xref: /openbmc/linux/sound/soc/fsl/fsl_sai.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23 
24 #include "fsl_sai.h"
25 #include "imx-pcm.h"
26 
27 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
28 		       FSL_SAI_CSR_FEIE)
29 
30 static const unsigned int fsl_sai_rates[] = {
31 	8000, 11025, 12000, 16000, 22050,
32 	24000, 32000, 44100, 48000, 64000,
33 	88200, 96000, 176400, 192000
34 };
35 
36 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
37 	.count = ARRAY_SIZE(fsl_sai_rates),
38 	.list = fsl_sai_rates,
39 };
40 
41 /**
42  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
43  *
44  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
45  * or Receiver's for both streams. This function is used to check if clocks of
46  * the stream's are synced by the opposite stream.
47  *
48  * @sai: SAI context
49  * @dir: stream direction
50  */
51 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
52 {
53 	int adir = (dir == TX) ? RX : TX;
54 
55 	/* current dir in async mode while opposite dir in sync mode */
56 	return !sai->synchronous[dir] && sai->synchronous[adir];
57 }
58 
59 static irqreturn_t fsl_sai_isr(int irq, void *devid)
60 {
61 	struct fsl_sai *sai = (struct fsl_sai *)devid;
62 	unsigned int ofs = sai->soc_data->reg_offset;
63 	struct device *dev = &sai->pdev->dev;
64 	u32 flags, xcsr, mask;
65 	bool irq_none = true;
66 
67 	/*
68 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
69 	 * different shifts. And we here create a mask only for those
70 	 * IRQs that we activated.
71 	 */
72 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
73 
74 	/* Tx IRQ */
75 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
76 	flags = xcsr & mask;
77 
78 	if (flags)
79 		irq_none = false;
80 	else
81 		goto irq_rx;
82 
83 	if (flags & FSL_SAI_CSR_WSF)
84 		dev_dbg(dev, "isr: Start of Tx word detected\n");
85 
86 	if (flags & FSL_SAI_CSR_SEF)
87 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
88 
89 	if (flags & FSL_SAI_CSR_FEF) {
90 		dev_dbg(dev, "isr: Transmit underrun detected\n");
91 		/* FIFO reset for safety */
92 		xcsr |= FSL_SAI_CSR_FR;
93 	}
94 
95 	if (flags & FSL_SAI_CSR_FWF)
96 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
97 
98 	if (flags & FSL_SAI_CSR_FRF)
99 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
100 
101 	flags &= FSL_SAI_CSR_xF_W_MASK;
102 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
103 
104 	if (flags)
105 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
106 
107 irq_rx:
108 	/* Rx IRQ */
109 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
110 	flags = xcsr & mask;
111 
112 	if (flags)
113 		irq_none = false;
114 	else
115 		goto out;
116 
117 	if (flags & FSL_SAI_CSR_WSF)
118 		dev_dbg(dev, "isr: Start of Rx word detected\n");
119 
120 	if (flags & FSL_SAI_CSR_SEF)
121 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
122 
123 	if (flags & FSL_SAI_CSR_FEF) {
124 		dev_dbg(dev, "isr: Receive overflow detected\n");
125 		/* FIFO reset for safety */
126 		xcsr |= FSL_SAI_CSR_FR;
127 	}
128 
129 	if (flags & FSL_SAI_CSR_FWF)
130 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
131 
132 	if (flags & FSL_SAI_CSR_FRF)
133 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
134 
135 	flags &= FSL_SAI_CSR_xF_W_MASK;
136 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
137 
138 	if (flags)
139 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
140 
141 out:
142 	if (irq_none)
143 		return IRQ_NONE;
144 	else
145 		return IRQ_HANDLED;
146 }
147 
148 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
149 				u32 rx_mask, int slots, int slot_width)
150 {
151 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
152 
153 	sai->slots = slots;
154 	sai->slot_width = slot_width;
155 
156 	return 0;
157 }
158 
159 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
160 				      unsigned int ratio)
161 {
162 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
163 
164 	sai->bclk_ratio = ratio;
165 
166 	return 0;
167 }
168 
169 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
170 		int clk_id, unsigned int freq, int fsl_dir)
171 {
172 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
173 	unsigned int ofs = sai->soc_data->reg_offset;
174 	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
175 	u32 val_cr2 = 0;
176 
177 	switch (clk_id) {
178 	case FSL_SAI_CLK_BUS:
179 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
180 		break;
181 	case FSL_SAI_CLK_MAST1:
182 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
183 		break;
184 	case FSL_SAI_CLK_MAST2:
185 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
186 		break;
187 	case FSL_SAI_CLK_MAST3:
188 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
189 		break;
190 	default:
191 		return -EINVAL;
192 	}
193 
194 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
195 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
196 
197 	return 0;
198 }
199 
200 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
201 		int clk_id, unsigned int freq, int dir)
202 {
203 	int ret;
204 
205 	if (dir == SND_SOC_CLOCK_IN)
206 		return 0;
207 
208 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
209 					FSL_FMT_TRANSMITTER);
210 	if (ret) {
211 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
212 		return ret;
213 	}
214 
215 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
216 					FSL_FMT_RECEIVER);
217 	if (ret)
218 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
219 
220 	return ret;
221 }
222 
223 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
224 				unsigned int fmt, int fsl_dir)
225 {
226 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
227 	unsigned int ofs = sai->soc_data->reg_offset;
228 	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
229 	u32 val_cr2 = 0, val_cr4 = 0;
230 
231 	if (!sai->is_lsb_first)
232 		val_cr4 |= FSL_SAI_CR4_MF;
233 
234 	/* DAI mode */
235 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
236 	case SND_SOC_DAIFMT_I2S:
237 		/*
238 		 * Frame low, 1clk before data, one word length for frame sync,
239 		 * frame sync starts one serial clock cycle earlier,
240 		 * that is, together with the last bit of the previous
241 		 * data word.
