1 /*
2  * skl-sst-cldma.c - Code Loader DMA handler
3  *
4  * Copyright (C) 2015, Intel Corporation.
5  * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
6  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as version 2, as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  */
17 
18 #include <linux/device.h>
19 #include <linux/mm.h>
20 #include <linux/kthread.h>
21 #include <linux/delay.h>
22 #include "../common/sst-dsp.h"
23 #include "../common/sst-dsp-priv.h"
24 
25 static void skl_cldma_int_enable(struct sst_dsp *ctx)
26 {
27 	sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
28 				SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
29 }
30 
31 void skl_cldma_int_disable(struct sst_dsp *ctx)
32 {
33 	sst_dsp_shim_update_bits_unlocked(ctx,
34 			SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
35 }
36 
37 static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
38 {
39 	unsigned char val;
40 	int timeout;
41 
42 	sst_dsp_shim_update_bits_unlocked(ctx,
43 			SKL_ADSP_REG_CL_SD_CTL,
44 			CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
45 
46 	udelay(3);
47 	timeout = 300;
48 	do {
49 		/* waiting for hardware to report that the stream Run bit set */
50 		val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
51 			CL_SD_CTL_RUN_MASK;
52 		if (enable && val)
53 			break;
54 		else if (!enable && !val)
55 			break;
56 		udelay(3);
57 	} while (--timeout);
58 
59 	if (timeout == 0)
60 		dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
61 }
62 
63 static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
64 {
65 	/* make sure Run bit is cleared before setting stream register */
66 	skl_cldma_stream_run(ctx, 0);
67 
68 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
69 				CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
70 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
71 				CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
72 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
73 				CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
74 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
75 				CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
76 
77 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
78 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
79 
80 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
81 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
82 }
83 
84 /* Code loader helper APIs */
85 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
86 		struct snd_dma_buffer *dmab_data,
87 		u32 **bdlp, int size, int with_ioc)
88 {
89 	u32 *bdl = *bdlp;
90 
91 	ctx->cl_dev.frags = 0;
92 	while (size > 0) {
93 		phys_addr_t addr = virt_to_phys(dmab_data->area +
94 				(ctx->cl_dev.frags * ctx->cl_dev.bufsize));
95 
96 		bdl[0] = cpu_to_le32(lower_32_bits(addr));
97 		bdl[1] = cpu_to_le32(upper_32_bits(addr));
98 
99 		bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
100 
101 		size -= ctx->cl_dev.bufsize;
102 		bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
103 
104 		bdl += 4;
105 		ctx->cl_dev.frags++;
106 	}
107 }
108 
109 /*
110  * Setup controller
111  * Configure the registers to update the dma buffer address and
112  * enable interrupts.
113  * Note: Using the channel 1 for transfer
114  */
115 static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
116 		struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
117 		u32 count)
118 {
119 	skl_cldma_stream_clear(ctx);
120 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
121 			CL_SD_BDLPLBA(dmab_bdl->addr));
122 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
123 			CL_SD_BDLPUBA(dmab_bdl->addr));
124 
125 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
126 	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
127 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
128 			CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
129 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
130 			CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
131 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
132 			CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
133 	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
134 			CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
135 }
136 
137 static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
138 		unsigned int size, bool enable)
139 {
140 	if (enable)
141 		sst_dsp_shim_update_bits_unlocked(ctx,
142 				SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
143 				CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
144 				CL_SPBFIFO_SPBFCCTL_SPIBE(1));
145 
146 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
147 }
148 
149 static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
150 {
151 	sst_dsp_shim_update_bits_unlocked(ctx,
152 			SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
153 			CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
154 			CL_SPBFIFO_SPBFCCTL_SPIBE(0));
155 
156 	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
157 }
158 
159 static void skl_cldma_cleanup(struct sst_dsp  *ctx)
160 {
161 	skl_cldma_cleanup_spb(ctx);
162 	skl_cldma_stream_clear(ctx);
163 
164 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
165 	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
166 }
167 
168 static int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
169 {
170 	int ret = 0;
171 
172 	if (!wait_event_timeout(ctx->cl_dev.wait_queue,
173 				ctx->cl_dev.wait_condition,
174 				msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
175 		dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
176 		ret = -EIO;
177 		goto cleanup;
178 	}
179 
180 	dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
181 	if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
182 		dev_err(ctx->dev, "%s: DMA Error\n", __func__);
183 		ret = -EIO;
184 	}
185 
186 cleanup:
187 	ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
188 	return ret;
189 }
190 
191 static void skl_cldma_stop(struct sst_dsp *ctx)
192 {
193 	skl_cldma_stream_run(ctx, false);
194 }
195 
196 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
197 		const void *curr_pos, bool intr_enable, bool trigger)
198 {
199 	dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
200 	dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
201 			ctx->cl_dev.dma_buffer_offset, trigger);
202 	dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
203 
204 	/*
205 	 * Check if the size exceeds buffer boundary. If it exceeds
206 	 * max_buffer size, then copy till buffer size and then copy
207 	 * remaining buffer from the start of ring buffer.
