xref: /openbmc/linux/sound/soc/fsl/fsl_sai.c (revision 52451502)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24 
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 		       FSL_SAI_CSR_FEIE)
31 
32 static const unsigned int fsl_sai_rates[] = {
33 	8000, 11025, 12000, 16000, 22050,
34 	24000, 32000, 44100, 48000, 64000,
35 	88200, 96000, 176400, 192000, 352800,
36 	384000, 705600, 768000, 1411200, 2822400,
37 };
38 
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 	.count = ARRAY_SIZE(fsl_sai_rates),
41 	.list = fsl_sai_rates,
42 };
43 
44 /**
45  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46  *
47  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48  * or Receiver's for both streams. This function is used to check if clocks of
49  * the stream's are synced by the opposite stream.
50  *
51  * @sai: SAI context
52  * @dir: stream direction
53  */
54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 	int adir = (dir == TX) ? RX : TX;
57 
58 	/* current dir in async mode while opposite dir in sync mode */
59 	return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61 
62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 	struct pinctrl_state *state = NULL;
65 
66 	if (sai->is_pdm_mode) {
67 		/* DSD512@44.1kHz, DSD512@48kHz */
68 		if (bclk >= 22579200)
69 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70 
71 		/* Get default DSD state */
72 		if (IS_ERR_OR_NULL(state))
73 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 	} else {
75 		/* 706k32b2c, 768k32b2c, etc */
76 		if (bclk >= 45158400)
77 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 	}
79 
80 	/* Get default state */
81 	if (IS_ERR_OR_NULL(state))
82 		state = pinctrl_lookup_state(sai->pinctrl, "default");
83 
84 	return state;
85 }
86 
87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 	struct fsl_sai *sai = (struct fsl_sai *)devid;
90 	unsigned int ofs = sai->soc_data->reg_offset;
91 	struct device *dev = &sai->pdev->dev;
92 	u32 flags, xcsr, mask;
93 	irqreturn_t iret = IRQ_NONE;
94 
95 	/*
96 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 	 * different shifts. And we here create a mask only for those
98 	 * IRQs that we activated.
99 	 */
100 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101 
102 	/* Tx IRQ */
103 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 	flags = xcsr & mask;
105 
106 	if (flags)
107 		iret = IRQ_HANDLED;
108 	else
109 		goto irq_rx;
110 
111 	if (flags & FSL_SAI_CSR_WSF)
112 		dev_dbg(dev, "isr: Start of Tx word detected\n");
113 
114 	if (flags & FSL_SAI_CSR_SEF)
115 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116 
117 	if (flags & FSL_SAI_CSR_FEF)
118 		dev_dbg(dev, "isr: Transmit underrun detected\n");
119 
120 	if (flags & FSL_SAI_CSR_FWF)
121 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122 
123 	if (flags & FSL_SAI_CSR_FRF)
124 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125 
126 	flags &= FSL_SAI_CSR_xF_W_MASK;
127 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
128 
129 	if (flags)
130 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131 
132 irq_rx:
133 	/* Rx IRQ */
134 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 	flags = xcsr & mask;
136 
137 	if (flags)
138 		iret = IRQ_HANDLED;
139 	else
140 		goto out;
141 
142 	if (flags & FSL_SAI_CSR_WSF)
143 		dev_dbg(dev, "isr: Start of Rx word detected\n");
144 
145 	if (flags & FSL_SAI_CSR_SEF)
146 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147 
148 	if (flags & FSL_SAI_CSR_FEF)
149 		dev_dbg(dev, "isr: Receive overflow detected\n");
150 
151 	if (flags & FSL_SAI_CSR_FWF)
152 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153 
154 	if (flags & FSL_SAI_CSR_FRF)
155 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156 
157 	flags &= FSL_SAI_CSR_xF_W_MASK;
158 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
159 
160 	if (flags)
161 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162 
163 out:
164 	return iret;
165 }
166 
167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 				u32 rx_mask, int slots, int slot_width)
169 {
170 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171 
172 	sai->slots = slots;
173 	sai->slot_width = slot_width;
174 
175 	return 0;
176 }
177 
178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 				      unsigned int ratio)
180 {
181 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182 
183 	sai->bclk_ratio = ratio;
184 
185 	return 0;
186 }
187 
188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 		int clk_id, unsigned int freq, bool tx)
190 {
191 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 	unsigned int ofs = sai->soc_data->reg_offset;
193 	u32 val_cr2 = 0;
194 
195 	switch (clk_id) {