242 		 */
243 		val_cr2 |= FSL_SAI_CR2_BCP;
244 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
245 		break;
246 	case SND_SOC_DAIFMT_LEFT_J:
247 		/*
248 		 * Frame high, one word length for frame sync,
249 		 * frame sync asserts with the first bit of the frame.
250 		 */
251 		val_cr2 |= FSL_SAI_CR2_BCP;
252 		break;
253 	case SND_SOC_DAIFMT_DSP_A:
254 		/*
255 		 * Frame high, 1clk before data, one bit for frame sync,
256 		 * frame sync starts one serial clock cycle earlier,
257 		 * that is, together with the last bit of the previous
258 		 * data word.
259 		 */
260 		val_cr2 |= FSL_SAI_CR2_BCP;
261 		val_cr4 |= FSL_SAI_CR4_FSE;
262 		sai->is_dsp_mode = true;
263 		break;
264 	case SND_SOC_DAIFMT_DSP_B:
265 		/*
266 		 * Frame high, one bit for frame sync,
267 		 * frame sync asserts with the first bit of the frame.
268 		 */
269 		val_cr2 |= FSL_SAI_CR2_BCP;
270 		sai->is_dsp_mode = true;
271 		break;
272 	case SND_SOC_DAIFMT_RIGHT_J:
273 		/* To be done */
274 	default:
275 		return -EINVAL;
276 	}
277 
278 	/* DAI clock inversion */
279 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
280 	case SND_SOC_DAIFMT_IB_IF:
281 		/* Invert both clocks */
282 		val_cr2 ^= FSL_SAI_CR2_BCP;
283 		val_cr4 ^= FSL_SAI_CR4_FSP;
284 		break;
285 	case SND_SOC_DAIFMT_IB_NF:
286 		/* Invert bit clock */
287 		val_cr2 ^= FSL_SAI_CR2_BCP;
288 		break;
289 	case SND_SOC_DAIFMT_NB_IF:
290 		/* Invert frame clock */
291 		val_cr4 ^= FSL_SAI_CR4_FSP;
292 		break;
293 	case SND_SOC_DAIFMT_NB_NF:
294 		/* Nothing to do for both normal cases */
295 		break;
296 	default:
297 		return -EINVAL;
298 	}
299 
300 	/* DAI clock provider masks */
301 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
302 	case SND_SOC_DAIFMT_CBC_CFC:
303 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
304 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
305 		sai->is_consumer_mode = false;
306 		break;
307 	case SND_SOC_DAIFMT_CBP_CFP:
308 		sai->is_consumer_mode = true;
309 		break;
310 	case SND_SOC_DAIFMT_CBC_CFP:
311 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
312 		sai->is_consumer_mode = false;
313 		break;
314 	case SND_SOC_DAIFMT_CBP_CFC:
315 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
316 		sai->is_consumer_mode = true;
317 		break;
318 	default:
319 		return -EINVAL;
320 	}
321 
322 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
323 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
324 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
325 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
326 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
327 
328 	return 0;
329 }
330 
331 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
332 {
333 	int ret;
334 
335 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
336 	if (ret) {
337 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
338 		return ret;
339 	}
340 
341 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
342 	if (ret)
343 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
344 
345 	return ret;
346 }
347 
348 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
349 {
350 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
351 	unsigned int ofs = sai->soc_data->reg_offset;
352 	unsigned long clk_rate;
353 	u32 savediv = 0, ratio, savesub = freq;
354 	int adir = tx ? RX : TX;
355 	int dir = tx ? TX : RX;
356 	u32 id;
357 	int ret = 0;
358 
359 	/* Don't apply to consumer mode */
360 	if (sai->is_consumer_mode)
361 		return 0;
362 
363 	/*
364 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
365 	 * And given that MQS use case has to use MCLK1 though two clocks
366 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
367 	 */
368 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
369 
370 	for (; id < FSL_SAI_MCLK_MAX; id++) {
371 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
372 		if (!clk_rate)
373 			continue;
374 
375 		ratio = clk_rate / freq;
376 
377 		ret = clk_rate - ratio * freq;
378 
379 		/*
380 		 * Drop the source that can not be
381 		 * divided into the required rate.
