1 /* 2 * skl-sst-cldma.c - Code Loader DMA handler 3 * 4 * Copyright (C) 2015, Intel Corporation. 5 * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com> 6 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as version 2, as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 */ 17 18 #include <linux/device.h> 19 #include <linux/mm.h> 20 #include <linux/delay.h> 21 #include "../common/sst-dsp.h" 22 #include "../common/sst-dsp-priv.h" 23 24 static void skl_cldma_int_enable(struct sst_dsp *ctx) 25 { 26 sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC, 27 SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA); 28 } 29 30 void skl_cldma_int_disable(struct sst_dsp *ctx) 31 { 32 sst_dsp_shim_update_bits_unlocked(ctx, 33 SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0); 34 } 35 36 static void skl_cldma_stream_run(struct sst_dsp *ctx, bool enable) 37 { 38 unsigned char val; 39 int timeout; 40 41 sst_dsp_shim_update_bits_unlocked(ctx, 42 SKL_ADSP_REG_CL_SD_CTL, 43 CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable)); 44 45 udelay(3); 46 timeout = 300; 47 do { 48 /* waiting for hardware to report that the stream Run bit set */ 49 val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) & 50 CL_SD_CTL_RUN_MASK; 51 if (enable && val) 52 break; 53 else if (!enable && !val) 54 break; 55 udelay(3); 56 } while (--timeout); 57 58 if (timeout == 0) 59 dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable); 60 } 61 62 static void skl_cldma_stream_clear(struct sst_dsp *ctx) 63 { 64 /* make sure Run bit is cleared before setting stream register */ 65 skl_cldma_stream_run(ctx, 0); 66 67 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 68 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0)); 69 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 70 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0)); 71 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 72 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0)); 73 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 74 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0)); 75 76 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0)); 77 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0); 78 79 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0); 80 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0); 81 } 82 83 /* Code loader helper APIs */ 84 static void skl_cldma_setup_bdle(struct sst_dsp *ctx, 85 struct snd_dma_buffer *dmab_data, 86 u32 **bdlp, int size, int with_ioc) 87 { 88 u32 *bdl = *bdlp; 89 90 ctx->cl_dev.frags = 0; 91 while (size > 0) { 92 phys_addr_t addr = virt_to_phys(dmab_data->area + 93 (ctx->cl_dev.frags * ctx->cl_dev.bufsize)); 94 95 bdl[0] = cpu_to_le32(lower_32_bits(addr)); 96 bdl[1] = cpu_to_le32(upper_32_bits(addr)); 97 98 bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize); 99 100 size -= ctx->cl_dev.bufsize; 101 bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01); 102 103 bdl += 4; 104 ctx->cl_dev.frags++; 105 } 106 } 107 108 /* 109 * Setup controller 110 * Configure the registers to update the dma buffer address and 111 * enable interrupts. 112 * Note: Using the channel 1 for transfer 113 */ 114 static void skl_cldma_setup_controller(struct sst_dsp *ctx, 115 struct snd_dma_buffer *dmab_bdl, unsigned int max_size, 116 u32 count) 117 { 118 skl_cldma_stream_clear(ctx); 119 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, 120 CL_SD_BDLPLBA(dmab_bdl->addr)); 121 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 122 CL_SD_BDLPUBA(dmab_bdl->addr)); 123 124 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size); 125 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1); 126 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 127 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1)); 128 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 129 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1)); 130 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 131 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1)); 132 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL, 133 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER)); 134 } 135 136 static void skl_cldma_setup_spb(struct sst_dsp *ctx, 137 unsigned int size, bool enable) 138 { 139 if (enable) 140 sst_dsp_shim_update_bits_unlocked(ctx, 141 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL, 142 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK, 143 CL_SPBFIFO_SPBFCCTL_SPIBE(1)); 144 145 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size); 146 } 147 148 static void skl_cldma_cleanup_spb(struct sst_dsp *ctx) 149 { 150 sst_dsp_shim_update_bits_unlocked(ctx, 151 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL, 152 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK, 153 CL_SPBFIFO_SPBFCCTL_SPIBE(0)); 154 155 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0); 156 } 157 158 static void skl_cldma_cleanup(struct sst_dsp *ctx) 159 { 160 skl_cldma_cleanup_spb(ctx); 161 skl_cldma_stream_clear(ctx); 162 163 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data); 164 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl); 165 } 166 167 int skl_cldma_wait_interruptible(struct sst_dsp *ctx) 168 { 169 int ret = 0; 170 171 if (!wait_event_timeout(ctx->cl_dev.wait_queue, 172 ctx->cl_dev.wait_condition, 173 msecs_to_jiffies(SKL_WAIT_TIMEOUT))) { 174 dev_err(ctx->dev, "%s: Wait timeout\n", __func__); 175 ret = -EIO; 176 goto cleanup; 177 } 178 179 dev_dbg(ctx->dev, "%s: Event wake\n", __func__); 180 if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) { 181 dev_err(ctx->dev, "%s: DMA Error\n", __func__); 182 ret = -EIO; 183 } 184 185 cleanup: 186 ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE; 187 return ret; 188 } 189 190 static void skl_cldma_stop(struct sst_dsp *ctx) 191 { 192 skl_cldma_stream_run(ctx, false); 193 } 194 195 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size, 196 const void *curr_pos, bool intr_enable, bool trigger) 197 { 198 dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable); 199 dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n", 200 ctx->cl_dev.dma_buffer_offset, trigger); 201 dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos); 202 203 /* 204 * Check if the size exceeds buffer boundary. If it exceeds 205 * max_buffer size, then copy till buffer size and then copy 206 * remaining buffer from the start of ring buffer. 