1 /* 2 // Copyright (c) 2017 2018 Intel Corporation 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 */ 16 17 #include "dbus-sdr/sensorutils.hpp" 18 19 #include <algorithm> 20 #include <cmath> 21 #include <iostream> 22 23 namespace ipmi 24 { 25 26 // Helper function to avoid repeated complicated expression 27 static bool baseInRange(double base) 28 { 29 auto min10 = static_cast<double>(minInt10); 30 auto max10 = static_cast<double>(maxInt10); 31 32 return ((base >= min10) && (base <= max10)); 33 } 34 35 // Helper function for internal use by getSensorAttributes() 36 // Ensures floating-point "base" is within bounds, 37 // and adjusts integer exponent "expShift" accordingly. 38 // To minimize data loss when later truncating to integer, 39 // the floating-point "base" will be as large as possible, 40 // but still within the bounds (minInt10,maxInt10). 41 // The bounds of "expShift" are (minInt4,maxInt4). 42 // Consider this equation: n = base * (10.0 ** expShift) 43 // This function will try to maximize "base", 44 // adjusting "expShift" to keep the value "n" unchanged, 45 // while keeping base and expShift within bounds. 46 // Returns true if successful, modifies values in-place 47 static bool scaleFloatExp(double& base, int8_t& expShift) 48 { 49 // Comparing with zero should be OK, zero is special in floating-point 50 // If base is exactly zero, no adjustment of the exponent is necessary 51 if (base == 0.0) 52 { 53 return true; 54 } 55 56 // As long as base value is within allowed range, expand precision 57 // This will help to avoid loss when later rounding to integer 58 while (baseInRange(base)) 59 { 60 if (expShift <= minInt4) 61 { 62 // Already at the minimum expShift, can not decrement it more 63 break; 64 } 65 66 // Multiply by 10, but shift decimal point to the left, no net change 67 base *= 10.0; 68 --expShift; 69 } 70 71 // As long as base value is *not* within range, shrink precision 72 // This will pull base value closer to zero, thus within range 73 while (!(baseInRange(base))) 74 { 75 if (expShift >= maxInt4) 76 { 77 // Already at the maximum expShift, can not increment it more 78 break; 79 } 80 81 // Divide by 10, but shift decimal point to the right, no net change 82 base /= 10.0; 83 ++expShift; 84 } 85 86 // If the above loop was not able to pull it back within range, 87 // the base value is beyond what expShift can represent, return false. 88 return baseInRange(base); 89 } 90 91 // Helper function for internal use by getSensorAttributes() 92 // Ensures integer "ibase" is no larger than necessary, 93 // by normalizing it so that the decimal point shift is in the exponent, 94 // whenever possible. 95 // This provides more consistent results, 96 // as many equivalent solutions are collapsed into one consistent solution. 97 // If integer "ibase" is a clean multiple of 10, 98 // divide it by 10 (this is lossless), so it is closer to zero. 99 // Also modify floating-point "dbase" at the same time, 100 // as both integer and floating-point base share the same expShift. 101 // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) 102 // because the underlying value is the same: 200*(10**2) == 2*(10**4) 103 // Always successful, modifies values in-place 104 static void normalizeIntExp(int16_t& ibase, int8_t& expShift, double& dbase) 105 { 106 for (;;) 107 { 108 // If zero, already normalized, ensure exponent also zero 109 if (ibase == 0) 110 { 111 expShift = 0; 112 break; 113 } 114 115 // If not cleanly divisible by 10, already normalized 116 if ((ibase % 10) != 0) 117 { 118 break; 119 } 120 121 // If exponent already at max, already normalized 122 if (expShift >= maxInt4) 123 { 124 break; 125 } 126 127 // Bring values closer to zero, correspondingly shift exponent, 128 // without changing the underlying number that this all represents, 129 // similar to what is done by scaleFloatExp(). 130 // The floating-point base must be kept in sync with the integer base, 131 // as both floating-point and integer share the same exponent. 132 ibase /= 10; 133 dbase /= 10.0; 134 ++expShift; 135 } 136 } 137 138 // The IPMI equation: 139 // y = (Mx + (B * 10^(bExp))) * 10^(rExp) 140 // Section 36.3 of this document: 141 // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf 142 // 143 // The goal is to exactly match the math done by the ipmitool command, 144 // at the other side of the interface: 145 // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 146 // 147 // To use with Wolfram Alpha, make all variables single letters 148 // bExp becomes E, rExp becomes R 149 // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 150 bool getSensorAttributes(const double max, const double min, int16_t& mValue, 151 int8_t& rExp, int16_t& bValue, int8_t& bExp, 152 bool& bSigned) 153 { 154 if (!(std::isfinite(min))) 155 { 156 std::cerr << "getSensorAttributes: Min value is unusable\n"; 157 return false; 158 } 159 if (!