382 		 */
383 		if (ret != 0 && clk_rate / ret < 1000)
384 			continue;
385 
386 		dev_dbg(dai->dev,
387 			"ratio %d for freq %dHz based on clock %ldHz\n",
388 			ratio, freq, clk_rate);
389 
390 		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
391 			ratio /= 2;
392 		else
393 			continue;
394 
395 		if (ret < savesub) {
396 			savediv = ratio;
397 			sai->mclk_id[tx] = id;
398 			savesub = ret;
399 		}
400 
401 		if (ret == 0)
402 			break;
403 	}
404 
405 	if (savediv == 0) {
406 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
407 				tx ? 'T' : 'R', freq);
408 		return -EINVAL;
409 	}
410 
411 	/*
412 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
413 	 *    set TCR2 register for playback.
414 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
415 	 *    and capture.
416 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
417 	 *    and capture.
418 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
419 	 *    ignore it.
420 	 */
421 	if (fsl_sai_dir_is_synced(sai, adir)) {
422 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
423 				   FSL_SAI_CR2_MSEL_MASK,
424 				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
425 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
426 				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
427 	} else if (!sai->synchronous[dir]) {
428 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
429 				   FSL_SAI_CR2_MSEL_MASK,
430 				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
431 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
432 				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
433 	}
434 
435 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
436 			sai->mclk_id[tx], savediv, savesub);
437 
438 	return 0;
439 }
440 
441 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
442 		struct snd_pcm_hw_params *params,
443 		struct snd_soc_dai *cpu_dai)
444 {
445 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
446 	unsigned int ofs = sai->soc_data->reg_offset;
447 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
448 	unsigned int channels = params_channels(params);
449 	u32 word_width = params_width(params);
450 	u32 val_cr4 = 0, val_cr5 = 0;
451 	u32 slots = (channels == 1) ? 2 : channels;
452 	u32 slot_width = word_width;
453 	int adir = tx ? RX : TX;
454 	u32 pins;
455 	int ret;
456 
457 	if (sai->slots)
458 		slots = sai->slots;
459 
460 	if (sai->slot_width)
461 		slot_width = sai->slot_width;
462 
463 	pins = DIV_ROUND_UP(channels, slots);
464 
465 	if (!sai->is_consumer_mode) {
466 		if (sai->bclk_ratio)
467 			ret = fsl_sai_set_bclk(cpu_dai, tx,
468 					       sai->bclk_ratio *
469 					       params_rate(params));
470 		else
471 			ret = fsl_sai_set_bclk(cpu_dai, tx,
472 					       slots * slot_width *
473 					       params_rate(params));
474 		if (ret)
475 			return ret;
476 
477 		/* Do not enable the clock if it is already enabled */
478 		if (!(sai->mclk_streams & BIT(substream->stream))) {
479 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
480 			if (ret)
481 				return ret;
482 
483 			sai->mclk_streams |= BIT(substream->stream);
484 		}
485 	}
486 
487 	if (!sai->is_dsp_mode)
488 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
489 
490 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
491 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
492 
493 	if (sai->is_lsb_first)
494 		val_cr5 |= FSL_SAI_CR5_FBT(0);
495 	else
496 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
497 
498 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
499 
500 	/* Set to output mode to avoid tri-stated data pins */
501 	if (tx)
502 		val_cr4 |= FSL_SAI_CR4_CHMOD;
503 
504 	/*
505 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
506 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
507 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
508 	 */
509 
510 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
511 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
512 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
513 				   FSL_SAI_CR4_CHMOD_MASK,
514 				   val_cr4);
515 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
516 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
517 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
518 	}
519 
520 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
521 			   FSL_SAI_CR3_TRCE_MASK,
522 			   FSL_SAI_CR3_TRCE((1 << pins) - 1));
523 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
524 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
525 			   FSL_SAI_CR4_CHMOD_MASK,
526 			   val_cr4);
527 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
528 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
529 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
530 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
531 		     ~0UL - ((1 << min(channels, slots)) - 1));
532 
533 	return 0;
534 }
535 
536 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
537 		struct snd_soc_dai *cpu_dai)
538 {
539 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
540 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
541 	unsigned int ofs = sai->soc_data->reg_offset;
542 
543 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
544 			   FSL_SAI_CR3_TRCE_MASK, 0);
545 
546 	if (!sai->is_consumer_mode &&
547 			sai->mclk_streams & BIT(substream->stream)) {
548 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
549 		sai->mclk_streams &= ~BIT(substream->stream);
550 	}
551 
552 	return 0;
553 }
554 
555 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
556 {
557 	unsigned int ofs = sai->soc_data->reg_offset;
558 	bool tx = dir == TX;
559 	u32 xcsr, count = 100;
560 
561 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
562 			   FSL_SAI_CSR_TERE, 0);
563 
564 	/* TERE will remain set till the end of current frame */
565 	do {
566 		udelay(10);
567 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
568 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
569 
570 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
571 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
572 
573 	/*
574 	 * For sai master mode, after several open/close sai,
575 	 * there will be no frame clock, and can't recover
576 	 * anymore. Add software reset to fix this issue.