196 	case FSL_SAI_CLK_BUS:
197 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 		break;
199 	case FSL_SAI_CLK_MAST1:
200 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 		break;
202 	case FSL_SAI_CLK_MAST2:
203 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 		break;
205 	case FSL_SAI_CLK_MAST3:
206 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
214 
215 	return 0;
216 }
217 
218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 	int ret;
222 
223 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 				     sai->pll8k_clk, sai->pll11k_clk, freq);
225 
226 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 	if (ret < 0)
228 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229 
230 	return ret;
231 }
232 
233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 		int clk_id, unsigned int freq, int dir)
235 {
236 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 	int ret;
238 
239 	if (dir == SND_SOC_CLOCK_IN)
240 		return 0;
241 
242 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 			return -EINVAL;
246 		}
247 
248 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 			return -EINVAL;
251 		}
252 
253 		if (sai->mclk_streams == 0) {
254 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 			if (ret < 0)
256 				return ret;
257 		}
258 	}
259 
260 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 	if (ret) {
262 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 		return ret;
264 	}
265 
266 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 	if (ret)
268 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269 
270 	return ret;
271 }
272 
273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 				unsigned int fmt, bool tx)
275 {
276 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 	unsigned int ofs = sai->soc_data->reg_offset;
278 	u32 val_cr2 = 0, val_cr4 = 0;
279 
280 	if (!sai->is_lsb_first)
281 		val_cr4 |= FSL_SAI_CR4_MF;
282 
283 	sai->is_pdm_mode = false;
284 	sai->is_dsp_mode = false;
285 	/* DAI mode */
286 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287 	case SND_SOC_DAIFMT_I2S:
288 		/*
289 		 * Frame low, 1clk before data, one word length for frame sync,
290 		 * frame sync starts one serial clock cycle earlier,
291 		 * that is, together with the last bit of the previous
292 		 * data word.
293 		 */
294 		val_cr2 |= FSL_SAI_CR2_BCP;
295 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296 		break;
297 	case SND_SOC_DAIFMT_LEFT_J:
298 		/*
299 		 * Frame high, one word length for frame sync,
300 		 * frame sync asserts with the first bit of the frame.
301 		 */
302 		val_cr2 |= FSL_SAI_CR2_BCP;
303 		break;
304 	case SND_SOC_DAIFMT_DSP_A:
305 		/*
306 		 * Frame high, 1clk before data, one bit for frame sync,
307 		 * frame sync starts one serial clock cycle earlier,
308 		 * that is, together with the last bit of the previous
309 		 * data word.
310 		 */
311 		val_cr2 |= FSL_SAI_CR2_BCP;
312 		val_cr4 |= FSL_SAI_CR4_FSE;
313 		sai->is_dsp_mode = true;
314 		break;
315 	case SND_SOC_DAIFMT_DSP_B:
316 		/*
317 		 * Frame high, one bit for frame sync,
318 		 * frame sync asserts with the first bit of the frame.
319 		 */
320 		val_cr2 |= FSL_SAI_CR2_BCP;
321 		sai->is_dsp_mode = true;
322 		break;
323 	case SND_SOC_DAIFMT_PDM:
324 		val_cr2 |= FSL_SAI_CR2_BCP;
325 		val_cr4 &= ~FSL_SAI_CR4_MF;
326 		sai->is_pdm_mode = true;
327 		break;
328 	case SND_SOC_DAIFMT_RIGHT_J:
329 		/* To be done */
330 	default:
331 		return -EINVAL;
332 	}
333 
334 	/* DAI clock inversion */
335 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336 	case SND_SOC_DAIFMT_IB_IF:
337 		/* Invert both clocks */
338 		val_cr2 ^= FSL_SAI_CR2_BCP;
339 		val_cr4 ^= FSL_SAI_CR4_FSP;
340 		break;
341 	case SND_SOC_DAIFMT_IB_NF:
342 		/* Invert bit clock */
343 		val_cr2 ^= FSL_SAI_CR2_BCP;
344 		break;
345 	case SND_SOC_DAIFMT_NB_IF:
346 		/* Invert frame clock */
347 		val_cr4 ^= FSL_SAI_CR4_FSP;
348 		break;
349 	case SND_SOC_DAIFMT_NB_NF:
350 		/* Nothing to do for both normal cases */
351 		break;
352 	default:
353 		return -EINVAL;
354 	}
355 
356 	/* DAI clock provider masks */
357 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358 	case SND_SOC_DAIFMT_BP_FP:
359 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361 		sai->is_consumer_mode = false;
362 		break;
363 	case SND_SOC_DAIFMT_BC_FC:
364 		sai->is_consumer_mode = true;
365 		break;
366 	case SND_SOC_DAIFMT_BP_FC:
367 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368 		sai->is_consumer_mode = false;
369 		break;
370 	case SND_SOC_DAIFMT_BC_FP:
371 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372 		sai->is_consumer_mode = true;
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383 
