1 // SPDX-License-Identifier: LGPL-2.1
2 #define _GNU_SOURCE
3 #include <assert.h>
4 #include <pthread.h>
5 #include <sched.h>
6 #include <stdint.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <stddef.h>
11 
12 #include "../kselftest.h"
13 #include "rseq.h"
14 
15 #ifdef BUILDOPT_RSEQ_PERCPU_MM_CID
16 # define RSEQ_PERCPU	RSEQ_PERCPU_MM_CID
17 static
get_current_cpu_id(void)18 int get_current_cpu_id(void)
19 {
20 	return rseq_current_mm_cid();
21 }
22 static
rseq_validate_cpu_id(void)23 bool rseq_validate_cpu_id(void)
24 {
25 	return rseq_mm_cid_available();
26 }
27 #else
28 # define RSEQ_PERCPU	RSEQ_PERCPU_CPU_ID
29 static
get_current_cpu_id(void)30 int get_current_cpu_id(void)
31 {
32 	return rseq_cpu_start();
33 }
34 static
rseq_validate_cpu_id(void)35 bool rseq_validate_cpu_id(void)
36 {
37 	return rseq_current_cpu_raw() >= 0;
38 }
39 #endif
40 
41 struct percpu_lock_entry {
42 	intptr_t v;
43 } __attribute__((aligned(128)));
44 
45 struct percpu_lock {
46 	struct percpu_lock_entry c[CPU_SETSIZE];
47 };
48 
49 struct test_data_entry {
50 	intptr_t count;
51 } __attribute__((aligned(128)));
52 
53 struct spinlock_test_data {
54 	struct percpu_lock lock;
55 	struct test_data_entry c[CPU_SETSIZE];
56 	int reps;
57 };
58 
59 struct percpu_list_node {
60 	intptr_t data;
61 	struct percpu_list_node *next;
62 };
63 
64 struct percpu_list_entry {
65 	struct percpu_list_node *head;
66 } __attribute__((aligned(128)));
67 
68 struct percpu_list {
69 	struct percpu_list_entry c[CPU_SETSIZE];
70 };
71 
72 /* A simple percpu spinlock.  Returns the cpu lock was acquired on. */
rseq_this_cpu_lock(struct percpu_lock * lock)73 int rseq_this_cpu_lock(struct percpu_lock *lock)
74 {
75 	int cpu;
76 
77 	for (;;) {
78 		int ret;
79 
80 		cpu = get_current_cpu_id();
81 		ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
82 					 &lock->c[cpu].v, 0, 1, cpu);
83 		if (rseq_likely(!ret))
84 			break;
85 		/* Retry if comparison fails or rseq aborts. */
86 	}
87 	/*
88 	 * Acquire semantic when taking lock after control dependency.
89 	 * Matches rseq_smp_store_release().
90 	 */
91 	rseq_smp_acquire__after_ctrl_dep();
92 	return cpu;
93 }
94 
rseq_percpu_unlock(struct percpu_lock * lock,int cpu)95 void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
96 {
97 	assert(lock->c[cpu].v == 1);
98 	/*
99 	 * Release lock, with release semantic. Matches
100 	 * rseq_smp_acquire__after_ctrl_dep().
101 	 */
102 	rseq_smp_store_release(&lock->c[cpu].v, 0);
103 }
104 
test_percpu_spinlock_thread(void * arg)105 void *test_percpu_spinlock_thread(void *arg)
106 {
107 	struct spinlock_test_data *data = arg;
108 	int i, cpu;
109 
110 	if (rseq_register_current_thread()) {
111 		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
112 			errno, strerror(errno));
113 		abort();
114 	}
115 	for (i = 0; i < data->reps; i++) {
116 		cpu = rseq_this_cpu_lock(&data->lock);
117 		data->c[cpu].count++;
118 		rseq_percpu_unlock(&data->lock, cpu);
119 	}
120 	if (rseq_unregister_current_thread()) {
121 		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
122 			errno, strerror(errno));
123 		abort();
124 	}
125 
126 	return NULL;
127 }
128 
129 /*
130  * A simple test which implements a sharded counter using a per-cpu
131  * lock.  Obviously real applications might prefer to simply use a
132  * per-cpu increment; however, this is reasonable for a test and the
133  * lock can be extended to synchronize more complicated operations.
134  */
test_percpu_spinlock(void)135 void test_percpu_spinlock(void)
136 {
137 	const int num_threads = 200;
138 	int i;
139 	uint64_t sum;
140 	pthread_t test_threads[num_threads];
141 	struct spinlock_test_data data;
142 
143 	memset(&data, 0, sizeof(data));
144 	data.reps = 5000;
145 
146 	for (i = 0; i < num_threads; i++)
147 		pthread_create(&test_threads[i], NULL,
148 			       test_percpu_spinlock_thread, &data);
149 
150 	for (i = 0; i < num_threads; i++)
151 		pthread_join(test_threads[i], NULL);
152 
153 	sum = 0;
154 	for (i = 0; i < CPU_SETSIZE; i++)
155 		sum += data.c[i].count;
156 
157 	assert(sum == (uint64_t)data.reps * num_threads);
158 }
159 
this_cpu_list_push(struct percpu_list * list,struct percpu_list_node * node,int * _cpu)160 void this_cpu_list_push(struct percpu_list *list,
161 			struct percpu_list_node *node,
162 			int *_cpu)
163 {
164 	int cpu;
165 
166 	for (;;) {
167 		intptr_t *targetptr, newval, expect;
168 		int ret;
169 
170 		cpu = get_current_cpu_id();
171 		/* Load list->c[cpu].head with single-copy atomicity. */
172 		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
173 		newval = (intptr_t)node;
174 		targetptr = (intptr_t *)&list->c[cpu].head;
175 		node->next = (struct percpu_list_node *)expect;
176 		ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
177 					 targetptr, expect, newval, cpu);
178 		if (rseq_likely(!ret))
179 			break;
180 		/* Retry if comparison fails or rseq aborts. */
181 	}
182 	if (_cpu)
183 		*_cpu = cpu;
184 }
185 
186 /*
187  * Unlike a traditional lock-less linked list; the availability of a
188  * rseq primitive allows us to implement pop without concerns over
189  * ABA-type races.