577 	 * This is a hardware bug, and will be fix in the
578 	 * next sai version.
579 	 */
580 	if (!sai->is_consumer_mode) {
581 		/* Software Reset */
582 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
583 		/* Clear SR bit to finish the reset */
584 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
585 	}
586 }
587 
588 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
589 		struct snd_soc_dai *cpu_dai)
590 {
591 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
592 	unsigned int ofs = sai->soc_data->reg_offset;
593 
594 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
595 	int adir = tx ? RX : TX;
596 	int dir = tx ? TX : RX;
597 	u32 xcsr;
598 
599 	/*
600 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
601 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
602 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
603 	 */
604 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
605 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
606 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
607 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
608 
609 	/*
610 	 * It is recommended that the transmitter is the last enabled
611 	 * and the first disabled.
612 	 */
613 	switch (cmd) {
614 	case SNDRV_PCM_TRIGGER_START:
615 	case SNDRV_PCM_TRIGGER_RESUME:
616 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
617 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
618 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
619 
620 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
621 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
622 		/*
623 		 * Enable the opposite direction for synchronous mode
624 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
625 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
626 		 *
627 		 * RM recommends to enable RE after TE for case 1 and to enable
628 		 * TE after RE for case 2, but we here may not always guarantee
629 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
630 		 * TE after RE, which is against what RM recommends but should
631 		 * be safe to do, judging by years of testing results.
632 		 */
633 		if (fsl_sai_dir_is_synced(sai, adir))
634 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
635 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
636 
637 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
638 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
639 		break;
640 	case SNDRV_PCM_TRIGGER_STOP:
641 	case SNDRV_PCM_TRIGGER_SUSPEND:
642 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
643 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
644 				   FSL_SAI_CSR_FRDE, 0);
645 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
646 				   FSL_SAI_CSR_xIE_MASK, 0);
647 
648 		/* Check if the opposite FRDE is also disabled */
649 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
650 
651 		/*
652 		 * If opposite stream provides clocks for synchronous mode and
653 		 * it is inactive, disable it before disabling the current one
654 		 */
655 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
656 			fsl_sai_config_disable(sai, adir);
657 
658 		/*
659 		 * Disable current stream if either of:
660 		 * 1. current stream doesn't provide clocks for synchronous mode
661 		 * 2. current stream provides clocks for synchronous mode but no
662 		 *    more stream is active.
663 		 */
664 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
665 			fsl_sai_config_disable(sai, dir);
666 
667 		break;
668 	default:
669 		return -EINVAL;
670 	}
671 
672 	return 0;
673 }
674 
675 static int fsl_sai_startup(struct snd_pcm_substream *substream,
676 		struct snd_soc_dai *cpu_dai)
677 {
678 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
679 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
680 	int ret;
681 
682 	/*
683 	 * EDMA controller needs period size to be a multiple of
684 	 * tx/rx maxburst
685 	 */
686 	if (sai->soc_data->use_edma)
687 		snd_pcm_hw_constraint_step(substream->runtime, 0,
688 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
689 					   tx ? sai->dma_params_tx.maxburst :
690 					   sai->dma_params_rx.maxburst);
691 
692 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
693 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
694 
695 	return ret;
696 }
697 
698 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
699 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
700 	.set_sysclk	= fsl_sai_set_dai_sysclk,
701 	.set_fmt	= fsl_sai_set_dai_fmt,
702 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
703 	.hw_params	= fsl_sai_hw_params,
704 	.hw_free	= fsl_sai_hw_free,
705 	.trigger	= fsl_sai_trigger,
706 	.startup	= fsl_sai_startup,
707 };
708 
