xref: /openbmc/linux/sound/soc/intel/skylake/skl-sst-cldma.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * skl-sst-cldma.c - Code Loader DMA handler
3  *
4  * Copyright (C) 2015, Intel Corporation.
5  * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
6  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as version 2, as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  */
17 
18 #include <linux/device.h>
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
23 
24 static void skl_cldma_int_enable(struct sst_dsp *ctx)
25 {
26 	sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
27 				SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
28 }
29 
30 void skl_cldma_int_disable(struct sst_dsp *ctx)
31 {
32 	sst_dsp_shim_update_bits_unlocked(ctx,
33 			SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
34 }
35 
36 static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
37 {
38 	unsigned char val;
39 	int timeout;
40 
41 	sst_dsp_shim_update_bits_unlocked(ctx,
42 			SKL_ADSP_REG_CL_SD_CTL,
43 			CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
44 
45 	udelay(3);
46 	timeout = 300;
47 	do {
48 		/* waiting for hardware to report that the stream Run bit set */
49 		val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
50 			CL_SD_CTL_RUN_MASK;
51 		if (enable && val)
52 			break;
53 		else if (!enable && !val)
54 			break;
55 		udelay(3);
56 	} while (--timeout);
57 
58 	if (timeout == 0)
59 		dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
60 }
61 
62 static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
63 {
64 	/* make sure Run bit is cleared before setting stream register */
65 	skl_cldma_stream_run(ctx, 0);
66 
67 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
68 				CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
69 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
70 				CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
71 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
72 				CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
73 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
74 				CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
75 
76 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
77 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
78 
79 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
80 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
81 }
82 
83 /* Code loader helper APIs */
84 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
85 		struct snd_dma_buffer *dmab_data,
86 		__le32 **bdlp, int size, int with_ioc)
87 {
88 	__le32 *bdl = *bdlp;
89 
90 	ctx->cl_dev.frags = 0;
91 	while (size > 0) {
92 		phys_addr_t addr = virt_to_phys(dmab_data->area +
93 				(ctx->cl_dev.frags * ctx->cl_dev.bufsize));
94 
95 		bdl[0] = cpu_to_le32(lower_32_bits(addr));
96 		bdl[1] = cpu_to_le32(upper_32_bits(addr));
97 
98 		bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
99 
100 		size -= ctx->cl_dev.bufsize;
101 		bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
102 
103 		bdl += 4;
104 		ctx->cl_dev.frags++;
105 	}
106 }
107 
108 /*
109  * Setup controller
110  * Configure the registers to update the dma buffer address and
111  * enable interrupts.
112  * Note: Using the channel 1 for transfer
113  */
114 static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
115 		struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
116 		u32 count)
117 {
118 	skl_cldma_stream_clear(ctx);
119 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
120 			CL_SD_BDLPLBA(dmab_bdl->addr));
121 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
122 			CL_SD_BDLPUBA(dmab_bdl->addr));
123 
124 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
125 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
126 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
127 			CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
128 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
129 			CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
130 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
131 			CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
132 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
133 			CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
134 }
135 
136 static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
137 		unsigned int size, bool enable)
138 {
139 	if (enable)
140 		sst_dsp_shim_update_bits_unlocked(ctx,
141 				SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
142 				CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
143 				CL_SPBFIFO_SPBFCCTL_SPIBE(1));
144 
145 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
146 }
147 
148 static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
149 {
150 	sst_dsp_shim_update_bits_unlocked(ctx,
151 			SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
152 			CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
153 			CL_SPBFIFO_SPBFCCTL_SPIBE(0));
154 
155 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
156 }
157 
158 static void skl_cldma_cleanup(struct sst_dsp  *ctx)
159 {
160 	skl_cldma_cleanup_spb(ctx);
161 	skl_cldma_stream_clear(ctx);
162 
163 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
164 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
165 }
166 
167 int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
168 {
169 	int ret = 0;
170 
171 	if (!wait_event_timeout(ctx->cl_dev.wait_queue,
172 				ctx->cl_dev.wait_condition,
173 				msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
174 		dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
175 		ret = -EIO;
176 		goto cleanup;
177 	}
178 
179 	dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
180 	if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
181 		dev_err(ctx->dev, "%s: DMA Error\n", __func__);
182 		ret = -EIO;
183 	}
184 
185 cleanup:
186 	ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
187 	return ret;
188 }
189 
190 static void skl_cldma_stop(struct sst_dsp *ctx)
191 {
192 	skl_cldma_stream_run(ctx, false);
193 }
194 
195 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
196 		const void *curr_pos, bool intr_enable, bool trigger)
197 {
198 	dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
199 	dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
200 			ctx->cl_dev.dma_buffer_offset, trigger);
201 	dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
202 
203 	/*
204 	 * Check if the size exceeds buffer boundary. If it exceeds
205 	 * max_buffer size, then copy till buffer size and then copy
206 	 * remaining buffer from the start of ring buffer.