(std::isfinite(max))) 160 { 161 std::cerr << "getSensorAttributes: Max value is unusable\n"; 162 return false; 163 } 164 165 // Because NAN has already been tested for, this comparison works 166 if (max <= min) 167 { 168 std::cerr << "getSensorAttributes: Max must be greater than min\n"; 169 return false; 170 } 171 172 // Given min and max, we must solve for M, B, bExp, rExp 173 // y comes in from D-Bus (the actual sensor reading) 174 // x is calculated from y by scaleIPMIValueFromDouble() below 175 // If y is min, x should equal = 0 (or -128 if signed) 176 // If y is max, x should equal 255 (or 127 if signed) 177 double fullRange = max - min; 178 double lowestX; 179 180 rExp = 0; 181 bExp = 0; 182 183 // TODO(): The IPMI document is ambiguous, as to whether 184 // the resulting byte should be signed or unsigned, 185 // essentially leaving it up to the caller. 186 // The document just refers to it as "raw reading", 187 // or "byte of reading", without giving further details. 188 // Previous code set it signed if min was less than zero, 189 // so I'm sticking with that, until I learn otherwise. 190 if (min < 0.0) 191 { 192 // TODO(): It would be worth experimenting with the range (-127,127), 193 // instead of the range (-128,127), because this 194 // would give good symmetry around zero, and make results look better. 195 // Divide by 254 instead of 255, and change -128 to -127 elsewhere. 196 bSigned = true; 197 lowestX = -128.0; 198 } 199 else 200 { 201 bSigned = false; 202 lowestX = 0.0; 203 } 204 205 // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M 206 // This works, regardless of signed or unsigned, 207 // because total range is the same. 208 double dM = fullRange / 255.0; 209 210 // Step 2: Constrain M, and set rExp accordingly 211 if (!(scaleFloatExp(dM, rExp))) 212 { 213 std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" 214 << dM << ", rExp=" << (int)rExp << ")\n"; 215 return false; 216 } 217 218 mValue = static_cast<int16_t>(std::round(dM)); 219 220 normalizeIntExp(mValue, rExp, dM); 221 222 // The multiplier can not be zero, for obvious reasons 223 if (mValue == 0) 224 { 225 std::cerr << "getSensorAttributes: Multiplier range below scale\n"; 226 return false; 227 } 228 229 // Step 3: set y to min, set x to min, keep M and rExp, solve for B 230 // If negative, x will be -128 (the most negative possible byte), not 0 231 232 // Solve the IPMI equation for B, instead of y 233 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B 234 // B = 10^(-rExp - bExp) (y - M 10^rExp x) 235 // TODO(): Compare with this alternative solution from SageMathCell 236 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== 237 double dB = std::pow(10.0, ((-rExp) - bExp)) * 238 (min - ((dM * std::pow(10.0, rExp) * lowestX))); 239 240 // Step 4: Constrain B, and set bExp accordingly 241 if (!(scaleFloatExp(dB, bExp))) 242 { 243 std::cerr << "getSensorAttributes: Offset (B=" << dB 244 << ", bExp=" << (int)bExp 245 << ") exceeds multiplier scale (M=" << dM 246 << ", rExp=" << (int)rExp << ")\n"; 247 return false; 248 } 249 250 bValue = static_cast<int16_t>(std::round(dB)); 251 252 normalizeIntExp(bValue, bExp, dB); 253 254 // Unlike the multiplier, it is perfectly OK for bValue to be zero 255 return true; 256 } 257 258 uint8_t scaleIPMIValueFromDouble(const double value, const int16_t mValue, 259 const int8_t rExp, const int16_t bValue, 260 const int8_t bExp, const bool bSigned) 261 { 262 // Avoid division by zero below 263 if (mValue == 0) 264 { 265 throw std::out_of_range("Scaling multiplier is uninitialized"); 266 } 267 268 auto dM = static_cast<double>(mValue); 269 auto dB = static_cast<double>(bValue); 270 271 // Solve the IPMI equation for x, instead of y 272 // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x 273 // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 274 // TODO(): Compare with this alternative solution from SageMathCell 275 // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== 276 double dX = 277 (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / 278 dM; 279 280 auto scaledValue = static_cast<int32_t>(std::round(dX)); 281 282 int32_t minClamp; 283 int32_t maxClamp; 284 285 // Because of rounding and integer truncation of scaling factors, 286 // sometimes the resulting byte is slightly out of range. 287 // Still allow this, but clamp the values to range. 288 if (bSigned) 289 { 290 minClamp = std::numeric_limits<int8_t>::lowest(); 291 maxClamp = std::numeric_limits<int8_t>::max(); 292 } 293 else 294 { 295 minClamp = std::numeric_limits<uint8_t>::lowest(); 296 maxClamp = std::numeric_limits<uint8_t>::max(); 297 } 298 299 auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); 300 301 // This works for both signed and unsigned, 302 // because it is the same underlying byte storage. 303 return static_cast<uint8_t>(clampedValue); 304 } 305 306 uint8_t getScaledIPMIValue(const double value, const double max, 307 const double min) 308 { 309 int16_t mValue = 0; 310 int8_t rExp = 0; 311 int16_t bValue = 0; 312 int8_t bExp = 0; 313 bool bSigned = false; 314 315 bool result = 316 getSensorAttributes(max, min, mValue, rExp, bValue, bExp, bSigned); 317 if (!result) 318 { 319 throw std::runtime_error("Illegal sensor attributes"); 320 } 321 322 return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); 323 } 324 325 } // namespace ipmi 326