709 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
710 {
711 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
712 	unsigned int ofs = sai->soc_data->reg_offset;
713 
714 	/* Software Reset for both Tx and Rx */
715 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
716 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
717 	/* Clear SR bit to finish the reset */
718 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
719 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
720 
721 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
722 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
723 			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
724 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
725 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
726 			   FSL_SAI_MAXBURST_RX - 1);
727 
728 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
729 				&sai->dma_params_rx);
730 
731 	return 0;
732 }
733 
734 static struct snd_soc_dai_driver fsl_sai_dai_template = {
735 	.probe = fsl_sai_dai_probe,
736 	.playback = {
737 		.stream_name = "CPU-Playback",
738 		.channels_min = 1,
739 		.channels_max = 32,
740 		.rate_min = 8000,
741 		.rate_max = 192000,
742 		.rates = SNDRV_PCM_RATE_KNOT,
743 		.formats = FSL_SAI_FORMATS,
744 	},
745 	.capture = {
746 		.stream_name = "CPU-Capture",
747 		.channels_min = 1,
748 		.channels_max = 32,
749 		.rate_min = 8000,
750 		.rate_max = 192000,
751 		.rates = SNDRV_PCM_RATE_KNOT,
752 		.formats = FSL_SAI_FORMATS,
753 	},
754 	.ops = &fsl_sai_pcm_dai_ops,
755 };
756 
757 static const struct snd_soc_component_driver fsl_component = {
758 	.name           = "fsl-sai",
759 };
760 
761 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
762 	{FSL_SAI_TCR1(0), 0},
763 	{FSL_SAI_TCR2(0), 0},
764 	{FSL_SAI_TCR3(0), 0},
765 	{FSL_SAI_TCR4(0), 0},
766 	{FSL_SAI_TCR5(0), 0},
767 	{FSL_SAI_TDR0, 0},
768 	{FSL_SAI_TDR1, 0},
769 	{FSL_SAI_TDR2, 0},
770 	{FSL_SAI_TDR3, 0},
771 	{FSL_SAI_TDR4, 0},
772 	{FSL_SAI_TDR5, 0},
773 	{FSL_SAI_TDR6, 0},
774 	{FSL_SAI_TDR7, 0},
775 	{FSL_SAI_TMR, 0},
776 	{FSL_SAI_RCR1(0), 0},
777 	{FSL_SAI_RCR2(0), 0},
778 	{FSL_SAI_RCR3(0), 0},
779 	{FSL_SAI_RCR4(0), 0},
780 	{FSL_SAI_RCR5(0), 0},
781 	{FSL_SAI_RMR, 0},
782 };
783 
784 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
785 	{FSL_SAI_TCR1(8), 0},
786 	{FSL_SAI_TCR2(8), 0},
787 	{FSL_SAI_TCR3(8), 0},
788 	{FSL_SAI_TCR4(8), 0},
789 	{FSL_SAI_TCR5(8), 0},
790 	{FSL_SAI_TDR0, 0},
791 	{FSL_SAI_TDR1, 0},
792 	{FSL_SAI_TDR2, 0},
793 	{FSL_SAI_TDR3, 0},
794 	{FSL_SAI_TDR4, 0},
795 	{FSL_SAI_TDR5, 0},
796 	{FSL_SAI_TDR6, 0},
797 	{FSL_SAI_TDR7, 0},
798 	{FSL_SAI_TMR, 0},
799 	{FSL_SAI_RCR1(8), 0},
800 	{FSL_SAI_RCR2(8), 0},
801 	{FSL_SAI_RCR3(8), 0},
802 	{FSL_SAI_RCR4(8), 0},
803 	{FSL_SAI_RCR5(8), 0},
804 	{FSL_SAI_RMR, 0},
805 	{FSL_SAI_MCTL, 0},
806 	{FSL_SAI_MDIV, 0},
807 };
808 
809 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
810 {
811 	struct fsl_sai *sai = dev_get_drvdata(dev);
812 	unsigned int ofs = sai->soc_data->reg_offset;
813 
814 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
815 		return true;
816 
817 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
818 		return true;
819 
820 	switch (reg) {
821 	case FSL_SAI_TFR0:
822 	case FSL_SAI_TFR1:
823 	case FSL_SAI_TFR2:
824 	case FSL_SAI_TFR3:
825 	case FSL_SAI_TFR4:
826 	case FSL_SAI_TFR5:
827 	case FSL_SAI_TFR6:
828 	case FSL_SAI_TFR7:
829 	case FSL_SAI_TMR:
830 	case FSL_SAI_RDR0:
831 	case FSL_SAI_RDR1:
832 	case FSL_SAI_RDR2:
833 	case FSL_SAI_RDR3:
834 	case FSL_SAI_RDR4:
835 	case FSL_SAI_RDR5:
836 	case FSL_SAI_RDR6:
837 	case FSL_SAI_RDR7:
838 	case FSL_SAI_RFR0:
839 	case FSL_SAI_RFR1:
840 	case FSL_SAI_RFR2:
841 	case FSL_SAI_RFR3:
842 	case FSL_SAI_RFR4:
843 	case FSL_SAI_RFR5:
844 	case FSL_SAI_RFR6:
845 	case FSL_SAI_RFR7:
846 	case FSL_SAI_RMR:
847 	case FSL_SAI_MCTL:
848 	case FSL_SAI_MDIV:
849 	case FSL_SAI_VERID:
850 	case FSL_SAI_PARAM:
851 	case FSL_SAI_TTCTN:
852 	case FSL_SAI_RTCTN:
853 	case FSL_SAI_TTCTL:
854 	case FSL_SAI_TBCTN:
855 	case FSL_SAI_TTCAP:
856 	case FSL_SAI_RTCTL:
857 	case FSL_SAI_RBCTN:
858 	case FSL_SAI_RTCAP:
859 		return true;
860 	default:
861 		return false;
862 	}
863 }
864 
865 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
866 {
867 	struct fsl_sai *sai = dev_get_drvdata(dev);
868 	unsigned int ofs = sai->soc_data->reg_offset;
869 
870 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
871 		return true;
872 
873 	/* Set VERID and PARAM be volatile for reading value in probe */
874 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
875 		return true;
876 
877 	switch (reg) {
878 	case FSL_SAI_TFR0:
879 	case FSL_SAI_TFR1:
880 	case FSL_SAI_TFR2:
881 	case FSL_SAI_TFR3:
882 	case FSL_SAI_TFR4:
883 	case FSL_SAI_TFR5:
884 	case FSL_SAI_TFR6:
885 	case FSL_SAI_TFR7:
886 	case FSL_SAI_RFR0:
887 	case FSL_SAI_RFR1:
888 	case FSL_SAI_RFR2:
889 	case FSL_SAI_RFR3:
890 	case FSL_SAI_RFR4:
891 	case FSL_SAI_RFR5:
892 	case FSL_SAI_RFR6:
893 	case FSL_SAI_RFR7:
894 	case FSL_SAI_RDR0:
895 	case FSL_SAI_RDR1:
896 	case FSL_SAI_RDR2:
897 	case FSL_SAI_RDR3:
898 	case FSL_SAI_RDR4:
899 	case FSL_SAI_RDR5:
900 	case FSL_SAI_RDR6:
901 	case FSL_SAI_RDR7:
902 		return true;
903 	default:
904 		return false;
905 	}
906 }
907 
908 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
909 {
910 	struct fsl_sai *sai = dev_get_drvdata(dev);
911 	unsigned int ofs = sai->soc_data->reg_offset;
912 
913 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
914 		return true;
915 
916 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
917 		return true;
918 
919 	switch (reg) {
920 	case FSL_SAI_TDR0:
921 	case FSL_SAI_TDR1:
922 	case FSL_SAI_TDR2:
923 	case FSL_SAI_TDR3:
924 	case FSL_SAI_TDR4:
925 	case FSL_SAI_TDR5:
926 	case FSL_SAI_TDR6:
927 	case FSL_SAI_TDR7:
928 	case FSL_SAI_TMR:
929 	case FSL_SAI_RMR:
930 	case FSL_SAI_MCTL:
931 	case FSL_SAI_MDIV:
932 	case FSL_SAI_TTCTL:
933 	case FSL_SAI_RTCTL:
934 		return true;
935 	default:
936 		return false;
937 	}
938 }
939 
940 static struct regmap_config fsl_sai_regmap_config = {
941 	.reg_bits = 32,
942 	.reg_stride = 4,
943 	.val_bits = 32,
944 	.fast_io = true,
945 
946 	.max_register = FSL_SAI_RMR,
947 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
948 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
949 	.readable_reg = fsl_sai_readable_reg,
950 	.volatile_reg = fsl_sai_volatile_reg,
951 	.writeable_reg = fsl_sai_writeable_reg,
952 	.cache_type = REGCACHE_FLAT,
953 };
954 
955 static int fsl_sai_check_version(struct device *dev)
956 {
957 	struct fsl_sai *sai = dev_get_drvdata(dev);
958 	unsigned char ofs = sai->soc_data->reg_offset;
959 	unsigned int val;
960 	int ret;
961 
962 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
963 		return 0;
964 
965 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
966 	if (ret < 0)
967 		return ret;
968 
969 	dev_dbg(dev, "VERID: 0x%016X\n", val);
970 
971 	sai->verid.major = (val & FSL_SAI_VERID_MAJOR_MASK) >>
972 			   FSL_SAI_VERID_MAJOR_SHIFT;
973 	sai->verid.minor = (val & FSL_SAI_VERID_MINOR_MASK) >>
974 			   FSL_SAI_VERID_MINOR_SHIFT;
975 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
976 
977 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
978 	if (ret < 0)
979 		return ret;
980 
981 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
982 
983 	/* Max slots per frame, power of 2 */
984 	sai->param.slot_num = 1 <<
985 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
986 
987 	/* Words per fifo, power of 2 */
988 	sai->param.fifo_depth = 1 <<
989 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
990 
991 	/* Number of datalines implemented */
992 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
993 
994 	return 0;
995 }
996 
997 static int fsl_sai_runtime_suspend(struct device *dev);
998 static int fsl_sai_runtime_resume(struct device *dev);
999 
1000 static int fsl_sai_probe(struct platform_device *pdev)
1001 {
1002 	struct device_node *np = pdev->dev.of_node;
1003 	struct fsl_sai *sai;
1004 	struct regmap *gpr;
1005 	struct resource *res;
1006 	void __iomem *base;
1007 	char tmp[8];
1008 	int irq, ret, i;
1009 	int index;
1010 
1011 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1012 	if (!sai)
1013 		return -ENOMEM;
1014 
1015 	sai->pdev = pdev;
1016 	sai->soc_data = of_device_get_match_data(&pdev->dev);
1017 
1018 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1019 
1020 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1021 	if (IS_ERR(base))
1022 		return PTR_ERR(base);
1023 
1024 	if (sai->soc_data->reg_offset == 8) {
1025 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1026 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1027 		fsl_sai_regmap_config.num_reg_defaults =
1028 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1029 	}
1030 
1031 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base, &fsl_sai_regmap_config);
1032 	if (IS_ERR(sai->regmap)) {
1033 		dev_err(&pdev->dev, "regmap init failed\n");
1034 		return PTR_ERR(sai->regmap);
1035 	}
1036 
1037 	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
1038 	/* Compatible with old DTB cases */
1039 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1040 		sai->bus_clk = devm_clk_get(&pdev->dev, "sai");
1041 	if (IS_ERR(sai->bus_clk)) {
1042 		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
1043 				PTR_ERR(sai->bus_clk));
