1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * skl-sst-cldma.c - Code Loader DMA handler
4  *
5  * Copyright (C) 2015, Intel Corporation.
6  * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  */
9 
10 #include <linux/device.h>
11 #include <linux/mm.h>
12 #include <linux/delay.h>
13 #include "../common/sst-dsp.h"
14 #include "../common/sst-dsp-priv.h"
15 
16 static void skl_cldma_int_enable(struct sst_dsp *ctx)
17 {
18 	sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
19 				SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
20 }
21 
22 void skl_cldma_int_disable(struct sst_dsp *ctx)
23 {
24 	sst_dsp_shim_update_bits_unlocked(ctx,
25 			SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
26 }
27 
28 static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
29 {
30 	unsigned char val;
31 	int timeout;
32 
33 	sst_dsp_shim_update_bits_unlocked(ctx,
34 			SKL_ADSP_REG_CL_SD_CTL,
35 			CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
36 
37 	udelay(3);
38 	timeout = 300;
39 	do {
40 		/* waiting for hardware to report that the stream Run bit set */
41 		val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
42 			CL_SD_CTL_RUN_MASK;
43 		if (enable && val)
44 			break;
45 		else if (!enable && !val)
46 			break;
47 		udelay(3);
48 	} while (--timeout);
49 
50 	if (timeout == 0)
51 		dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
52 }
53 
54 static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
55 {
56 	/* make sure Run bit is cleared before setting stream register */
57 	skl_cldma_stream_run(ctx, 0);
58 
59 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
60 				CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
61 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
62 				CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
63 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
64 				CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
65 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
66 				CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
67 
68 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
69 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
70 
71 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
72 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
73 }
74 
75 /* Code loader helper APIs */
76 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
77 		struct snd_dma_buffer *dmab_data,
78 		__le32 **bdlp, int size, int with_ioc)
79 {
80 	__le32 *bdl = *bdlp;
81 
82 	ctx->cl_dev.frags = 0;
83 	while (size > 0) {
84 		phys_addr_t addr = virt_to_phys(dmab_data->area +
85 				(ctx->cl_dev.frags * ctx->cl_dev.bufsize));
86 
87 		bdl[0] = cpu_to_le32(lower_32_bits(addr));
88 		bdl[1] = cpu_to_le32(upper_32_bits(addr));
89 
90 		bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
91 
92 		size -= ctx->cl_dev.bufsize;
93 		bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
94 
95 		bdl += 4;
96 		ctx->cl_dev.frags++;
97 	}
98 }
99 
100 /*
101  * Setup controller
102  * Configure the registers to update the dma buffer address and
103  * enable interrupts.
104  * Note: Using the channel 1 for transfer
105  */
106 static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
107 		struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
108 		u32 count)
109 {
110 	skl_cldma_stream_clear(ctx);
111 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
112 			CL_SD_BDLPLBA(dmab_bdl->addr));
113 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
114 			CL_SD_BDLPUBA(dmab_bdl->addr));
115 
116 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
117 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
118 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
119 			CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
120 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
121 			CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
122 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
123 			CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
124 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
125 			CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
126 }
127 
128 static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
129 		unsigned int size, bool enable)
130 {
131 	if (enable)
132 		sst_dsp_shim_update_bits_unlocked(ctx,
133 				SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
134 				CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
135 				CL_SPBFIFO_SPBFCCTL_SPIBE(1));
136 
137 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
138 }
139 
140 static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
141 {
142 	sst_dsp_shim_update_bits_unlocked(ctx,
143 			SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
144 			CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
145 			CL_SPBFIFO_SPBFCCTL_SPIBE(0));
146 
147 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
148 }
149 
150 static void skl_cldma_cleanup(struct sst_dsp  *ctx)
151 {
152 	skl_cldma_cleanup_spb(ctx);
153 	skl_cldma_stream_clear(ctx);
154 
155 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
156 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
157 }
158 
159 int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
160 {
161 	int ret = 0;
162 
163 	if (!wait_event_timeout(ctx->cl_dev.wait_queue,
164 				ctx->cl_dev.wait_condition,
165 				msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
166 		dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
167 		ret = -EIO;
168 		goto cleanup;
169 	}
170 
171 	dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
172 	if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
173 		dev_err(ctx->dev, "%s: DMA Error\n", __func__);
174 		ret = -EIO;
175 	}
176 
177 cleanup:
178 	ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
179 	return ret;
180 }
181 
182 static void skl_cldma_stop(struct sst_dsp *ctx)
183 {
184 	skl_cldma_stream_run(ctx, false);
185 }
186 
187 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
188 		const void *curr_pos, bool intr_enable, bool trigger)
189 {
190 	dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
191 	dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
192 			ctx->cl_dev.dma_buffer_offset, trigger);
193 	dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
194 
195 	/*
196 	 * Check if the size exceeds buffer boundary. If it exceeds
197 	 * max_buffer size, then copy till buffer size and then copy
198 	 * remaining buffer from the start of ring buffer.