207 	 */
208 	if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
209 		unsigned int size_b = ctx->cl_dev.bufsize -
210 					ctx->cl_dev.dma_buffer_offset;
211 		memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
212 			curr_pos, size_b);
213 		size -= size_b;
214 		curr_pos += size_b;
215 		ctx->cl_dev.dma_buffer_offset = 0;
216 	}
217 
218 	memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
219 			curr_pos, size);
220 
221 	if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
222 		ctx->cl_dev.dma_buffer_offset = 0;
223 	else
224 		ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
225 
226 	ctx->cl_dev.wait_condition = false;
227 
228 	if (intr_enable)
229 		skl_cldma_int_enable(ctx);
230 
231 	ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
232 	if (trigger)
233 		ctx->cl_dev.ops.cl_trigger(ctx, true);
234 }
235 
236 /*
237  * The CL dma doesn't have any way to update the transfer status until a BDL
238  * buffer is fully transferred
239  *
240  * So Copying is divided in two parts.
241  * 1. Interrupt on buffer done where the size to be transferred is more than
242  *    ring buffer size.
243  * 2. Polling on fw register to identify if data left to transferred doesn't
244  *    fill the ring buffer. Caller takes care of polling the required status
245  *    register to identify the transfer status.
246  * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
247  *    bytes_left is 0.
248  *    if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
249  *    the first chunk return the no of bytes_left to be copied.
250  */
251 static int
252 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
253 			u32 total_size, bool wait)
254 {
255 	int ret = 0;
256 	bool start = true;
257 	unsigned int excess_bytes;
258 	u32 size;
259 	unsigned int bytes_left = total_size;
260 	const void *curr_pos = bin;
261 
262 	if (total_size <= 0)
263 		return -EINVAL;
264 
265 	dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
266 
267 	while (bytes_left) {
268 		if (bytes_left > ctx->cl_dev.bufsize) {
269 
270 			/*
271 			 * dma transfers only till the write pointer as
272 			 * updated in spib
273 			 */
274 			if (ctx->cl_dev.curr_spib_pos == 0)
275 				ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
276 
277 			size = ctx->cl_dev.bufsize;
278 			skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
279 
280 			if (wait) {
281 				start = false;
282 				ret = skl_cldma_wait_interruptible(ctx);
283 				if (ret < 0) {
284 					skl_cldma_stop(ctx);
285 					return ret;
286 				}
287 			}
288 		} else {
289 			skl_cldma_int_disable(ctx);
290 
291 			if ((ctx->cl_dev.curr_spib_pos + bytes_left)
292 							<= ctx->cl_dev.bufsize) {
293 				ctx->cl_dev.curr_spib_pos += bytes_left;
294 			} else {
295 				excess_bytes = bytes_left -
296 					(ctx->cl_dev.bufsize -
297 					ctx->cl_dev.curr_spib_pos);
298 				ctx->cl_dev.curr_spib_pos = excess_bytes;
299 			}
300 
301 			size = bytes_left;
302 			skl_cldma_fill_buffer(ctx, size,
303 					curr_pos, false, start);
304 		}
305 		bytes_left -= size;
306 		curr_pos = curr_pos + size;
307 		if (!wait)
308 			return bytes_left;
309 	}
310 
311 	return bytes_left;
312 }
313 
314 void skl_cldma_process_intr(struct sst_dsp *ctx)
315 {
316 	u8 cl_dma_intr_status;
317 
318 	cl_dma_intr_status =
319 		sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
320 
321 	if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
322 		ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
323 	else
324 		ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
325 
326 	ctx->cl_dev.wait_condition = true;
327 	wake_up(&ctx->cl_dev.wait_queue);
328 }
329 
330 int skl_cldma_prepare(struct sst_dsp *ctx)
331 {
332 	int ret;
333 	__le32 *bdl;
334 
335 	ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
336 
337 	/* Allocate cl ops */
338 	ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
339 	ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
340 	ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
341 	ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
342 	ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
343 	ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
344 	ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
345 	ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
346 
347 	/* Allocate buffer*/
348 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
349 			&ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
350 	if (ret < 0) {
351 		dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
352 		return ret;
353 	}
354 	/* Setup Code loader BDL */
355 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
356 			&ctx->cl_dev.dmab_bdl, PAGE_SIZE);
357 	if (ret < 0) {
358 		dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
359 		ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
360 		return ret;
361 	}
362 	bdl = (__le32 *)ctx->cl_dev.dmab_bdl.area;
363 
364 	/* Allocate BDLs */
365 	ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
366 			&bdl, ctx->cl_dev.bufsize, 1);
367 	ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
368 			ctx->cl_dev.bufsize, ctx->cl_dev.frags);
369 
370 	ctx->cl_dev.curr_spib_pos = 0;
371 	ctx->cl_dev.dma_buffer_offset = 0;
372 	init_waitqueue_head(&ctx->cl_dev.wait_queue);
373 
374 	return ret;
375 }
376