1044 		/* -EPROBE_DEFER */
1045 		return PTR_ERR(sai->bus_clk);
1046 	}
1047 
1048 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1049 		sprintf(tmp, "mclk%d", i);
1050 		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
1051 		if (IS_ERR(sai->mclk_clk[i])) {
1052 			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
1053 					i + 1, PTR_ERR(sai->mclk_clk[i]));
1054 			sai->mclk_clk[i] = NULL;
1055 		}
1056 	}
1057 
1058 	if (sai->soc_data->mclk0_is_mclk1)
1059 		sai->mclk_clk[0] = sai->mclk_clk[1];
1060 	else
1061 		sai->mclk_clk[0] = sai->bus_clk;
1062 
1063 	irq = platform_get_irq(pdev, 0);
1064 	if (irq < 0)
1065 		return irq;
1066 
1067 	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
1068 			       np->name, sai);
1069 	if (ret) {
1070 		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
1071 		return ret;
1072 	}
1073 
1074 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1075 	       sizeof(fsl_sai_dai_template));
1076 
1077 	/* Sync Tx with Rx as default by following old DT binding */
1078 	sai->synchronous[RX] = true;
1079 	sai->synchronous[TX] = false;
1080 	sai->cpu_dai_drv.symmetric_rate = 1;
1081 	sai->cpu_dai_drv.symmetric_channels = 1;
1082 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1083 
1084 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1085 	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1086 		/* error out if both synchronous and asynchronous are present */
1087 		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
1088 		return -EINVAL;
1089 	}
1090 
1091 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1092 		/* Sync Rx with Tx */
1093 		sai->synchronous[RX] = false;
1094 		sai->synchronous[TX] = true;
1095 	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1096 		/* Discard all settings for asynchronous mode */
1097 		sai->synchronous[RX] = false;
1098 		sai->synchronous[TX] = false;
1099 		sai->cpu_dai_drv.symmetric_rate = 0;
1100 		sai->cpu_dai_drv.symmetric_channels = 0;
1101 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1102 	}
1103 
1104 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1105 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1106 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1107 		if (IS_ERR(gpr)) {
1108 			dev_err(&pdev->dev, "cannot find iomuxc registers\n");
1109 			return PTR_ERR(gpr);
1110 		}
1111 
1112 		index = of_alias_get_id(np, "sai");
1113 		if (index < 0)
1114 			return index;
1115 
1116 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1117 				   MCLK_DIR(index));
1118 	}
1119 
1120 	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
1121 	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1122 	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1123 	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1124 
1125 	platform_set_drvdata(pdev, sai);
1126 	pm_runtime_enable(&pdev->dev);
1127 	if (!pm_runtime_enabled(&pdev->dev)) {
1128 		ret = fsl_sai_runtime_resume(&pdev->dev);
1129 		if (ret)
1130 			goto err_pm_disable;
1131 	}
1132 
1133 	ret = pm_runtime_get_sync(&pdev->dev);
1134 	if (ret < 0) {
1135 		pm_runtime_put_noidle(&pdev->dev);
1136 		goto err_pm_get_sync;
1137 	}
1138 
1139 	/* Get sai version */
1140 	ret = fsl_sai_check_version(&pdev->dev);
1141 	if (ret < 0)
1142 		dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);
1143 
1144 	/* Select MCLK direction */
1145 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1146 	    sai->verid.major >= 3 && sai->verid.minor >= 1) {
1147 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1148 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1149 	}
1150 
1151 	ret = pm_runtime_put_sync(&pdev->dev);
1152 	if (ret < 0)
1153 		goto err_pm_get_sync;
1154 
1155 	/*
1156 	 * Register platform component before registering cpu dai for there
1157 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1158 	 */
1159 	if (sai->soc_data->use_imx_pcm) {
1160 		ret = imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
1161 		if (ret)
1162 			goto err_pm_get_sync;
1163 	} else {
1164 		ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1165 		if (ret)
1166 			goto err_pm_get_sync;
1167 	}
1168 
1169 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
1170 					      &sai->cpu_dai_drv, 1);
1171 	if (ret)
1172 		goto err_pm_get_sync;
1173 
1174 	return ret;
1175 
1176 err_pm_get_sync:
1177 	if (!pm_runtime_status_suspended(&pdev->dev))
1178 		fsl_sai_runtime_suspend(&pdev->dev);
1179 err_pm_disable:
1180 	pm_runtime_disable(&pdev->dev);
1181 
1182 	return ret;
1183 }
1184 
1185 static int fsl_sai_remove(struct platform_device *pdev)
1186 {
1187 	pm_runtime_disable(&pdev->dev);
1188 	if (!pm_runtime_status_suspended(&pdev->dev))