199 	 */
200 	if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
201 		unsigned int size_b = ctx->cl_dev.bufsize -
202 					ctx->cl_dev.dma_buffer_offset;
203 		memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
204 			curr_pos, size_b);
205 		size -= size_b;
206 		curr_pos += size_b;
207 		ctx->cl_dev.dma_buffer_offset = 0;
208 	}
209 
210 	memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
211 			curr_pos, size);
212 
213 	if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
214 		ctx->cl_dev.dma_buffer_offset = 0;
215 	else
216 		ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
217 
218 	ctx->cl_dev.wait_condition = false;
219 
220 	if (intr_enable)
221 		skl_cldma_int_enable(ctx);
222 
223 	ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
224 	if (trigger)
225 		ctx->cl_dev.ops.cl_trigger(ctx, true);
226 }
227 
228 /*
229  * The CL dma doesn't have any way to update the transfer status until a BDL
230  * buffer is fully transferred
231  *
232  * So Copying is divided in two parts.
233  * 1. Interrupt on buffer done where the size to be transferred is more than
234  *    ring buffer size.
235  * 2. Polling on fw register to identify if data left to transferred doesn't
236  *    fill the ring buffer. Caller takes care of polling the required status
237  *    register to identify the transfer status.
238  * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
239  *    bytes_left is 0.
240  *    if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
241  *    the first chunk return the no of bytes_left to be copied.
242  */
243 static int
244 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
245 			u32 total_size, bool wait)
246 {
247 	int ret = 0;
248 	bool start = true;
249 	unsigned int excess_bytes;
250 	u32 size;
251 	unsigned int bytes_left = total_size;
252 	const void *curr_pos = bin;
253 
254 	if (total_size <= 0)
255 		return -EINVAL;
256 
257 	dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
258 
259 	while (bytes_left) {
260 		if (bytes_left > ctx->cl_dev.bufsize) {
261 
262 			/*
263 			 * dma transfers only till the write pointer as
264 			 * updated in spib
265 			 */
266 			if (ctx->cl_dev.curr_spib_pos == 0)
267 				ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
268 
269 			size = ctx->cl_dev.bufsize;
270 			skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
271 
272 			if (wait) {
273 				start = false;
274 				ret = skl_cldma_wait_interruptible(ctx);
275 				if (ret < 0) {
276 					skl_cldma_stop(ctx);
277 					return ret;
278 				}
279 			}
280 		} else {
281 			skl_cldma_int_disable(ctx);
282 
283 			if ((ctx->cl_dev.curr_spib_pos + bytes_left)
284 							<= ctx->cl_dev.bufsize) {
285 				ctx->cl_dev.curr_spib_pos += bytes_left;
286 			} else {
287 				excess_bytes = bytes_left -
288 					(ctx->cl_dev.bufsize -
289 					ctx->cl_dev.curr_spib_pos);
290 				ctx->cl_dev.curr_spib_pos = excess_bytes;
291 			}
292 
293 			size = bytes_left;
294 			skl_cldma_fill_buffer(ctx, size,
295 					curr_pos, false, start);
296 		}
297 		bytes_left -= size;
298 		curr_pos = curr_pos + size;
299 		if (!wait)
300 			return bytes_left;
301 	}
302 
303 	return bytes_left;
304 }
305 
306 void skl_cldma_process_intr(struct sst_dsp *ctx)
307 {
308 	u8 cl_dma_intr_status;
309 
310 	cl_dma_intr_status =
311 		sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
312 
313 	if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
314 		ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
315 	else
316 		ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
317 
318 	ctx->cl_dev.wait_condition = true;
319 	wake_up(&ctx->cl_dev.wait_queue);
320 }
321 
322 int skl_cldma_prepare(struct sst_dsp *ctx)
323 {
324 	int ret;
325 	__le32 *bdl;
326 
327 	ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
328 
329 	/* Allocate cl ops */
330 	ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
331 	ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
332 	ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
333 	ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
334 	ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
335 	ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
336 	ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
337 	ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
338 
339 	/* Allocate buffer*/
340 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
341 			&ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
342 	if (ret < 0) {
343 		dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
344 		return ret;
345 	}
346 	/* Setup Code loader BDL */
347 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
348 			&ctx->cl_dev.dmab_bdl, PAGE_SIZE);
349 	if (ret < 0) {
350 		dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
351 		ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
352 		return ret;
353 	}
354 	bdl = (__le32 *)ctx->cl_dev.dmab_bdl.area;
355 
356 	/* Allocate BDLs */
357 	ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
358 			&bdl, ctx->cl_dev.bufsize, 1);
359 	ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
360 			ctx->cl_dev.bufsize, ctx->cl_dev.frags);
361 
362 	ctx->cl_dev.curr_spib_pos = 0;
363 	ctx->cl_dev.dma_buffer_offset = 0;
364 	init_waitqueue_head(&ctx->cl_dev.wait_queue);
365 
366 	return ret;
367 }
368