384 	return 0;
385 }
386 
387 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388 {
389 	int ret;
390 
391 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392 	if (ret) {
393 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394 		return ret;
395 	}
396 
397 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398 	if (ret)
399 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400 
401 	return ret;
402 }
403 
404 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405 {
406 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407 	unsigned int reg, ofs = sai->soc_data->reg_offset;
408 	unsigned long clk_rate;
409 	u32 savediv = 0, ratio, bestdiff = freq;
410 	int adir = tx ? RX : TX;
411 	int dir = tx ? TX : RX;
412 	u32 id;
413 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
414 
415 	/* Don't apply to consumer mode */
416 	if (sai->is_consumer_mode)
417 		return 0;
418 
419 	/*
420 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
421 	 * And given that MQS use case has to use MCLK1 though two clocks
422 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423 	 */
424 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425 
426 	for (; id < FSL_SAI_MCLK_MAX; id++) {
427 		int diff;
428 
429 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
430 		if (!clk_rate)
431 			continue;
432 
433 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434 		if (!ratio || ratio > 512)
435 			continue;
436 		if (ratio == 1 && !support_1_1_ratio)
437 			continue;
438 		if ((ratio & 1) && ratio > 1)
439 			continue;
440 
441 		diff = abs((long)clk_rate - ratio * freq);
442 
443 		/*
444 		 * Drop the source that can not be
445 		 * divided into the required rate.
446 		 */
447 		if (diff != 0 && clk_rate / diff < 1000)
448 			continue;
449 
450 		dev_dbg(dai->dev,
451 			"ratio %d for freq %dHz based on clock %ldHz\n",
452 			ratio, freq, clk_rate);
453 
454 
455 		if (diff < bestdiff) {
456 			savediv = ratio;
457 			sai->mclk_id[tx] = id;
458 			bestdiff = diff;
459 		}
460 
461 		if (diff == 0)
462 			break;
463 	}
464 
465 	if (savediv == 0) {
466 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467 				tx ? 'T' : 'R', freq);
468 		return -EINVAL;
469 	}
470 
471 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472 			sai->mclk_id[tx], savediv, bestdiff);
473 
474 	/*
475 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476 	 *    set TCR2 register for playback.
477 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478 	 *    and capture.
479 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480 	 *    and capture.
481 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482 	 *    ignore it.
483 	 */
484 	if (fsl_sai_dir_is_synced(sai, adir))
485 		reg = FSL_SAI_xCR2(!tx, ofs);
486 	else if (!sai->synchronous[dir])
487 		reg = FSL_SAI_xCR2(tx, ofs);
488 	else
489 		return 0;
490 
491 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493 
494 	if (savediv == 1) {
495 		regmap_update_bits(sai->regmap, reg,
496 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497 				   FSL_SAI_CR2_BYP);
498 		if (fsl_sai_dir_is_synced(sai, adir))
499 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500 					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501 		else
502 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503 					   FSL_SAI_CR2_BCI, 0);
504 	} else {
505 		regmap_update_bits(sai->regmap, reg,
506 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507 				   savediv / 2 - 1);
508 	}
509 
510 	return 0;
511 }
512 
513 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
514 		struct snd_pcm_hw_params *params,
515 		struct snd_soc_dai *cpu_dai)
516 {
517 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
518 	unsigned int ofs = sai->soc_data->reg_offset;
519 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
520 	unsigned int channels = params_channels(params);
521 	struct snd_dmaengine_dai_dma_data *dma_params;
522 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
523 	u32 word_width = params_width(params);
524 	int trce_mask = 0, dl_cfg_idx = 0;
525 	int dl_cfg_cnt = sai->dl_cfg_cnt;
526 	u32 dl_type = FSL_SAI_DL_I2S;
527 	u32 val_cr4 = 0, val_cr5 = 0;
528 	u32 slots = (channels == 1) ? 2 : channels;
529 	u32 slot_width = word_width;
530 	int adir = tx ? RX : TX;
531 	u32 pins, bclk;
532 	u32 watermark;
533 	int ret, i;
534 
535 	if (sai->slot_width)
536 		slot_width = sai->slot_width;
537 
538 	if (sai->slots)
539 		slots = sai->slots;
540 	else if (sai->bclk_ratio)
541 		slots = sai->bclk_ratio / slot_width;
542 
543 	pins = DIV_ROUND_UP(channels, slots);
544 
545 	/*
546 	 * PDM mode, channels are independent
547 	 * each channels are on one dataline/FIFO.