1189 		fsl_sai_runtime_suspend(&pdev->dev);
1190 
1191 	return 0;
1192 }
1193 
1194 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1195 	.use_imx_pcm = false,
1196 	.use_edma = false,
1197 	.fifo_depth = 32,
1198 	.reg_offset = 0,
1199 	.mclk0_is_mclk1 = false,
1200 	.flags = 0,
1201 };
1202 
1203 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1204 	.use_imx_pcm = true,
1205 	.use_edma = false,
1206 	.fifo_depth = 32,
1207 	.reg_offset = 0,
1208 	.mclk0_is_mclk1 = true,
1209 	.flags = 0,
1210 };
1211 
1212 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1213 	.use_imx_pcm = true,
1214 	.use_edma = false,
1215 	.fifo_depth = 16,
1216 	.reg_offset = 8,
1217 	.mclk0_is_mclk1 = false,
1218 	.flags = PMQOS_CPU_LATENCY,
1219 };
1220 
1221 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1222 	.use_imx_pcm = true,
1223 	.use_edma = false,
1224 	.fifo_depth = 128,
1225 	.reg_offset = 8,
1226 	.mclk0_is_mclk1 = false,
1227 	.flags = 0,
1228 };
1229 
1230 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1231 	.use_imx_pcm = true,
1232 	.use_edma = true,
1233 	.fifo_depth = 64,
1234 	.reg_offset = 0,
1235 	.mclk0_is_mclk1 = false,
1236 	.flags = 0,
1237 };
1238 
1239 static const struct of_device_id fsl_sai_ids[] = {
1240 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1241 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1242 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1243 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1244 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1245 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1246 	{ /* sentinel */ }
1247 };
1248 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1249 
1250 static int fsl_sai_runtime_suspend(struct device *dev)
1251 {
1252 	struct fsl_sai *sai = dev_get_drvdata(dev);
1253 
1254 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1255 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1256 
1257 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1258 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1259 
1260 	clk_disable_unprepare(sai->bus_clk);
1261 
1262 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1263 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1264 
1265 	regcache_cache_only(sai->regmap, true);
1266 
1267 	return 0;
1268 }
1269 
1270 static int fsl_sai_runtime_resume(struct device *dev)
1271 {
1272 	struct fsl_sai *sai = dev_get_drvdata(dev);
1273 	unsigned int ofs = sai->soc_data->reg_offset;
1274 	int ret;
1275 
1276 	ret = clk_prepare_enable(sai->bus_clk);
1277 	if (ret) {
1278 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1279 		return ret;
1280 	}
1281 
1282 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1283 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1284 		if (ret)
1285 			goto disable_bus_clk;
1286 	}
1287 
1288 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1289 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1290 		if (ret)
1291 			goto disable_tx_clk;
1292 	}
1293 
1294 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1295 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1296 
1297 	regcache_cache_only(sai->regmap, false);
1298 	regcache_mark_dirty(sai->regmap);
1299 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1300 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1301 	usleep_range(1000, 2000);
1302 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1303 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1304 
1305 	ret = regcache_sync(sai->regmap);
1306 	if (ret)
1307 		goto disable_rx_clk;
1308 
1309 	return 0;
1310 
1311 disable_rx_clk:
1312 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1313 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1314 disable_tx_clk:
1315 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1316 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1317 disable_bus_clk:
1318 	clk_disable_unprepare(sai->bus_clk);
1319 
1320 	return ret;
1321 }
1322 
1323 static const struct dev_pm_ops fsl_sai_pm_ops = {
1324 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1325 			   fsl_sai_runtime_resume, NULL)
1326 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1327 				pm_runtime_force_resume)
1328 };
1329 
1330 static struct platform_driver fsl_sai_driver = {
1331 	.probe = fsl_sai_probe,
1332 	.remove = fsl_sai_remove,
1333 	.driver = {
1334 		.name = "fsl-sai",
1335 		.pm = &fsl_sai_pm_ops,
1336 		.of_match_table = fsl_sai_ids,
1337 	},
1338 };
1339 module_platform_driver(fsl_sai_driver);
1340 
1341 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1342 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1343 MODULE_ALIAS("platform:fsl-sai");
1344 MODULE_LICENSE("GPL");
1345