/* // Copyright (c) 2017 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include "dbus-sdr/sensorutils.hpp" #include #include #include namespace ipmi { // Helper function to avoid repeated complicated expression static bool baseInRange(double base) { auto min10 = static_cast(minInt10); auto max10 = static_cast(maxInt10); return ((base >= min10) && (base <= max10)); } // Helper function for internal use by getSensorAttributes() // Ensures floating-point "base" is within bounds, // and adjusts integer exponent "expShift" accordingly. // To minimize data loss when later truncating to integer, // the floating-point "base" will be as large as possible, // but still within the bounds (minInt10,maxInt10). // The bounds of "expShift" are (minInt4,maxInt4). // Consider this equation: n = base * (10.0 ** expShift) // This function will try to maximize "base", // adjusting "expShift" to keep the value "n" unchanged, // while keeping base and expShift within bounds. // Returns true if successful, modifies values in-place static bool scaleFloatExp(double& base, int8_t& expShift) { // Comparing with zero should be OK, zero is special in floating-point // If base is exactly zero, no adjustment of the exponent is necessary if (base == 0.0) { return true; } // As long as base value is within allowed range, expand precision // This will help to avoid loss when later rounding to integer while (baseInRange(base)) { if (expShift <= minInt4) { // Already at the minimum expShift, can not decrement it more break; } // Multiply by 10, but shift decimal point to the left, no net change base *= 10.0; --expShift; } // As long as base value is *not* within range, shrink precision // This will pull base value closer to zero, thus within range while (!(baseInRange(base))) { if (expShift >= maxInt4) { // Already at the maximum expShift, can not increment it more break; } // Divide by 10, but shift decimal point to the right, no net change base /= 10.0; ++expShift; } // If the above loop was not able to pull it back within range, // the base value is beyond what expShift can represent, return false. return baseInRange(base); } // Helper function for internal use by getSensorAttributes() // Ensures integer "ibase" is no larger than necessary, // by normalizing it so that the decimal point shift is in the exponent, // whenever possible. // This provides more consistent results, // as many equivalent solutions are collapsed into one consistent solution. // If integer "ibase" is a clean multiple of 10, // divide it by 10 (this is lossless), so it is closer to zero. // Also modify floating-point "dbase" at the same time, // as both integer and floating-point base share the same expShift. // Example: (ibase=300, expShift=2) becomes (ibase=3, expShift=4) // because the underlying value is the same: 200*(10**2) == 2*(10**4) // Always successful, modifies values in-place static void normalizeIntExp(int16_t& ibase, int8_t& expShift, double& dbase) { for (;;) { // If zero, already normalized, ensure exponent also zero if (ibase == 0) { expShift = 0; break; } // If not cleanly divisible by 10, already normalized if ((ibase % 10) != 0) { break; } // If exponent already at max, already normalized if (expShift >= maxInt4) { break; } // Bring values closer to zero, correspondingly shift exponent, // without changing the underlying number that this all represents, // similar to what is done by scaleFloatExp(). // The floating-point base must be kept in sync with the integer base, // as both floating-point and integer share the same exponent. ibase /= 10; dbase /= 10.0; ++expShift; } } // The IPMI equation: // y = (Mx + (B * 10^(bExp))) * 10^(rExp) // Section 36.3 of this document: // https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf // // The goal is to exactly match the math done by the ipmitool command, // at the other side of the interface: // https://github.com/ipmitool/ipmitool/blob/42a023ff0726c80e8cc7d30315b987fe568a981d/lib/ipmi_sdr.c#L360 // // To use with Wolfram Alpha, make all variables single letters // bExp becomes E, rExp becomes R // https://www.wolframalpha.com/input/?i=y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29 bool getSensorAttributes(const double max, const double min, int16_t& mValue, int8_t& rExp, int16_t& bValue, int8_t& bExp, bool& bSigned) { if (!(std::isfinite(min))) { std::cerr << "getSensorAttributes: Min value is unusable\n"; return false; } if (!