548 	 */
549 	if (sai->is_pdm_mode) {
550 		pins = channels;
551 		dl_type = FSL_SAI_DL_PDM;
552 	}
553 
554 	for (i = 0; i < dl_cfg_cnt; i++) {
555 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
556 			dl_cfg_idx = i;
557 			break;
558 		}
559 	}
560 
561 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
562 		dev_err(cpu_dai->dev, "channel not supported\n");
563 		return -EINVAL;
564 	}
565 
566 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
567 
568 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
569 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
570 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
571 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
572 			if (ret) {
573 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
574 				return ret;
575 			}
576 		}
577 	}
578 
579 	if (!sai->is_consumer_mode) {
580 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
581 		if (ret)
582 			return ret;
583 
584 		/* Do not enable the clock if it is already enabled */
585 		if (!(sai->mclk_streams & BIT(substream->stream))) {
586 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
587 			if (ret)
588 				return ret;
589 
590 			sai->mclk_streams |= BIT(substream->stream);
591 		}
592 	}
593 
594 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
595 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
596 
597 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
598 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
599 
600 	if (sai->is_lsb_first || sai->is_pdm_mode)
601 		val_cr5 |= FSL_SAI_CR5_FBT(0);
602 	else
603 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
604 
605 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
606 
607 	/* Set to output mode to avoid tri-stated data pins */
608 	if (tx)
609 		val_cr4 |= FSL_SAI_CR4_CHMOD;
610 
611 	/*
612 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
613 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
614 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
615 	 */
616 
617 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
618 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
619 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
620 				   FSL_SAI_CR4_CHMOD_MASK,
621 				   val_cr4);
622 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
623 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
624 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
625 	}
626 
627 	/*
628 	 * Combine mode has limation:
629 	 * - Can't used for singel dataline/FIFO case except the FIFO0
630 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
631 	 *   are successive and start from FIFO0
632 	 *
633 	 * So for common usage, all multi fifo case disable the combine mode.
634 	 */
635 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
636 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
637 				   FSL_SAI_CR4_FCOMB_MASK, 0);
638 	else
639 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
640 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
641 
642 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
643 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
644 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
645 
646 	if (sai->is_multi_fifo_dma) {
647 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
648 		if (tx) {
649 			sai->audio_config[tx].n_fifos_dst = pins;
650 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
651 		} else {
652 			sai->audio_config[tx].n_fifos_src = pins;
653 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
654 		}
655 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
656 		dma_params->peripheral_config = &sai->audio_config[tx];
657 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
658 
659 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
660 				 (dma_params->maxburst - 1);
661 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
662 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
663 				   watermark);
664 	}
665 
666 	/* Find a proper tcre setting */
667 	for (i = 0; i < sai->soc_data->pins; i++) {
668 		trce_mask = (1 << (i + 1)) - 1;
669 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
670 			break;
671 	}
672 
673 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
674 			   FSL_SAI_CR3_TRCE_MASK,
675 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
676 
677 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
678 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
679 			   FSL_SAI_CR4_CHMOD_MASK,
680 			   val_cr4);
681 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
682 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
683 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
684 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
685 		     ~0UL - ((1 << min(channels, slots)) - 1));
686 
687 	return 0;
688 }
689 
690 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
691 		struct snd_soc_dai *cpu_dai)
692 {
693 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
694 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
695 	unsigned int ofs = sai->soc_data->reg_offset;
696 
697 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
698 			   FSL_SAI_CR3_TRCE_MASK, 0);
699 
700 	if (!sai->is_consumer_mode &&
701 			sai->mclk_streams & BIT(substream->stream)) {
702 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
703 		sai->mclk_streams &= ~BIT(substream->stream);
704 	}
705 
706 	return 0;
707 }
708 
709 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
710 {
711 	unsigned int ofs = sai->soc_data->reg_offset;
712 	bool tx = dir == TX;
713 	u32 xcsr, count = 100, mask;
714 
715 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
716 		mask = FSL_SAI_CSR_TERE;
717 	else
718 		mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
719 
720 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
721 			   mask, 0);
722 
723 	/* TERE will remain set till the end of current frame */
724 	do {
725 		udelay(10);
726 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
727 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
728 
729 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
730 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
731 
732 	/*
733 	 * For sai master mode, after several open/close sai,
734 	 * there will be no frame clock, and can't recover
735 	 * anymore. Add software reset to fix this issue.
736 	 * This is a hardware bug, and will be fix in the
737 	 * next sai version.