207 */ 208 if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) { 209 unsigned int size_b = ctx->cl_dev.bufsize - 210 ctx->cl_dev.dma_buffer_offset; 211 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset, 212 curr_pos, size_b); 213 size -= size_b; 214 curr_pos += size_b; 215 ctx->cl_dev.dma_buffer_offset = 0; 216 } 217 218 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset, 219 curr_pos, size); 220 221 if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize) 222 ctx->cl_dev.dma_buffer_offset = 0; 223 else 224 ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos; 225 226 ctx->cl_dev.wait_condition = false; 227 228 if (intr_enable) 229 skl_cldma_int_enable(ctx); 230 231 ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger); 232 if (trigger) 233 ctx->cl_dev.ops.cl_trigger(ctx, true); 234 } 235 236 /* 237 * The CL dma doesn't have any way to update the transfer status until a BDL 238 * buffer is fully transferred 239 * 240 * So Copying is divided in two parts. 241 * 1. Interrupt on buffer done where the size to be transferred is more than 242 * ring buffer size. 243 * 2. Polling on fw register to identify if data left to transferred doesn't 244 * fill the ring buffer. Caller takes care of polling the required status 245 * register to identify the transfer status. 246 * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till 247 * bytes_left is 0. 248 * if wait flag is not set, doesn't wait for BDL interrupt. after ccopying 249 * the first chunk return the no of bytes_left to be copied. 250 */ 251 static int 252 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin, 253 u32 total_size, bool wait) 254 { 255 int ret = 0; 256 bool start = true; 257 unsigned int excess_bytes; 258 u32 size; 259 unsigned int bytes_left = total_size; 260 const void *curr_pos = bin; 261 262 if (total_size <= 0) 263 return -EINVAL; 264 265 dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left); 266 267 while (bytes_left) { 268 if (bytes_left > ctx->cl_dev.bufsize) { 269 270 /* 271 * dma transfers only till the write pointer as 272 * updated in spib 273 */ 274 if (ctx->cl_dev.curr_spib_pos == 0) 275 ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize; 276 277 size = ctx->cl_dev.bufsize; 278 skl_cldma_fill_buffer(ctx, size, curr_pos, true, start); 279 280 if (wait) { 281 start = false; 282 ret = skl_cldma_wait_interruptible(ctx); 283 if (ret < 0) { 284 skl_cldma_stop(ctx); 285 return ret; 286 } 287 } 288 } else { 289 skl_cldma_int_disable(ctx); 290 291 if ((ctx->cl_dev.curr_spib_pos + bytes_left) 292 <= ctx->cl_dev.bufsize) { 293 ctx->cl_dev.curr_spib_pos += bytes_left; 294 } else { 295 excess_bytes = bytes_left - 296 (ctx->cl_dev.bufsize - 297 ctx->cl_dev.curr_spib_pos); 298 ctx->cl_dev.curr_spib_pos = excess_bytes; 299 } 300 301 size = bytes_left; 302 skl_cldma_fill_buffer(ctx, size, 303 curr_pos, false, start); 304 } 305 bytes_left -= size; 306 curr_pos = curr_pos + size; 307 if (!wait) 308 return bytes_left; 309 } 310 311 return bytes_left; 312 } 313 314 void skl_cldma_process_intr(struct sst_dsp *ctx) 315 { 316 u8 cl_dma_intr_status; 317 318 cl_dma_intr_status = 319 sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS); 320 321 if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE)) 322 ctx->cl_dev.wake_status = SKL_CL_DMA_ERR; 323 else 324 ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE; 325 326 ctx->cl_dev.wait_condition = true; 327 wake_up(&ctx->cl_dev.wait_queue); 328 } 329 330 int skl_cldma_prepare(struct sst_dsp *ctx) 331 { 332 int ret; 333 u32 *bdl; 334 335 ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE; 336 337 /* Allocate cl ops */ 338 ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle; 339 ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller; 340 ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb; 341 ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb; 342 ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run; 343 ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup; 344 ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf; 345 ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop; 346 347 /* Allocate buffer*/ 348 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev, 349 &ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize); 350 if (ret < 0) { 351 dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret); 352 return ret; 353 } 354 /* Setup Code loader BDL */ 355 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev, 356 &ctx->cl_dev.dmab_bdl, PAGE_SIZE); 357 if (ret < 0) { 358 dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret); 359 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data); 360 return ret; 361 } 362 bdl = (u32 *)ctx->cl_dev.dmab_bdl.area; 363 364 /* Allocate BDLs */ 365 ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data, 366 &bdl, ctx->cl_dev.bufsize, 1); 367 ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl, 368 ctx->cl_dev.bufsize, ctx->cl_dev.frags); 369 370 ctx->cl_dev.curr_spib_pos = 0; 371 ctx->cl_dev.dma_buffer_offset = 0; 372 init_waitqueue_head(&ctx->cl_dev.wait_queue); 373 374 return ret; 375 } 376