/* * Common CPU TLB handling * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "hw/core/tcg-cpu-ops.h" #include "exec/exec-all.h" #include "exec/memory.h" #include "exec/cpu_ldst.h" #include "exec/cputlb.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "tcg/tcg.h" #include "qemu/error-report.h" #include "exec/log.h" #include "exec/helper-proto.h" #include "qemu/atomic.h" #include "qemu/atomic128.h" #include "exec/translate-all.h" #include "trace/trace-root.h" #include "tb-hash.h" #include "internal.h" #ifdef CONFIG_PLUGIN #include "qemu/plugin-memory.h" #endif #include "tcg/tcg-ldst.h" /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ /* #define DEBUG_TLB */ /* #define DEBUG_TLB_LOG */ #ifdef DEBUG_TLB # define DEBUG_TLB_GATE 1 # ifdef DEBUG_TLB_LOG # define DEBUG_TLB_LOG_GATE 1 # else # define DEBUG_TLB_LOG_GATE 0 # endif #else # define DEBUG_TLB_GATE 0 # define DEBUG_TLB_LOG_GATE 0 #endif #define tlb_debug(fmt, ...) do { \ if (DEBUG_TLB_LOG_GATE) { \ qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ ## __VA_ARGS__); \ } else if (DEBUG_TLB_GATE) { \ fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ } \ } while (0) #define assert_cpu_is_self(cpu) do { \ if (DEBUG_TLB_GATE) { \ g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ } \ } while (0) /* run_on_cpu_data.target_ptr should always be big enough for a * target_ulong even on 32 bit builds */ QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); /* We currently can't handle more than 16 bits in the MMUIDX bitmask. */ QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) static inline size_t tlb_n_entries(CPUTLBDescFast *fast) { return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; } static inline size_t sizeof_tlb(CPUTLBDescFast *fast) { return fast->mask + (1 << CPU_TLB_ENTRY_BITS); } static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, size_t max_entries) { desc->window_begin_ns = ns; desc->window_max_entries = max_entries; } static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) { unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); } } static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) { /* Discard jump cache entries for any tb which might potentially overlap the flushed page. */ tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); tb_jmp_cache_clear_page(cpu, addr); } /** * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary * @desc: The CPUTLBDesc portion of the TLB * @fast: The CPUTLBDescFast portion of the same TLB * * Called with tlb_lock_held. * * We have two main constraints when resizing a TLB: (1) we only resize it * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing * the array or unnecessarily flushing it), which means we do not control how * frequently the resizing can occur; (2) we don't have access to the guest's * future scheduling decisions, and therefore have to decide the magnitude of * the resize based on past observations. * * In general, a memory-hungry process can benefit greatly from an appropriately * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that * we just have to make the TLB as large as possible; while an oversized TLB * results in minimal TLB miss rates, it also takes longer to be flushed * (flushes can be _very_ frequent), and the reduced locality can also hurt * performance. * * To achieve near-optimal performance for all kinds of workloads, we: * * 1. Aggressively increase the size of the TLB when the use rate of the * TLB being flushed is high, since it is likely that in the near future this * memory-hungry process will execute again, and its memory hungriness will * probably be similar. * * 2. Slowly reduce the size of the TLB as the use rate declines over a * reasonably large time window. The rationale is that if in such a time window * we have not observed a high TLB use rate, it is likely that we won't observe * it in the near future. In that case, once a time window expires we downsize * the TLB to match the maximum use rate observed in the window. * * 3. Try to keep the maximum use rate in a time window in the 30-70% range, * since in that range performance is likely near-optimal. Recall that the TLB * is direct mapped, so we want the use rate to be low (or at least not too * high), since otherwise we are likely to have a significant amount of * conflict misses. */ static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) { size_t old_size = tlb_n_entries(fast); size_t rate; size_t new_size = old_size; int64_t window_len_ms = 100; int64_t window_len_ns = window_len_ms * 1000 * 1000; bool window_expired = now > desc->window_begin_ns + window_len_ns; if (desc->n_used_entries > desc->window_max_entries) { desc->window_max_entries = desc->n_used_entries; } rate = desc->window_max_entries * 100 / old_size; if (rate > 70) { new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); } else if (rate < 30 && window_expired) { size_t ceil = pow2ceil(desc->window_max_entries); size_t expected_rate = desc->window_max_entries * 100 / ceil; /* * Avoid undersizing when the max number of entries seen is just below * a pow2. For instance, if max_entries == 1025, the expected use rate * would be 1025/2048==50%. However, if max_entries == 1023, we'd get * 1023/1024==99.9% use rate, so we'd likely end up doubling the size * later. Thus, make sure that the expected use rate remains below 70%. * (and since we double the size, that means the lowest rate we'd * expect to get is 35%, which is still in the 30-70% range where * we consider that the size is appropriate.) */ if (expected_rate > 70) { ceil *= 2; } new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); } if (new_size == old_size) { if (window_expired) { tlb_window_reset(desc, now, desc->n_used_entries); } return; } g_free(fast->table); g_free(desc->iotlb); tlb_window_reset(desc, now, 0); /* desc->n_used_entries is cleared by the caller */ fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; fast->table = g_try_new(CPUTLBEntry, new_size); desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); /* * If the allocations fail, try smaller sizes. We just freed some * memory, so going back to half of new_size has a good chance of working. * Increased memory pressure elsewhere in the system might cause the * allocations to fail though, so we progressively reduce the allocation * size, aborting if we cannot even allocate the smallest TLB we support. */ while (fast->table == NULL || desc->iotlb == NULL) { if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { error_report("%s: %s", __func__, strerror(errno)); abort(); } new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; g_free(fast->table); g_free(desc->iotlb); fast->table = g_try_new(CPUTLBEntry, new_size); desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); } } static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) { desc->n_used_entries = 0; desc->large_page_addr = -1; desc->large_page_mask = -1; desc->vindex = 0; memset(fast->table, -1, sizeof_tlb(fast)); memset(desc->vtable, -1, sizeof(desc->vtable)); } static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, int64_t now) { CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; tlb_mmu_resize_locked(desc, fast, now); tlb_mmu_flush_locked(desc, fast); } static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) { size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; tlb_window_reset(desc, now, 0); desc->n_used_entries = 0; fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; fast->table = g_new(CPUTLBEntry, n_entries); desc->iotlb = g_new(CPUIOTLBEntry, n_entries); tlb_mmu_flush_locked(desc, fast); } static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) { env_tlb(env)->d[mmu_idx].n_used_entries++; } static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) { env_tlb(env)->d[mmu_idx].n_used_entries--; } void tlb_init(CPUState *cpu) { CPUArchState *env = cpu->env_ptr; int64_t now = get_clock_realtime(); int i; qemu_spin_init(&env_tlb(env)->c.lock); /* All tlbs are initialized flushed. */ env_tlb(env)->c.dirty = 0; for (i = 0; i < NB_MMU_MODES; i++) { tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); } } void tlb_destroy(CPUState *cpu) { CPUArchState *env = cpu->env_ptr; int i; qemu_spin_destroy(&env_tlb(env)->c.lock); for (i = 0; i < NB_MMU_MODES; i++) { CPUTLBDesc *desc = &env_tlb(env)->d[i]; CPUTLBDescFast *fast = &env_tlb(env)->f[i]; g_free(fast->table); g_free(desc->iotlb); } } /* flush_all_helper: run fn across all cpus * * If the wait flag is set then the src cpu's helper will be queued as * "safe" work and the loop exited creating a synchronisation point * where all queued work will be finished before execution starts * again. */ static void flush_all_helper(CPUState *src, run_on_cpu_func fn, run_on_cpu_data d) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu != src) { async_run_on_cpu(cpu, fn, d); } } } void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) { CPUState *cpu; size_t full = 0, part = 0, elide = 0; CPU_FOREACH(cpu) { CPUArchState *env = cpu->env_ptr; full += qatomic_read(&env_tlb(env)->c.full_flush_count); part += qatomic_read(&env_tlb(env)->c.part_flush_count); elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); } *pfull = full; *ppart = part; *pelide = elide; } static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) { CPUArchState *env = cpu->env_ptr; uint16_t asked = data.host_int; uint16_t all_dirty, work, to_clean; int64_t now = get_clock_realtime(); assert_cpu_is_self(cpu); tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); qemu_spin_lock(&env_tlb(env)->c.lock); all_dirty = env_tlb(env)->c.dirty; to_clean = asked & all_dirty; all_dirty &= ~to_clean; env_tlb(env)->c.dirty = all_dirty; for (work = to_clean; work != 0; work &= work - 1) { int mmu_idx = ctz32(work); tlb_flush_one_mmuidx_locked(env, mmu_idx, now); } qemu_spin_unlock(&env_tlb(env)->c.lock); cpu_tb_jmp_cache_clear(cpu); if (to_clean == ALL_MMUIDX_BITS) { qatomic_set(&env_tlb(env)->c.full_flush_count, env_tlb(env)->c.full_flush_count + 1); } else { qatomic_set(&env_tlb(env)->c.part_flush_count, env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); if (to_clean != asked) { qatomic_set(&env_tlb(env)->c.elide_flush_count, env_tlb(env)->c.elide_flush_count + ctpop16(asked & ~to_clean)); } } } void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) { tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); if (cpu->created && !qemu_cpu_is_self(cpu)) { async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, RUN_ON_CPU_HOST_INT(idxmap)); } else { tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); } } void tlb_flush(CPUState *cpu) { tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); } void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) { const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); } void tlb_flush_all_cpus(CPUState *src_cpu) { tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); } void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) { const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); } void tlb_flush_all_cpus_synced(CPUState *src_cpu) { tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); } static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, target_ulong page, target_ulong mask) { page &= mask; mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; return (page == (tlb_entry->addr_read & mask) || page == (tlb_addr_write(tlb_entry) & mask) || page == (tlb_entry->addr_code & mask)); } static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, target_ulong page) { return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); } /** * tlb_entry_is_empty - return true if the entry is not in use * @te: pointer to CPUTLBEntry */ static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) { return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; } /* Called with tlb_c.lock held */ static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, target_ulong page, target_ulong mask) { if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { memset(tlb_entry, -1, sizeof(*tlb_entry)); return true; } return false; } static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, target_ulong page) { return tlb_flush_entry_mask_locked(tlb_entry, page, -1); } /* Called with tlb_c.lock held */ static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, target_ulong page, target_ulong mask) { CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; int k; assert_cpu_is_self(env_cpu(env)); for (k = 0; k < CPU_VTLB_SIZE; k++) { if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { tlb_n_used_entries_dec(env, mmu_idx); } } } static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, target_ulong page) { tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); } static void tlb_flush_page_locked(CPUArchState *env, int midx, target_ulong page) { target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; /* Check if we need to flush due to large pages. */ if ((page & lp_mask) == lp_addr) { tlb_debug("forcing full flush midx %d (" TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", midx, lp_addr, lp_mask); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); } else { if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { tlb_n_used_entries_dec(env, midx); } tlb_flush_vtlb_page_locked(env, midx, page); } } /** * tlb_flush_page_by_mmuidx_async_0: * @cpu: cpu on which to flush * @addr: page of virtual address to flush * @idxmap: set of mmu_idx to flush * * Helper for tlb_flush_page_by_mmuidx and friends, flush one page * at @addr from the tlbs indicated by @idxmap from @cpu. */ static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, target_ulong addr, uint16_t idxmap) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { if ((idxmap >> mmu_idx) & 1) { tlb_flush_page_locked(env, mmu_idx, addr); } } qemu_spin_unlock(&env_tlb(env)->c.lock); tb_flush_jmp_cache(cpu, addr); } /** * tlb_flush_page_by_mmuidx_async_1: * @cpu: cpu on which to flush * @data: encoded addr + idxmap * * Helper for tlb_flush_page_by_mmuidx and friends, called through * async_run_on_cpu. The idxmap parameter is encoded in the page * offset of the target_ptr field. This limits the set of mmu_idx * that can be passed via this method. */ static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, run_on_cpu_data data) { target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); } typedef struct { target_ulong addr; uint16_t idxmap; } TLBFlushPageByMMUIdxData; /** * tlb_flush_page_by_mmuidx_async_2: * @cpu: cpu on which to flush * @data: allocated addr + idxmap * * Helper for tlb_flush_page_by_mmuidx and friends, called through * async_run_on_cpu. The addr+idxmap parameters are stored in a * TLBFlushPageByMMUIdxData structure that has been allocated * specifically for this helper. Free the structure when done. */ static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, run_on_cpu_data data) { TLBFlushPageByMMUIdxData *d = data.host_ptr; tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); g_free(d); } void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) { tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; if (qemu_cpu_is_self(cpu)) { tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); } else if (idxmap < TARGET_PAGE_SIZE) { /* * Most targets have only a few mmu_idx. In the case where * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid * allocating memory for this operation. */ async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); /* Otherwise allocate a structure, freed by the worker. */ d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } void tlb_flush_page(CPUState *cpu, target_ulong addr) { tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); } void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, uint16_t idxmap) { tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; /* * Allocate memory to hold addr+idxmap only when needed. * See tlb_flush_page_by_mmuidx for details. */ if (idxmap < TARGET_PAGE_SIZE) { flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { CPUState *dst_cpu; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } } tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); } void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) { tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); } void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, target_ulong addr, uint16_t idxmap) { tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); /* This should already be page aligned */ addr &= TARGET_PAGE_MASK; /* * Allocate memory to hold addr+idxmap only when needed. * See tlb_flush_page_by_mmuidx for details. */ if (idxmap < TARGET_PAGE_SIZE) { flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, RUN_ON_CPU_TARGET_PTR(addr | idxmap)); } else { CPUState *dst_cpu; TLBFlushPageByMMUIdxData *d; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } d = g_new(TLBFlushPageByMMUIdxData, 1); d->addr = addr; d->idxmap = idxmap; async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, RUN_ON_CPU_HOST_PTR(d)); } } void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) { tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); } static void tlb_flush_range_locked(CPUArchState *env, int midx, target_ulong addr, target_ulong len, unsigned bits) { CPUTLBDesc *d = &env_tlb(env)->d[midx]; CPUTLBDescFast *f = &env_tlb(env)->f[midx]; target_ulong mask = MAKE_64BIT_MASK(0, bits); /* * If @bits is smaller than the tlb size, there may be multiple entries * within the TLB; otherwise all addresses that match under @mask hit * the same TLB entry. * TODO: Perhaps allow bits to be a few bits less than the size. * For now, just flush the entire TLB. * * If @len is larger than the tlb size, then it will take longer to * test all of the entries in the TLB than it will to flush it all. */ if (mask < f->mask || len > f->mask) { tlb_debug("forcing full flush midx %d (" TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", midx, addr, mask, len); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); return; } /* * Check if we need to flush due to large pages. * Because large_page_mask contains all 1's from the msb, * we only need to test the end of the range. */ if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { tlb_debug("forcing full flush midx %d (" TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", midx, d->large_page_addr, d->large_page_mask); tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); return; } for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { target_ulong page = addr + i; CPUTLBEntry *entry = tlb_entry(env, midx, page); if (tlb_flush_entry_mask_locked(entry, page, mask)) { tlb_n_used_entries_dec(env, midx); } tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); } } typedef struct { target_ulong addr; target_ulong len; uint16_t idxmap; uint16_t bits; } TLBFlushRangeData; static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, TLBFlushRangeData d) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", d.addr, d.bits, d.len, d.idxmap); qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { if ((d.idxmap >> mmu_idx) & 1) { tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); } } qemu_spin_unlock(&env_tlb(env)->c.lock); for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { tb_flush_jmp_cache(cpu, d.addr + i); } } static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, run_on_cpu_data data) { TLBFlushRangeData *d = data.host_ptr; tlb_flush_range_by_mmuidx_async_0(cpu, *d); g_free(d); } void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, target_ulong len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx(cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx(cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; if (qemu_cpu_is_self(cpu)) { tlb_flush_range_by_mmuidx_async_0(cpu, d); } else { /* Otherwise allocate a structure, freed by the worker. */ TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, target_ulong len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d; CPUState *dst_cpu; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } tlb_flush_range_by_mmuidx_async_0(src_cpu, d); } void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, target_ulong addr, target_ulong len, uint16_t idxmap, unsigned bits) { TLBFlushRangeData d, *p; CPUState *dst_cpu; /* * If all bits are significant, and len is small, * this devolves to tlb_flush_page. */ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); return; } /* If no page bits are significant, this devolves to tlb_flush. */ if (bits < TARGET_PAGE_BITS) { tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); return; } /* This should already be page aligned */ d.addr = addr & TARGET_PAGE_MASK; d.len = len; d.idxmap = idxmap; d.bits = bits; /* Allocate a separate data block for each destination cpu. */ CPU_FOREACH(dst_cpu) { if (dst_cpu != src_cpu) { p = g_memdup(&d, sizeof(d)); async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } } p = g_memdup(&d, sizeof(d)); async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, RUN_ON_CPU_HOST_PTR(p)); } void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, target_ulong addr, uint16_t idxmap, unsigned bits) { tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); } /* update the TLBs so that writes to code in the virtual page 'addr' can be detected */ void tlb_protect_code(ram_addr_t ram_addr) { cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, DIRTY_MEMORY_CODE); } /* update the TLB so that writes in physical page 'phys_addr' are no longer tested for self modifying code */ void tlb_unprotect_code(ram_addr_t ram_addr) { cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); } /* * Dirty write flag handling * * When the TCG code writes to a location it looks up the address in * the TLB and uses that data to compute the final address. If any of * the lower bits of the address are set then the slow path is forced. * There are a number of reasons to do this but for normal RAM the * most usual is detecting writes to code regions which may invalidate * generated code. * * Other vCPUs might be reading their TLBs during guest execution, so we update * te->addr_write with qatomic_set. We don't need to worry about this for * oversized guests as MTTCG is disabled for them. * * Called