738 	 */
739 	if (!sai->is_consumer_mode) {
740 		/* Software Reset */
741 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
742 		/* Clear SR bit to finish the reset */
743 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
744 	}
745 }
746 
747 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
748 		struct snd_soc_dai *cpu_dai)
749 {
750 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
751 	unsigned int ofs = sai->soc_data->reg_offset;
752 
753 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
754 	int adir = tx ? RX : TX;
755 	int dir = tx ? TX : RX;
756 	u32 xcsr;
757 
758 	/*
759 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
760 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
761 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
762 	 */
763 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
764 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
765 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
766 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
767 
768 	/*
769 	 * It is recommended that the transmitter is the last enabled
770 	 * and the first disabled.
771 	 */
772 	switch (cmd) {
773 	case SNDRV_PCM_TRIGGER_START:
774 	case SNDRV_PCM_TRIGGER_RESUME:
775 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
776 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
777 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
778 
779 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
780 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
781 		/*
782 		 * Enable the opposite direction for synchronous mode
783 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
784 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
785 		 *
786 		 * RM recommends to enable RE after TE for case 1 and to enable
787 		 * TE after RE for case 2, but we here may not always guarantee
788 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
789 		 * TE after RE, which is against what RM recommends but should
790 		 * be safe to do, judging by years of testing results.
791 		 */
792 		if (fsl_sai_dir_is_synced(sai, adir))
793 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
794 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
795 
796 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
797 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
798 		break;
799 	case SNDRV_PCM_TRIGGER_STOP:
800 	case SNDRV_PCM_TRIGGER_SUSPEND:
801 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
802 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
803 				   FSL_SAI_CSR_FRDE, 0);
804 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
805 				   FSL_SAI_CSR_xIE_MASK, 0);
806 
807 		/* Check if the opposite FRDE is also disabled */
808 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
809 
810 		/*
811 		 * If opposite stream provides clocks for synchronous mode and
812 		 * it is inactive, disable it before disabling the current one
813 		 */
814 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
815 			fsl_sai_config_disable(sai, adir);
816 
817 		/*
818 		 * Disable current stream if either of:
819 		 * 1. current stream doesn't provide clocks for synchronous mode
820 		 * 2. current stream provides clocks for synchronous mode but no
821 		 *    more stream is active.
822 		 */
823 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
824 			fsl_sai_config_disable(sai, dir);
825 
826 		break;
827 	default:
828 		return -EINVAL;
829 	}
830 
831 	return 0;
832 }
833 
834 static int fsl_sai_startup(struct snd_pcm_substream *substream,
835 		struct snd_soc_dai *cpu_dai)
836 {
837 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
838 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
839 	int ret;
840 
841 	/*
842 	 * EDMA controller needs period size to be a multiple of
843 	 * tx/rx maxburst
844 	 */
845 	if (sai->soc_data->use_edma)
846 		snd_pcm_hw_constraint_step(substream->runtime, 0,
847 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
848 					   tx ? sai->dma_params_tx.maxburst :
849 					   sai->dma_params_rx.maxburst);
850 
851 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
852 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
853 
854 	return ret;
855 }
856 
857 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
858 {
859 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
860 	unsigned int ofs = sai->soc_data->reg_offset;