208 	 */
209 	if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
210 		unsigned int size_b = ctx->cl_dev.bufsize -
211 					ctx->cl_dev.dma_buffer_offset;
212 		memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
213 			curr_pos, size_b);
214 		size -= size_b;
215 		curr_pos += size_b;
216 		ctx->cl_dev.dma_buffer_offset = 0;
217 	}
218 
219 	memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
220 			curr_pos, size);
221 
222 	if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
223 		ctx->cl_dev.dma_buffer_offset = 0;
224 	else
225 		ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
226 
227 	ctx->cl_dev.wait_condition = false;
228 
229 	if (intr_enable)
230 		skl_cldma_int_enable(ctx);
231 
232 	ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
233 	if (trigger)
234 		ctx->cl_dev.ops.cl_trigger(ctx, true);
235 }
236 
237 /*
238  * The CL dma doesn't have any way to update the transfer status until a BDL
239  * buffer is fully transferred
240  *
241  * So Copying is divided in two parts.
242  * 1. Interrupt on buffer done where the size to be transferred is more than
243  *    ring buffer size.
244  * 2. Polling on fw register to identify if data left to transferred doesn't
245  *    fill the ring buffer. Caller takes care of polling the required status
246  *    register to identify the transfer status.
247  */
248 static int
249 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin, u32 total_size)
250 {
251 	int ret = 0;
252 	bool start = true;
253 	unsigned int excess_bytes;
254 	u32 size;
255 	unsigned int bytes_left = total_size;
256 	const void *curr_pos = bin;
257 
258 	if (total_size <= 0)
259 		return -EINVAL;
260 
261 	dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
262 
263 	while (bytes_left) {
264 		if (bytes_left > ctx->cl_dev.bufsize) {
265 
266 			/*
267 			 * dma transfers only till the write pointer as
268 			 * updated in spib
269 			 */
270 			if (ctx->cl_dev.curr_spib_pos == 0)
271 				ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
272 
273 			size = ctx->cl_dev.bufsize;
274 			skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
275 
276 			start = false;
277 			ret = skl_cldma_wait_interruptible(ctx);
278 			if (ret < 0) {
279 				skl_cldma_stop(ctx);
280 				return ret;
281 			}
282 
283 		} else {
284 			skl_cldma_int_disable(ctx);
285 
286 			if ((ctx->cl_dev.curr_spib_pos + bytes_left)
287 							<= ctx->cl_dev.bufsize) {
288 				ctx->cl_dev.curr_spib_pos += bytes_left;
289 			} else {
290 				excess_bytes = bytes_left -
291 					(ctx->cl_dev.bufsize -
292 					ctx->cl_dev.curr_spib_pos);
293 				ctx->cl_dev.curr_spib_pos = excess_bytes;
294 			}
295 
296 			size = bytes_left;
297 			skl_cldma_fill_buffer(ctx, size,
298 					curr_pos, false, start);
299 		}
300 		bytes_left -= size;
301 		curr_pos = curr_pos + size;
302 	}
303 
304 	return ret;
305 }
306 
307 void skl_cldma_process_intr(struct sst_dsp *ctx)
308 {
309 	u8 cl_dma_intr_status;
310 
311 	cl_dma_intr_status =
312 		sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
313 
314 	if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
315 		ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
316 	else
317 		ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
318 
319 	ctx->cl_dev.wait_condition = true;
320 	wake_up(&ctx->cl_dev.wait_queue);
321 }
322 
323 int skl_cldma_prepare(struct sst_dsp *ctx)
324 {
325 	int ret;
326 	u32 *bdl;
327 
328 	ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
329 
330 	/* Allocate cl ops */
331 	ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
332 	ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
333 	ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
334 	ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
335 	ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
336 	ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
337 	ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
338 	ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
339 
340 	/* Allocate buffer*/
341 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
342 			&ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
343 	if (ret < 0) {
344 		dev_err(ctx->dev, "Alloc buffer for base fw failed: %x", ret);
345 		return ret;
346 	}
347 	/* Setup Code loader BDL */
348 	ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
349 			&ctx->cl_dev.dmab_bdl, PAGE_SIZE);
350 	if (ret < 0) {
351 		dev_err(ctx->dev, "Alloc buffer for blde failed: %x", ret);
352 		ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
353 		return ret;
354 	}
355 	bdl = (u32 *)ctx->cl_dev.dmab_bdl.area;
356 
357 	/* Allocate BDLs */
358 	ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
359 			&bdl, ctx->cl_dev.bufsize, 1);
360 	ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
361 			ctx->cl_dev.bufsize, ctx->cl_dev.frags);
362 
363 	ctx->cl_dev.curr_spib_pos = 0;
364 	ctx->cl_dev.dma_buffer_offset = 0;
365 	init_waitqueue_head(&ctx->cl_dev.wait_queue);
366 
367 	return ret;
368 }
369