190  */
this_cpu_list_pop(struct percpu_list * list,int * _cpu)191 struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
192 					   int *_cpu)
193 {
194 	for (;;) {
195 		struct percpu_list_node *head;
196 		intptr_t *targetptr, expectnot, *load;
197 		long offset;
198 		int ret, cpu;
199 
200 		cpu = get_current_cpu_id();
201 		targetptr = (intptr_t *)&list->c[cpu].head;
202 		expectnot = (intptr_t)NULL;
203 		offset = offsetof(struct percpu_list_node, next);
204 		load = (intptr_t *)&head;
205 		ret = rseq_cmpnev_storeoffp_load(RSEQ_MO_RELAXED, RSEQ_PERCPU,
206 						 targetptr, expectnot,
207 						 offset, load, cpu);
208 		if (rseq_likely(!ret)) {
209 			if (_cpu)
210 				*_cpu = cpu;
211 			return head;
212 		}
213 		if (ret > 0)
214 			return NULL;
215 		/* Retry if rseq aborts. */
216 	}
217 }
218 
219 /*
220  * __percpu_list_pop is not safe against concurrent accesses. Should
221  * only be used on lists that are not concurrently modified.
222  */
__percpu_list_pop(struct percpu_list * list,int cpu)223 struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
224 {
225 	struct percpu_list_node *node;
226 
227 	node = list->c[cpu].head;
228 	if (!node)
229 		return NULL;
230 	list->c[cpu].head = node->next;
231 	return node;
232 }
233 
test_percpu_list_thread(void * arg)234 void *test_percpu_list_thread(void *arg)
235 {
236 	int i;
237 	struct percpu_list *list = (struct percpu_list *)arg;
238 
239 	if (rseq_register_current_thread()) {
240 		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
241 			errno, strerror(errno));
242 		abort();
243 	}
244 
245 	for (i = 0; i < 100000; i++) {
246 		struct percpu_list_node *node;
247 
248 		node = this_cpu_list_pop(list, NULL);
249 		sched_yield();  /* encourage shuffling */
250 		if (node)
251 			this_cpu_list_push(list, node, NULL);
252 	}
253 
254 	if (rseq_unregister_current_thread()) {
255 		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
256 			errno, strerror(errno));
257 		abort();
258 	}
259 
260 	return NULL;
261 }
262 
263 /* Simultaneous modification to a per-cpu linked list from many threads.  */
test_percpu_list(void)264 void test_percpu_list(void)
265 {
266 	int i, j;
267 	uint64_t sum = 0, expected_sum = 0;
268 	struct percpu_list list;
269 	pthread_t test_threads[200];
270 	cpu_set_t allowed_cpus;
271 
272 	memset(&list, 0, sizeof(list));
273 
274 	/* Generate list entries for every usable cpu. */
275 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
276 	for (i = 0; i < CPU_SETSIZE; i++) {
277 		if (!CPU_ISSET(i, &allowed_cpus))
278 			continue;
279 		for (j = 1; j <= 100; j++) {
280 			struct percpu_list_node *node;
281 
282 			expected_sum += j;
283 
284 			node = malloc(sizeof(*node));
285 			assert(node);
286 			node->data = j;
287 			node->next = list.c[i].head;
288 			list.c[i].head = node;
289 		}
290 	}
291 
292 	for (i = 0; i < 200; i++)
293 		pthread_create(&test_threads[i], NULL,
294 		       test_percpu_list_thread, &list);
295 
296 	for (i = 0; i < 200; i++)
297 		pthread_join(test_threads[i], NULL);
298 
299 	for (i = 0; i < CPU_SETSIZE; i++) {
300 		struct percpu_list_node *node;
301 
302 		if (!CPU_ISSET(i, &allowed_cpus))
303 			continue;
304 
305 		while ((node = __percpu_list_pop(&list, i))) {
306 			sum += node->data;
307 			free(node);
308 		}
309 	}
310 
311 	/*
312 	 * All entries should now be accounted for (unless some external
313 	 * actor is interfering with our allowed affinity while this
314 	 * test is running).
315 	 */
316 	assert(sum == expected_sum);
317 }
318 
main(int argc,char ** argv)319 int main(int argc, char **argv)
320 {
321 	if (rseq_register_current_thread()) {
322 		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
323 			errno, strerror(errno));
324 		goto error;
325 	}
326 	if (!rseq_validate_cpu_id()) {
327 		fprintf(stderr, "Error: cpu id getter unavailable\n");
328 		goto error;
329 	}
330 	printf("spinlock\n");
331 	test_percpu_spinlock();
332 	printf("percpu_list\n");
333 	test_percpu_list();
334 	if (rseq_unregister_current_thread()) {
335 		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
336 			errno, strerror(errno));
337 		goto error;
338 	}
339 	return 0;
340 
341 error:
342 	return -1;
343 }
344