with tlb_c.lock held. */ static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, uintptr_t start, uintptr_t length) { uintptr_t addr = tlb_entry->addr_write; if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { addr &= TARGET_PAGE_MASK; addr += tlb_entry->addend; if ((addr - start) < length) { #if TCG_OVERSIZED_GUEST tlb_entry->addr_write |= TLB_NOTDIRTY; #else qatomic_set(&tlb_entry->addr_write, tlb_entry->addr_write | TLB_NOTDIRTY); #endif } } } /* * Called with tlb_c.lock held. * Called only from the vCPU context, i.e. the TLB's owner thread. */ static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) { *d = *s; } /* This is a cross vCPU call (i.e. another vCPU resetting the flags of * the target vCPU). * We must take tlb_c.lock to avoid racing with another vCPU update. The only * thing actually updated is the target TLB entry ->addr_write flags. */ void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) { CPUArchState *env; int mmu_idx; env = cpu->env_ptr; qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { unsigned int i; unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); for (i = 0; i < n; i++) { tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], start1, length); } for (i = 0; i < CPU_VTLB_SIZE; i++) { tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], start1, length); } } qemu_spin_unlock(&env_tlb(env)->c.lock); } /* Called with tlb_c.lock held */ static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, target_ulong vaddr) { if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { tlb_entry->addr_write = vaddr; } } /* update the TLB corresponding to virtual page vaddr so that it is no longer dirty */ void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) { CPUArchState *env = cpu->env_ptr; int mmu_idx; assert_cpu_is_self(cpu); vaddr &= TARGET_PAGE_MASK; qemu_spin_lock(&env_tlb(env)->c.lock); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); } for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { int k; for (k = 0; k < CPU_VTLB_SIZE; k++) { tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); } } qemu_spin_unlock(&env_tlb(env)->c.lock); } /* Our TLB does not support large pages, so remember the area covered by large pages and trigger a full TLB flush if these are invalidated. */ static void tlb_add_large_page(CPUArchState *env, int mmu_idx, target_ulong vaddr, target_ulong size) { target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; target_ulong lp_mask = ~(size - 1); if (lp_addr == (target_ulong)-1) { /* No previous large page. */ lp_addr = vaddr; } else { /* Extend the existing region to include the new page. This is a compromise between unnecessary flushes and the cost of maintaining a full variable size TLB. */ lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; while (((lp_addr ^ vaddr) & lp_mask) != 0) { lp_mask <<= 1; } } env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; } /* Add a new TLB entry. At most one entry for a given virtual address * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the * supplied size is only used by tlb_flush_page. * * Called from TCG-generated code, which is under an RCU read-side * critical section. */ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, hwaddr paddr, MemTxAttrs attrs, int prot, int mmu_idx, target_ulong size) { CPUArchState *env = cpu->env_ptr; CPUTLB *tlb = env_tlb(env); CPUTLBDesc *desc = &tlb->d[mmu_idx]; MemoryRegionSection *section; unsigned int index; target_ulong address; target_ulong write_address; uintptr_t addend; CPUTLBEntry *te, tn; hwaddr iotlb, xlat, sz, paddr_page; target_ulong vaddr_page; int asidx = cpu_asidx_from_attrs(cpu, attrs); int wp_flags; bool is_ram, is_romd; assert_cpu_is_self(cpu); if (size <= TARGET_PAGE_SIZE) { sz = TARGET_PAGE_SIZE; } else { tlb_add_large_page(env, mmu_idx, vaddr, size); sz = size; } vaddr_page = vaddr & TARGET_PAGE_MASK; paddr_page = paddr & TARGET_PAGE_MASK; section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, &xlat, &sz, attrs, &prot); assert(sz >= TARGET_PAGE_SIZE); tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx " prot=%x idx=%d\n", vaddr, paddr, prot, mmu_idx); address = vaddr_page; if (size < TARGET_PAGE_SIZE) { /* Repeat the MMU check and TLB fill on every access. */ address |= TLB_INVALID_MASK; } if (attrs.byte_swap) { address |= TLB_BSWAP; } is_ram = memory_region_is_ram(section->mr); is_romd = memory_region_is_romd(section->mr); if (is_ram || is_romd) { /* RAM and ROMD both have associated host memory. */ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; } else { /* I/O does not; force the host address to NULL. */ addend = 0; } write_address = address; if (is_ram) { iotlb = memory_region_get_ram_addr(section->mr) + xlat; /* * Computing is_clean is expensive; avoid all that unless * the page is actually writable. */ if (prot & PAGE_WRITE) { if (section->readonly) { write_address |= TLB_DISCARD_WRITE; } else if (cpu_physical_memory_is_clean(iotlb)) { write_address |= TLB_NOTDIRTY; } } } else { /* I/O or ROMD */ iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; /* * Writes to romd devices must go through MMIO to enable write. * Reads to romd devices go through the ram_ptr found above, * but of course reads to I/O must go through MMIO. */ write_address |= TLB_MMIO; if (!is_romd) { address = write_address; } } wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, TARGET_PAGE_SIZE); index = tlb_index(env, mmu_idx, vaddr_page); te = tlb_entry(env, mmu_idx, vaddr_page); /* * Hold the TLB lock for the rest of the function. We could acquire/release * the lock several times in the function, but it is faster to amortize the * acquisition cost by acquiring it just once. Note that this leads to * a longer critical section, but this is not a concern since the TLB lock * is unlikely to be contended. */ qemu_spin_lock(&tlb->c.lock); /* Note that the tlb is no longer clean. */ tlb->c.dirty |= 1 << mmu_idx; /* Make sure there's no cached translation for the new page. */ tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); /* * Only evict the old entry to the victim tlb if it's for a * different page; otherwise just overwrite the stale data. */ if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; CPUTLBEntry *tv = &desc->vtable[vidx]; /* Evict the old entry into the victim tlb. */ copy_tlb_helper_locked(tv, te); desc->viotlb[vidx] = desc->iotlb[index]; tlb_n_used_entries_dec(env, mmu_idx); } /* refill the tlb */ /* * At this point iotlb contains a physical section number in the lower * TARGET_PAGE_BITS, and either * + the ram_addr_t of the page base of the target RAM (RAM) * + the offset within section->mr of the page base (I/O, ROMD) * We subtract the vaddr_page (which is page aligned and thus won't * disturb the low bits) to give an offset which can be added to the * (non-page-aligned) vaddr of the eventual memory access to get * the MemoryRegion offset for the access. Note that the vaddr we * subtract here is that of the page base, and not the same as the * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). */ desc->iotlb[index].addr = iotlb - vaddr_page; desc->iotlb[index].attrs = attrs; /* Now calculate the new entry */ tn.addend = addend - vaddr_page; if (prot & PAGE_READ) { tn.addr_read = address; if (wp_flags & BP_MEM_READ) { tn.addr_read |= TLB_WATCHPOINT; } } else { tn.addr_read = -1; } if (prot & PAGE_EXEC) { tn.addr_code = address; } else { tn.addr_code = -1; } tn.addr_write = -1; if (prot & PAGE_WRITE) { tn.addr_write = write_address; if (prot & PAGE_WRITE_INV) { tn.addr_write |= TLB_INVALID_MASK; } if (wp_flags & BP_MEM_WRITE) { tn.addr_write |= TLB_WATCHPOINT; } } copy_tlb_helper_locked(te, &tn); tlb_n_used_entries_inc(env, mmu_idx); qemu_spin_unlock(&tlb->c.lock); } /* Add a new TLB entry, but without specifying the memory * transaction attributes to be used. */ void tlb_set_page(CPUState *cpu, target_ulong vaddr, hwaddr paddr, int prot, int mmu_idx, target_ulong size) { tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, prot, mmu_idx, size); } static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) { ram_addr_t ram_addr; ram_addr = qemu_ram_addr_from_host(ptr); if (ram_addr == RAM_ADDR_INVALID) { error_report("Bad ram pointer %p", ptr); abort(); } return ram_addr; } /* * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must * be discarded and looked up again (e.g. via tlb_entry()). */ static void tlb_fill(CPUState *cpu, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); bool ok; /* * This is not a probe, so only valid return is success; failure * should result in exception + longjmp to the cpu loop. */ ok = cc->tcg_ops->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr); assert(ok); } static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); } static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); if (!cpu->ignore_memory_transaction_failures && cc->tcg_ops->do_transaction_failed) { cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, access_type, mmu_idx, attrs, response, retaddr); } } static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, int mmu_idx, target_ulong addr, uintptr_t retaddr, MMUAccessType access_type, MemOp op) { CPUState *cpu = env_cpu(env); hwaddr mr_offset; MemoryRegionSection *section; MemoryRegion *mr; uint64_t val; bool locked = false; MemTxResult r; section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); mr = section->mr; mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; cpu->mem_io_pc = retaddr; if (!cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } if (!qemu_mutex_iothread_locked()) { qemu_mutex_lock_iothread(); locked = true; } r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); if (r != MEMTX_OK) { hwaddr physaddr = mr_offset + section->offset_within_address_space - section->offset_within_region; cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, mmu_idx, iotlbentry->attrs, r, retaddr); } if (locked) { qemu_mutex_unlock_iothread(); } return val; } /* * Save a potentially trashed IOTLB entry for later lookup by plugin. * This is read by tlb_plugin_lookup if the iotlb entry doesn't match * because of the side effect of io_writex changing memory layout. */ static void save_iotlb_data(CPUState *cs, hwaddr addr, MemoryRegionSection *section, hwaddr mr_offset) { #ifdef CONFIG_PLUGIN SavedIOTLB *saved = &cs->saved_iotlb; saved->addr = addr; saved->section = section; saved->mr_offset = mr_offset; #endif } static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, int mmu_idx, uint64_t val, target_ulong addr, uintptr_t retaddr, MemOp op) { CPUState *cpu = env_cpu(env); hwaddr mr_offset; MemoryRegionSection *section; MemoryRegion *mr; bool locked = false; MemTxResult r; section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); mr = section->mr; mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; if (!cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } cpu->mem_io_pc = retaddr; /* * The memory_region_dispatch may trigger a flush/resize * so for plugins we save the iotlb_data just in case. */ save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset); if (!qemu_mutex_iothread_locked()) { qemu_mutex_lock_iothread(); locked = true; } r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); if (r != MEMTX_OK) { hwaddr physaddr = mr_offset + section->offset_within_address_space - section->offset_within_region; cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, retaddr); } if (locked) { qemu_mutex_unlock_iothread(); } } static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) { #if TCG_OVERSIZED_GUEST return *(target_ulong *)((uintptr_t)entry + ofs); #else /* ofs might correspond to .addr_write, so use qatomic_read */ return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); #endif } /* Return true if ADDR is present in the victim tlb, and has been copied back to the main tlb. */ static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, size_t elt_ofs, target_ulong page) { size_t vidx; assert_cpu_is_self(env_cpu(env)); for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; target_ulong cmp; /* elt_ofs might correspond to .addr_write, so use qatomic_read */ #if TCG_OVERSIZED_GUEST cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); #else cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); #endif if (cmp == page) { /* Found entry in victim tlb, swap tlb and iotlb. */ CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; qemu_spin_lock(&env_tlb(env)->c.lock); copy_tlb_helper_locked(&tmptlb, tlb); copy_tlb_helper_locked(tlb, vtlb); copy_tlb_helper_locked(vtlb, &tmptlb); qemu_spin_unlock(&env_tlb(env)->c.lock); CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; tmpio = *io; *io = *vio; *vio = tmpio; return true; } } return false; } /* Macro to call the above, with local variables from the use context. */ #define VICTIM_TLB_HIT(TY, ADDR) \ victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ (ADDR) & TARGET_PAGE_MASK) /* * Return a ram_addr_t for the virtual address for execution. * * Return -1 if we can't translate and execute from an entire page * of RAM. This will force us to execute by loading and translating * one insn at a time, without caching. * * NOTE: This function will trigger an exception if the page is * not executable. */ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, void **hostp) { uintptr_t mmu_idx = cpu_mmu_index(env, true); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); void *p; if (unlikely(!tlb_hit(entry->addr_code, addr))) { if (!VICTIM_TLB_HIT(addr_code, addr)) { tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); if (unlikely(entry->addr_code & TLB_INVALID_MASK)) { /* * The MMU protection covers a smaller range than a target * page, so we must redo the MMU check for every insn. */ return -1; } } assert(tlb_hit(entry->addr_code, addr)); } if (unlikely(entry->addr_code & TLB_MMIO)) { /* The region is not backed by RAM. */ if (hostp) { *hostp = NULL; } return -1; } p = (void *)((uintptr_t)addr + entry->addend); if (hostp) { *hostp = p; } return qemu_ram_addr_from_host_nofail(p); } tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) { return get_page_addr_code_hostp(env, addr, NULL); } static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, CPUIOTLBEntry *iotlbentry, uintptr_t retaddr) { ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr; trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { struct page_collection *pages = page_collection_lock(ram_addr, ram_addr + size); tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); page_collection_unlock(pages); } /* * Set both VGA and migration bits for simplicity and to remove * the notdirty callback faster. */ cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); /* We remove the notdirty callback only if the code has been flushed. */ if (!cpu_physical_memory_is_clean(ram_addr)) { trace_memory_notdirty_set_dirty(mem_vaddr); tlb_set_dirty(cpu, mem_vaddr); } } static int probe_access_internal(CPUArchState *env, target_ulong addr, int fault_size, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, uintptr_t retaddr) { uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr, page_addr; size_t elt_ofs; int flags; switch (access_type) { case MMU_DATA_LOAD: elt_ofs = offsetof(CPUTLBEntry, addr_read); break; case MMU_DATA_STORE: elt_ofs = offsetof(CPUTLBEntry, addr_write); break; case MMU_INST_FETCH: elt_ofs = offsetof(CPUTLBEntry, addr_code); break; default: g_assert_not_reached(); } tlb_addr = tlb_read_ofs(entry, elt_ofs); page_addr = addr & TARGET_PAGE_MASK; if (!tlb_hit_page(tlb_addr, page_addr)) { if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { CPUState *cs = env_cpu(env); CPUClass *cc = CPU_GET_CLASS(cs); if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, mmu_idx, nonfault, retaddr)) { /* Non-faulting page table read failed. */ *phost = NULL; return TLB_INVALID_MASK; } /* TLB resize via tlb_fill may have moved the entry. */ entry = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlb_read_ofs(entry, elt_ofs); } flags = tlb_addr & TLB_FLAGS_MASK; /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { *phost = NULL; return TLB_MMIO; } /* Everything else is RAM. */ *phost = (void *)((uintptr_t)addr + entry->addend); return flags; } int probe_access_flags(CPUArchState *env, target_ulong addr, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, uintptr_t retaddr) { int flags; flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, nonfault, phost, retaddr); /* Handle clean RAM pages. */ if (unlikely(flags & TLB_NOTDIRTY)) { uintptr_t index = tlb_index(env, mmu_idx, addr); CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); flags &= ~TLB_NOTDIRTY; } return flags; } void *probe_access(CPUArchState *env, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { void *host; int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, mmu_idx, false, &host, retaddr); /* Per the interface, size == 0 merely faults the access. */ if (size == 0) { return NULL; } if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { uintptr_t index = tlb_index(env, mmu_idx, addr); CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; /* Handle watchpoints. */ if (flags & TLB_WATCHPOINT) { int wp_access = (access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ); cpu_check_watchpoint(env_cpu(env), addr, size, iotlbentry->attrs, wp_access, retaddr); } /* Handle clean RAM pages. */ if (flags & TLB_NOTDIRTY) { notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); } } return host; } void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, MMUAccessType access_type, int mmu_idx) { void *host; int flags; flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, true, &host, 0); /* No combination of flags are expected by the caller. */ return flags ? NULL : host; } #ifdef CONFIG_PLUGIN /* * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. * This should be a hot path as we will have just looked this path up * in the softmmu lookup code (or helper). We don't handle re-fills or * checking the victim table. This is purely informational. * * This almost never fails as the memory access being instrumented * should have just filled the TLB. The one corner case is io_writex * which can cause TLB flushes and potential resizing of the TLBs * losing the information we need. In those cases we need to recover * data from a copy of the iotlbentry. As long as this always occurs * from the same thread (which a mem callback will be) this is safe. */ bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, bool is_store, struct qemu_plugin_hwaddr *data) { CPUArchState *env = cpu->env_ptr; CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); uintptr_t index = tlb_index(env, mmu_idx, addr); target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; if (likely(tlb_hit(tlb_addr, addr))) { /* We must have an iotlb entry for MMIO */ if (tlb_addr & TLB_MMIO) { CPUIOTLBEntry *iotlbentry; iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; data->is_io = true; data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; } else { data->is_io = false; data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); } return true; } else { SavedIOTLB *saved = &cpu->saved_iotlb; data->is_io = true; data->v.io.section = saved->section; data->v.io.offset = saved->mr_offset; return true; } } #endif /* * Probe for an atomic operation. Do not allow unaligned operations, * or io operations to proceed. Return the host address. * * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. */ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, int size, int prot, uintptr_t retaddr) { size_t mmu_idx = get_mmuidx(oi); MemOp mop = get_memop(oi); int a_bits = get_alignment_bits(mop); uintptr_t index; CPUTLBEntry *tlbe; target_ulong tlb_addr; void *hostaddr; /* Adjust the given return address. */ retaddr -= GETPC_ADJ; /* Enforce guest required alignment. */ if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { /* ??? Maybe indicate atomic op to cpu_unaligned_access */ cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* Enforce qemu required alignment. */ if (unlikely(addr & (size - 1))) { /* We get here if guest alignment was not requested, or was not enforced by cpu_unaligned_access above. We might widen the access and emulate, but for now mark an exception and exit the cpu loop. */ goto stop_the_world; } index = tlb_index(env, mmu_idx, addr); tlbe = tlb_entry(env, mmu_idx, addr); /* Check TLB entry and enforce page permissions. */ if (prot & PAGE_WRITE) { tlb_addr = tlb_addr_write(tlbe); if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, mmu_idx, retaddr); index = tlb_index(env, mmu_idx, addr); tlbe = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; } /* Let the guest notice RMW on a write-only page. */ if ((prot & PAGE_READ) && unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); /* * Since we don't support reads and writes to different addresses, * and we do have the proper page loaded for write, this shouldn't * ever return. But just in case, handle via stop-the-world. */ goto stop_the_world; } } else /* if (prot & PAGE_READ) */ { tlb_addr = tlbe->addr_read; if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); index = tlb_index(env, mmu_idx, addr); tlbe = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; } } /* Notice an IO access or a needs-MMU-lookup access */ if (unlikely(tlb_addr & TLB_MMIO)) { /* There's really nothing that can be done to support this apart from stop-the-world. */ goto stop_the_world; } hostaddr = (void *)((uintptr_t)addr + tlbe->addend); if (unlikely(tlb_addr & TLB_NOTDIRTY)) { notdirty_write(env_cpu(env), addr, size, &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr); } return hostaddr; stop_the_world: cpu_loop_exit_atomic(env_cpu(env), retaddr); } /* * Verify that we have passed the correct MemOp to the correct function. * * In the case of the helper_*_mmu functions, we will have done this by * using the MemOp to look up the helper during code generation. * * In the case of the cpu_*_mmu functions, this is up to the caller. * We could present one function to target code, and dispatch based on * the MemOp, but so far we have worked hard to avoid an indirect function * call along the memory path. */ static void validate_memop(MemOpIdx