861 
862 	/* Software Reset for both Tx and Rx */
863 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
864 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
865 	/* Clear SR bit to finish the reset */
866 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
867 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
868 
869 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
870 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
871 			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
872 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
873 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
874 			   sai->dma_params_rx.maxburst - 1);
875 
876 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
877 				&sai->dma_params_rx);
878 
879 	return 0;
880 }
881 
882 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
883 	.probe		= fsl_sai_dai_probe,
884 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
885 	.set_sysclk	= fsl_sai_set_dai_sysclk,
886 	.set_fmt	= fsl_sai_set_dai_fmt,
887 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
888 	.hw_params	= fsl_sai_hw_params,
889 	.hw_free	= fsl_sai_hw_free,
890 	.trigger	= fsl_sai_trigger,
891 	.startup	= fsl_sai_startup,
892 };
893 
894 static int fsl_sai_dai_resume(struct snd_soc_component *component)
895 {
896 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
897 	struct device *dev = &sai->pdev->dev;
898 	int ret;
899 
900 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
901 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
902 		if (ret) {
903 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
904 			return ret;
905 		}
906 	}
907 
908 	return 0;
909 }
910 
911 static struct snd_soc_dai_driver fsl_sai_dai_template = {
912 	.playback = {
913 		.stream_name = "CPU-Playback",
914 		.channels_min = 1,
915 		.channels_max = 32,
916 		.rate_min = 8000,
917 		.rate_max = 2822400,
918 		.rates = SNDRV_PCM_RATE_KNOT,
919 		.formats = FSL_SAI_FORMATS,
920 	},
921 	.capture = {
922 		.stream_name = "CPU-Capture",
923 		.channels_min = 1,
924 		.channels_max = 32,
925 		.rate_min = 8000,
926 		.rate_max = 2822400,
927 		.rates = SNDRV_PCM_RATE_KNOT,
928 		.formats = FSL_SAI_FORMATS,
929 	},
930 	.ops = &fsl_sai_pcm_dai_ops,
931 };
932 
933 static const struct snd_soc_component_driver fsl_component = {
934 	.name			= "fsl-sai",
935 	.resume			= fsl_sai_dai_resume,
936 	.legacy_dai_naming	= 1,
937 };
938 
939 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
940 	{FSL_SAI_TCR1(0), 0},
941 	{FSL_SAI_TCR2(0), 0},
942 	{FSL_SAI_TCR3(0), 0},
943 	{FSL_SAI_TCR4(0), 0},
944 	{FSL_SAI_TCR5(0), 0},
945 	{FSL_SAI_TDR0, 0},
946 	{FSL_SAI_TDR1, 0},
947 	{FSL_SAI_TDR2, 0},
948 	{FSL_SAI_TDR3, 0},
949 	{FSL_SAI_TDR4, 0},
950 	{FSL_SAI_TDR5, 0},
951 	{FSL_SAI_TDR6, 0},
952 	{FSL_SAI_TDR7, 0},
953 	{FSL_SAI_TMR, 0},
954 	{FSL_SAI_RCR1(0), 0},
955 	{FSL_SAI_RCR2(0), 0},
956 	{FSL_SAI_RCR3(0), 0},
957 	{FSL_SAI_RCR4(0), 0},
958 	{FSL_SAI_RCR5(0), 0},
959 	{FSL_SAI_RMR, 0},
960 };
961 
962 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
963 	{FSL_SAI_TCR1(8), 0},
964 	{FSL_SAI_TCR2(8), 0},
965 	{FSL_SAI_TCR3(8), 0},
966 	{FSL_SAI_TCR4(8), 0},
967 	{FSL_SAI_TCR5(8), 0},
968 	{FSL_SAI_TDR0, 0},
969 	{FSL_SAI_TDR1, 0},
970 	{FSL_SAI_TDR2, 0},
971 	{FSL_SAI_TDR3, 0},
972 	{FSL_SAI_TDR4, 0},
973 	{FSL_SAI_TDR5, 0},
974 	{FSL_SAI_TDR6, 0},
975 	{FSL_SAI_TDR7, 0},
976 	{FSL_SAI_TMR, 0},
977 	{FSL_SAI_RCR1(8), 0},
978 	{FSL_SAI_RCR2(8), 0},
979 	{FSL_SAI_RCR3(8), 0},
980 	{FSL_SAI_RCR4(8), 0},
981 	{FSL_SAI_RCR5(8), 0},
982 	{FSL_SAI_RMR, 0},
983 	{FSL_SAI_MCTL, 0},
984 	{FSL_SAI_MDIV, 0},
985 };
986 
987 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
988 {
989 	struct fsl_sai *sai = dev_get_drvdata(dev);
990 	unsigned int ofs = sai->soc_data->reg_offset;
991 
992 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
993 		return true;
994 
995 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
996 		return true;
997 
998 	switch (reg) {
999 	case FSL_SAI_TFR0:
1000 	case FSL_SAI_TFR1:
1001 	case FSL_SAI_TFR2:
1002 	case FSL_SAI_TFR3:
1003 	case FSL_SAI_TFR4:
1004 	case FSL_SAI_TFR5:
1005 	case FSL_SAI_TFR6:
1006 	case FSL_SAI_TFR7:
1007 	case FSL_SAI_TMR:
1008 	case FSL_SAI_RDR0:
1009 	case FSL_SAI_RDR1:
1010 	case FSL_SAI_RDR2:
1011 	case FSL_SAI_RDR3:
1012 	case FSL_SAI_RDR4:
1013 	case FSL_SAI_RDR5:
1014 	case FSL_SAI_RDR6:
1015 	case FSL_SAI_RDR7:
1016 	case FSL_SAI_RFR0:
1017 	case FSL_SAI_RFR1:
1018 	case FSL_SAI_RFR2:
1019 	case FSL_SAI_RFR3:
1020 	case FSL_SAI_RFR4:
1021 	case FSL_SAI_RFR5:
1022 	case FSL_SAI_RFR6:
1023 	case FSL_SAI_RFR7:
1024 	case FSL_SAI_RMR:
1025 	case FSL_SAI_MCTL:
1026 	case FSL_SAI_MDIV:
1027 	case FSL_SAI_VERID:
1028 	case FSL_SAI_PARAM:
1029 	case FSL_SAI_TTCTN:
1030 	case FSL_SAI_RTCTN:
1031 	case FSL_SAI_TTCTL:
1032 	case FSL_SAI_TBCTN:
1033 	case FSL_SAI_TTCAP:
1034 	case FSL_SAI_RTCTL:
1035 	case FSL_SAI_RBCTN:
1036 	case FSL_SAI_RTCAP:
1037 		return true;
1038 	default:
1039 		return false;
1040 	}
1041 }
1042 
1043 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1044 {
1045 	struct fsl_sai *sai = dev_get_drvdata(dev);
1046 	unsigned int ofs = sai->soc_data->reg_offset;
1047 
1048 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1049 		return true;
1050 
1051 	/* Set VERID and PARAM be volatile for reading value in probe */
1052 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1053 		return true;
1054 
1055 	switch (reg) {
1056 	case FSL_SAI_TFR0:
1057 	case FSL_SAI_TFR1:
1058 	case FSL_SAI_TFR2:
1059 	case FSL_SAI_TFR3:
1060 	case FSL_SAI_TFR4:
1061 	case FSL_SAI_TFR5:
1062 	case FSL_SAI_TFR6:
1063 	case FSL_SAI_TFR7:
1064 	case FSL_SAI_RFR0:
1065 	case FSL_SAI_RFR1:
1066 	case FSL_SAI_RFR2:
1067 	case FSL_SAI_RFR3:
1068 	case FSL_SAI_RFR4:
1069 	case FSL_SAI_RFR5:
1070 	case FSL_SAI_RFR6:
1071 	case FSL_SAI_RFR7:
1072 	case FSL_SAI_RDR0:
1073 	case FSL_SAI_RDR1:
1074 	case FSL_SAI_RDR2:
1075 	case FSL_SAI_RDR3:
1076 	case FSL_SAI_RDR4:
1077 	case FSL_SAI_RDR5:
1078 	case FSL_SAI_RDR6:
1079 	case FSL_SAI_RDR7:
1080 		return true;
1081 	default:
1082 		return false;
1083 	}
1084 }
1085 
1086 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1087 {
1088 	struct fsl_sai *sai = dev_get_drvdata(dev);
1089 	unsigned int ofs = sai->soc_data->reg_offset;
1090 
1091 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1092 		return true;
1093 
1094 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1095 		return true;
1096 
1097 	switch (reg) {
1098 	case FSL_SAI_TDR0:
1099 	case FSL_SAI_TDR1:
1100 	case FSL_SAI_TDR2:
1101 	case FSL_SAI_TDR3:
1102 	case FSL_SAI_TDR4:
1103 	case FSL_SAI_TDR5:
1104 	case FSL_SAI_TDR6:
1105 	case FSL_SAI_TDR7:
1106 	case FSL_SAI_TMR:
1107 	case FSL_SAI_RMR:
1108 	case FSL_SAI_MCTL:
1109 	case FSL_SAI_MDIV:
1110 	case FSL_SAI_TTCTL:
1111 	case FSL_SAI_RTCTL:
1112 		return true;
1113 	default:
1114 		return false;
1115 	}
1116 }
1117 
1118 static struct regmap_config fsl_sai_regmap_config = {
1119 	.reg_bits = 32,
1120 	.reg_stride = 4,
1121 	.val_bits = 32,
1122 	.fast_io = true,
1123 
1124 	.max_register = FSL_SAI_RMR,
1125 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1126 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1127 	.readable_reg = fsl_sai_readable_reg,
1128 	.volatile_reg = fsl_sai_volatile_reg,
1129 	.writeable_reg = fsl_sai_writeable_reg,
1130 	.cache_type = REGCACHE_FLAT,
1131 };
1132 
1133 static int fsl_sai_check_version(struct device *dev)
1134 {
1135 	struct fsl_sai *sai = dev_get_drvdata(dev);
1136 	unsigned char ofs = sai->soc_data->reg_offset;
1137 	unsigned int val;
1138 	int ret;
1139 
1140 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1141 		return 0;
1142 
1143 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1144 	if (ret < 0)
1145 		return ret;
1146 
1147 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1148 
1149 	sai->verid.version = val &
1150 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1151 	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1152 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1153 
1154 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1155 	if (ret < 0)
1156 		return ret;
1157 
1158 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1159 
1160 	/* Max slots per frame, power of 2 */
1161 	sai->param.slot_num = 1 <<
1162 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1163 
1164 	/* Words per fifo, power of 2 */
1165 	sai->param.fifo_depth = 1 <<
1166 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1167 
1168 	/* Number of datalines implemented */
1169 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Calculate the offset between first two datalines, don't
1176  * different offset in one case.
