val, MemOpIdx oi, uintptr_t ra, 2487 FullStoreHelper *full_store) 2488 { 2489 full_store(env, addr, val, oi, ra); 2490 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2491 } 2492 2493 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2494 MemOpIdx oi, uintptr_t retaddr) 2495 { 2496 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); 2497 } 2498 2499 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2500 MemOpIdx oi, uintptr_t retaddr) 2501 { 2502 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); 2503 } 2504 2505 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2506 MemOpIdx oi, uintptr_t retaddr) 2507 { 2508 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); 2509 } 2510 2511 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2512 MemOpIdx oi, uintptr_t retaddr) 2513 { 2514 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); 2515 } 2516 2517 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2518 MemOpIdx oi, uintptr_t retaddr) 2519 { 2520 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); 2521 } 2522 2523 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2524 MemOpIdx oi, uintptr_t retaddr) 2525 { 2526 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); 2527 } 2528 2529 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2530 MemOpIdx oi, uintptr_t retaddr) 2531 { 2532 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); 2533 } 2534 2535 #include "ldst_common.c.inc" 2536 2537 /* 2538 * First set of functions passes in OI and RETADDR. 2539 * This makes them callable from other helpers. 2540 */ 2541 2542 #define ATOMIC_NAME(X) \ 2543 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2544 2545 #define ATOMIC_MMU_CLEANUP 2546 #define ATOMIC_MMU_IDX get_mmuidx(oi) 2547 2548 #include "atomic_common.c.inc" 2549 2550 #define DATA_SIZE 1 2551 #include "atomic_template.h" 2552 2553 #define DATA_SIZE 2 2554 #include "atomic_template.h" 2555 2556 #define DATA_SIZE 4 2557 #include "atomic_template.h" 2558 2559 #ifdef CONFIG_ATOMIC64 2560 #define DATA_SIZE 8 2561 #include "atomic_template.h" 2562 #endif 2563 2564 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2565 #define DATA_SIZE 16 2566 #include "atomic_template.h" 2567 #endif 2568 2569 /* Code access functions. */ 2570 2571 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2572 MemOpIdx oi, uintptr_t retaddr) 2573 { 2574 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2575 } 2576 2577 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2578 { 2579 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2580 return full_ldub_code(env, addr, oi, 0); 2581 } 2582 2583 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2584 MemOpIdx oi, uintptr_t retaddr) 2585 { 2586 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2587 } 2588 2589 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2590 { 2591 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2592 return full_lduw_code(env, addr, oi, 0); 2593 } 2594 2595 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2596 MemOpIdx oi, uintptr_t retaddr) 2597 { 2598 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2599 } 2600 2601 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2602 { 2603 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2604 return full_ldl_code(env, addr, oi, 0); 2605 } 2606 2607 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2608 MemOpIdx oi, uintptr_t retaddr) 2609 { 2610 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); 2611 } 2612 2613 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2614 { 2615 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2616 return full_ldq_code(env, addr, oi, 0); 2617 } 2618