oi, MemOp expected) { #ifdef CONFIG_DEBUG_TCG MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); assert(have == expected); #endif } /* * Load Helpers * * We support two different access types. SOFTMMU_CODE_ACCESS is * specifically for reading instructions from system memory. It is * called by the translation loop and in some helpers where the code * is disassembled. It shouldn't be called directly by guest code. */ typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr); static inline uint64_t QEMU_ALWAYS_INLINE load_memop(const void *haddr, MemOp op) { switch (op) { case MO_UB: return ldub_p(haddr); case MO_BEUW: return lduw_be_p(haddr); case MO_LEUW: return lduw_le_p(haddr); case MO_BEUL: return (uint32_t)ldl_be_p(haddr); case MO_LEUL: return (uint32_t)ldl_le_p(haddr); case MO_BEUQ: return ldq_be_p(haddr); case MO_LEUQ: return ldq_le_p(haddr); default: qemu_build_not_reached(); } } static inline uint64_t QEMU_ALWAYS_INLINE load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr, MemOp op, bool code_read, FullLoadHelper *full_load) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; const size_t tlb_off = code_read ? offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); const MMUAccessType access_type = code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; unsigned a_bits = get_alignment_bits(get_memop(oi)); void *haddr; uint64_t res; size_t size = memop_size(op); /* Handle CPU specific unaligned behaviour */ if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(env_cpu(env), addr, access_type, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, addr & TARGET_PAGE_MASK)) { tlb_fill(env_cpu(env), addr, size, access_type, mmu_idx, retaddr); index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); } tlb_addr = code_read ? entry->addr_code : entry->addr_read; tlb_addr &= ~TLB_INVALID_MASK; } /* Handle anything that isn't just a straight memory access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; bool need_swap; /* For anything that is unaligned, recurse through full_load. */ if ((addr & (size - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; /* Handle watchpoints. */ if (unlikely(tlb_addr & TLB_WATCHPOINT)) { /* On watchpoint hit, this will longjmp out. */ cpu_check_watchpoint(env_cpu(env), addr, size, iotlbentry->attrs, BP_MEM_READ, retaddr); } need_swap = size > 1 && (tlb_addr & TLB_BSWAP); /* Handle I/O access. */ if (likely(tlb_addr & TLB_MMIO)) { return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, access_type, op ^ (need_swap * MO_BSWAP)); } haddr = (void *)((uintptr_t)addr + entry->addend); /* * Keep these two load_memop separate to ensure that the compiler * is able to fold the entire function to a single instruction. * There is a build-time assert inside to remind you of this. ;-) */ if (unlikely(need_swap)) { return load_memop(haddr, op ^ MO_BSWAP); } return load_memop(haddr, op); } /* Handle slow unaligned access (it spans two pages or IO). */ if (size > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; uint64_t r1, r2; unsigned shift; do_unaligned_access: addr1 = addr & ~((target_ulong)size - 1); addr2 = addr1 + size; r1 = full_load(env, addr1, oi, retaddr); r2 = full_load(env, addr2, oi, retaddr); shift = (addr & (size - 1)) * 8; if (memop_big_endian(op)) { /* Big-endian combine. */ res = (r1 << shift) | (r2 >> ((size * 8) - shift)); } else { /* Little-endian combine. */ res = (r1 >> shift) | (r2 << ((size * 8) - shift)); } return res & MAKE_64BIT_MASK(0, size * 8); } haddr = (void *)((uintptr_t)addr + entry->addend); return load_memop(haddr, op); } /* * For the benefit of TCG generated code, we want to avoid the * complication of ABI-specific return type promotion and always * return a value extended to the register size of the host. This is * tcg_target_long, except in the case of a 32-bit host and 64-bit * data, and for that we always have uint64_t. * * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_UB); return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); } tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return full_ldub_mmu(env, addr, oi, retaddr); } static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUW); return load_helper(env, addr, oi, retaddr, MO_LEUW, false, full_le_lduw_mmu); } tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return full_le_lduw_mmu(env, addr, oi, retaddr); } static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUW); return load_helper(env, addr, oi, retaddr, MO_BEUW, false, full_be_lduw_mmu); } tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return full_be_lduw_mmu(env, addr, oi, retaddr); } static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUL); return load_helper(env, addr, oi, retaddr, MO_LEUL, false, full_le_ldul_mmu); } tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return full_le_ldul_mmu(env, addr, oi, retaddr); } static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUL); return load_helper(env, addr, oi, retaddr, MO_BEUL, false, full_be_ldul_mmu); } tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return full_be_ldul_mmu(env, addr, oi, retaddr); } uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUQ); return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, helper_le_ldq_mmu); } uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUQ); return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, helper_be_ldq_mmu); } /* * Provide signed versions of the load routines as well. We can of course * avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); } tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); } /* * Load helpers for cpu_ldst.h. */ static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t retaddr, FullLoadHelper *full_load) { uint64_t ret; ret = full_load(env, addr, oi, retaddr); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return ret; } uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); } uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); } uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); } uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, MO_BEUQ, helper_be_ldq_mmu); } uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); } uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); } uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); } /* * Store Helpers */ static inline void QEMU_ALWAYS_INLINE store_memop(void *haddr, uint64_t val, MemOp op) { switch (op) { case MO_UB: stb_p(haddr, val); break; case MO_BEUW: stw_be_p(haddr, val); break; case MO_LEUW: stw_le_p(haddr, val); break; case MO_BEUL: stl_be_p(haddr, val); break; case MO_LEUL: stl_le_p(haddr, val); break; case MO_BEUQ: stq_be_p(haddr, val); break; case MO_LEUQ: stq_le_p(haddr, val); break; default: qemu_build_not_reached(); } } static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr); static void __attribute__((noinline)) store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, uintptr_t retaddr, size_t size, uintptr_t mmu_idx, bool big_endian) { const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); uintptr_t index, index2; CPUTLBEntry *entry, *entry2; target_ulong page2, tlb_addr, tlb_addr2; MemOpIdx oi; size_t size2; int i; /* * Ensure the second page is in the TLB. Note that the first page * is already guaranteed to be filled, and that the second page * cannot evict the first. */ page2 = (addr + size) & TARGET_PAGE_MASK; size2 = (addr + size) & ~TARGET_PAGE_MASK; index2 = tlb_index(env, mmu_idx, page2); entry2 = tlb_entry(env, mmu_idx, page2); tlb_addr2 = tlb_addr_write(entry2); if (!tlb_hit_page(tlb_addr2, page2)) { if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, mmu_idx, retaddr); index2 = tlb_index(env, mmu_idx, page2); entry2 = tlb_entry(env, mmu_idx, page2); } tlb_addr2 = tlb_addr_write(entry2); } index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); tlb_addr = tlb_addr_write(entry); /* * Handle watchpoints. Since this may trap, all checks * must happen before any store. */ if (unlikely(tlb_addr & TLB_WATCHPOINT)) { cpu_check_watchpoint(env_cpu(env), addr, size - size2, env_tlb(env)->d[mmu_idx].iotlb[index].attrs, BP_MEM_WRITE, retaddr); } if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { cpu_check_watchpoint(env_cpu(env), page2, size2, env_tlb(env)->d[mmu_idx].iotlb[index2].attrs, BP_MEM_WRITE, retaddr); } /* * XXX: not efficient, but simple. * This loop must go in the forward direction to avoid issues * with self-modifying code in Windows 64-bit. */ oi = make_memop_idx(MO_UB, mmu_idx); if (big_endian) { for (i = 0; i < size; ++i) { /* Big-endian extract. */ uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); full_stb_mmu(env, addr + i, val8, oi, retaddr); } } else { for (i = 0; i < size; ++i) { /* Little-endian extract. */ uint8_t val8 = val >> (i * 8); full_stb_mmu(env, addr + i, val8, oi, retaddr); } } } static inline void QEMU_ALWAYS_INLINE store_helper(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr, MemOp op) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = tlb_addr_write(entry); const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); unsigned a_bits = get_alignment_bits(get_memop(oi)); void *haddr; size_t size = memop_size(op); /* Handle CPU specific unaligned behaviour */ if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, addr & TARGET_PAGE_MASK)) { tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, mmu_idx, retaddr); index = tlb_index(env, mmu_idx, addr); entry = tlb_entry(env, mmu_idx, addr); } tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; } /* Handle anything that isn't just a straight memory access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; bool need_swap; /* For anything that is unaligned, recurse through byte stores. */ if ((addr & (size - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; /* Handle watchpoints. */ if (unlikely(tlb_addr & TLB_WATCHPOINT)) { /* On watchpoint hit, this will longjmp out. */ cpu_check_watchpoint(env_cpu(env), addr, size, iotlbentry->attrs, BP_MEM_WRITE, retaddr); } need_swap = size > 1 && (tlb_addr & TLB_BSWAP); /* Handle I/O access. */ if (tlb_addr & TLB_MMIO) { io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, op ^ (need_swap * MO_BSWAP)); return; } /* Ignore writes to ROM. */ if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { return; } /* Handle clean RAM pages. */ if (tlb_addr & TLB_NOTDIRTY) { notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr); } haddr = (void *)((uintptr_t)addr + entry->addend); /* * Keep these two store_memop separate to ensure that the compiler * is able to fold the entire function to a single instruction. * There is a build-time assert inside to remind you of this. ;-) */ if (unlikely(need_swap)) { store_memop(haddr, val, op ^ MO_BSWAP); } else { store_memop(haddr, val, op); } return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (size > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 >= TARGET_PAGE_SIZE)) { do_unaligned_access: store_helper_unaligned(env, addr, val, retaddr, size, mmu_idx, memop_big_endian(op)); return; } haddr = (void *)((uintptr_t)addr + entry->addend); store_memop(haddr, val, op); } static void __attribute__((noinline)) full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_UB); store_helper(env, addr, val, oi, retaddr, MO_UB); } void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, MemOpIdx oi, uintptr_t retaddr) { full_stb_mmu(env, addr, val, oi, retaddr); } static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUW); store_helper(env, addr, val, oi, retaddr, MO_LEUW); } void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, MemOpIdx oi, uintptr_t retaddr) { full_le_stw_mmu(env, addr, val, oi, retaddr); } static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUW); store_helper(env, addr, val, oi, retaddr, MO_BEUW); } void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, MemOpIdx oi, uintptr_t retaddr) { full_be_stw_mmu(env, addr, val, oi, retaddr); } static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUL); store_helper(env, addr, val, oi, retaddr, MO_LEUL); } void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { full_le_stl_mmu(env, addr, val, oi, retaddr); } static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUL); store_helper(env, addr, val, oi, retaddr, MO_BEUL); } void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { full_be_stl_mmu(env, addr, val, oi, retaddr); } void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_LEUQ); store_helper(env, addr, val, oi, retaddr, MO_LEUQ); } void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { validate_memop(oi, MO_BEUQ); store_helper(env, addr, val, oi, retaddr, MO_BEUQ); } /* * Store Helpers for cpu_ldst.h */ typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr); static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t ra, FullStoreHelper *full_store) { full_store(env, addr, val, oi, ra); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); } void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); } void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); } void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); } void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); } void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); } void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, MemOpIdx oi, uintptr_t retaddr) { cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); } #include "ldst_common.c.inc" /* * First set of functions passes in OI and RETADDR. * This makes them callable from other helpers. */ #define ATOMIC_NAME(X) \ glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) #define ATOMIC_MMU_CLEANUP #define ATOMIC_MMU_IDX get_mmuidx(oi) #include "atomic_common.c.inc" #define DATA_SIZE 1 #include "atomic_template.h" #define DATA_SIZE 2 #include "atomic_template.h" #define DATA_SIZE 4 #include "atomic_template.h" #ifdef CONFIG_ATOMIC64 #define DATA_SIZE 8 #include "atomic_template.h" #endif #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 #define DATA_SIZE 16 #include "atomic_template.h" #endif /* Code access functions. */ static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); } uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); return full_ldub_code(env, addr, oi, 0); } static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); } uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); return full_lduw_code(env, addr, oi, 0); } static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); } uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); return full_ldl_code(env, addr, oi, 0); } static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t retaddr) { return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); } uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) { MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); return full_ldq_code(env, addr, oi, 0); }