(std::isfinite(max))) { std::cerr << "getSensorAttributes: Max value is unusable\n"; return false; } // Because NAN has already been tested for, this comparison works if (max <= min) { std::cerr << "getSensorAttributes: Max must be greater than min\n"; return false; } // Given min and max, we must solve for M, B, bExp, rExp // y comes in from D-Bus (the actual sensor reading) // x is calculated from y by scaleIPMIValueFromDouble() below // If y is min, x should equal = 0 (or -128 if signed) // If y is max, x should equal 255 (or 127 if signed) double fullRange = max - min; double lowestX; rExp = 0; bExp = 0; // TODO(): The IPMI document is ambiguous, as to whether // the resulting byte should be signed or unsigned, // essentially leaving it up to the caller. // The document just refers to it as "raw reading", // or "byte of reading", without giving further details. // Previous code set it signed if min was less than zero, // so I'm sticking with that, until I learn otherwise. if (min < 0.0) { // TODO(): It would be worth experimenting with the range (-127,127), // instead of the range (-128,127), because this // would give good symmetry around zero, and make results look better. // Divide by 254 instead of 255, and change -128 to -127 elsewhere. bSigned = true; lowestX = -128.0; } else { bSigned = false; lowestX = 0.0; } // Step 1: Set y to (max - min), set x to 255, set B to 0, solve for M // This works, regardless of signed or unsigned, // because total range is the same. double dM = fullRange / 255.0; // Step 2: Constrain M, and set rExp accordingly if (!(scaleFloatExp(dM, rExp))) { std::cerr << "getSensorAttributes: Multiplier range exceeds scale (M=" << dM << ", rExp=" << (int)rExp << ")\n"; return false; } mValue = static_cast(std::round(dM)); normalizeIntExp(mValue, rExp, dM); // The multiplier can not be zero, for obvious reasons if (mValue == 0) { std::cerr << "getSensorAttributes: Multiplier range below scale\n"; return false; } // Step 3: set y to min, set x to min, keep M and rExp, solve for B // If negative, x will be -128 (the most negative possible byte), not 0 // Solve the IPMI equation for B, instead of y // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+B // B = 10^(-rExp - bExp) (y - M 10^rExp x) // TODO(): Compare with this alternative solution from SageMathCell // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasjoKTJgDAECTH&lang=sage&interacts=eJyLjgUAARUAuQ== double dB = std::pow(10.0, ((-rExp) - bExp)) * (min - ((dM * std::pow(10.0, rExp) * lowestX))); // Step 4: Constrain B, and set bExp accordingly if (!(scaleFloatExp(dB, bExp))) { std::cerr << "getSensorAttributes: Offset (B=" << dB << ", bExp=" << (int)bExp << ") exceeds multiplier scale (M=" << dM << ", rExp=" << (int)rExp << ")\n"; return false; } bValue = static_cast(std::round(dB)); normalizeIntExp(bValue, bExp, dB); // Unlike the multiplier, it is perfectly OK for bValue to be zero return true; } uint8_t scaleIPMIValueFromDouble(const double value, const int16_t mValue, const int8_t rExp, const int16_t bValue, const int8_t bExp, const bool bSigned) { // Avoid division by zero below if (mValue == 0) { throw std::out_of_range("Scaling multiplier is uninitialized"); } auto dM = static_cast(mValue); auto dB = static_cast(bValue); // Solve the IPMI equation for x, instead of y // https://www.wolframalpha.com/input/?i=solve+y%3D%28%28M*x%29%2B%28B*%2810%5EE%29%29%29*%2810%5ER%29+for+x // x = (10^(-rExp) (y - B 10^(rExp + bExp)))/M and M 10^rExp!=0 // TODO(): Compare with this alternative solution from SageMathCell // https://sagecell.sagemath.org/?z=eJyrtC1LLNJQr1TX5KqAMCuATF8I0xfIdIIwnYDMIteKAggPxAIKJMEFkiACxfk5Zaka0ZUKtrYKGhq-CloKFZoK2goaTkCWhqGBgpaWAkilpqYmQgBklmasDlAlAMB8JP0=&lang=sage&interacts=eJyLjgUAARUAuQ== double dX = (std::pow(10.0, -rExp) * (value - (dB * std::pow(10.0, rExp + bExp)))) / dM; auto scaledValue = static_cast(std::round(dX)); int32_t minClamp; int32_t maxClamp; // Because of rounding and integer truncation of scaling factors, // sometimes the resulting byte is slightly out of range. // Still allow this, but clamp the values to range. if (bSigned) { minClamp = std::numeric_limits::lowest(); maxClamp = std::numeric_limits::max(); } else { minClamp = std::numeric_limits::lowest(); maxClamp = std::numeric_limits::max(); } auto clampedValue = std::clamp(scaledValue, minClamp, maxClamp); // This works for both signed and unsigned, // because it is the same underlying byte storage. return static_cast(clampedValue); } uint8_t getScaledIPMIValue(const double value, const double max, const double min) { int16_t mValue = 0; int8_t rExp = 0; int16_t bValue = 0; int8_t bExp = 0; bool bSigned = false; bool result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp, bSigned); if (!result) { throw std::runtime_error("Illegal sensor attributes"); } return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); } } // namespace ipmi