1177  */
1178 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1179 {
1180 	int fbidx, nbidx, offset;
1181 
1182 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1183 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1184 	offset = nbidx - fbidx - 1;
1185 
1186 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1187 }
1188 
1189 /*
1190  * read the fsl,dataline property from dts file.
1191  * It has 3 value for each configuration, first one means the type:
1192  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1193  * dataline mask for 'tx'. for example
1194  *
1195  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1196  *
1197  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1198  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1199  *
1200  */
1201 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1202 {
1203 	struct platform_device *pdev = sai->pdev;
1204 	struct device_node *np = pdev->dev.of_node;
1205 	struct device *dev = &pdev->dev;
1206 	int ret, elems, i, index, num_cfg;
1207 	char *propname = "fsl,dataline";
1208 	struct fsl_sai_dl_cfg *cfg;
1209 	unsigned long dl_mask;
1210 	unsigned int soc_dl;
1211 	u32 rx, tx, type;
1212 
1213 	elems = of_property_count_u32_elems(np, propname);
1214 
1215 	if (elems <= 0) {
1216 		elems = 0;
1217 	} else if (elems % 3) {
1218 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1219 		return -EINVAL;
1220 	}
1221 
1222 	num_cfg = elems / 3;
1223 	/*  Add one more for default value */
1224 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1225 	if (!cfg)
1226 		return -ENOMEM;
1227 
1228 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1229 	soc_dl = BIT(sai->soc_data->pins) - 1;
1230 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1231 	cfg[0].pins[0] = sai->soc_data->pins;
1232 	cfg[0].mask[0] = soc_dl;
1233 	cfg[0].start_off[0] = 0;
1234 	cfg[0].next_off[0] = 0;
1235 
1236 	cfg[0].pins[1] = sai->soc_data->pins;
1237 	cfg[0].mask[1] = soc_dl;
1238 	cfg[0].start_off[1] = 0;
1239 	cfg[0].next_off[1] = 0;
1240 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1241 		/*
1242 		 * type of dataline
1243 		 * 0 means default mode
1244 		 * 1 means I2S mode
1245 		 * 2 means PDM mode
1246 		 */
1247 		ret = of_property_read_u32_index(np, propname, index++, &type);
1248 		if (ret)
1249 			return -EINVAL;
1250 
1251 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1252 		if (ret)
1253 			return -EINVAL;
1254 
1255 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1256 		if (ret)
1257 			return -EINVAL;
1258 
1259 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1260 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1261 			return -EINVAL;
1262 		}
1263 
1264 		rx = rx & soc_dl;
1265 		tx = tx & soc_dl;
1266 
1267 		cfg[i].type = type;
1268 		cfg[i].pins[0] = hweight8(rx);
1269 		cfg[i].mask[0] = rx;
1270 		dl_mask = rx;
1271 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1272 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1273 
1274 		cfg[i].pins[1] = hweight8(tx);
1275 		cfg[i].mask[1] = tx;
1276 		dl_mask = tx;
1277 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1278 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1279 	}
1280 
1281 	sai->dl_cfg = cfg;
1282 	sai->dl_cfg_cnt = num_cfg + 1;
1283 	return 0;
1284 }
1285 
1286 static int fsl_sai_runtime_suspend(struct device *dev);
1287 static int fsl_sai_runtime_resume(struct device *dev);
1288 
1289 static int fsl_sai_probe(struct platform_device *pdev)
1290 {
1291 	struct device_node *np = pdev->dev.of_node;
1292 	struct device *dev = &pdev->dev;
1293 	struct fsl_sai *sai;
1294 	struct regmap *gpr;
1295 	void __iomem *base;
1296 	char tmp[8];
1297 	int irq, ret, i;
1298 	int index;
1299 	u32 dmas[4];
1300 
1301 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1302 	if (!sai)
1303 		return -ENOMEM;
1304 
1305 	sai->pdev = pdev;
1306 	sai->soc_data = of_device_get_match_data(dev);
1307 
1308 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1309 
1310 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1311 	if (IS_ERR(base))
1312 		return PTR_ERR(base);
1313 
1314 	if (sai->soc_data->reg_offset == 8) {
1315 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1316 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1317 		fsl_sai_regmap_config.num_reg_defaults =
1318 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1319 	}
1320 
1321 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1322 	if (IS_ERR(sai->regmap)) {
1323 		dev_err(dev, "regmap init failed\n");
1324 		return PTR_ERR(sai->regmap);
1325 	}
1326 
1327 	sai->bus_clk = devm_clk_get(dev, "bus");
1328 	/* Compatible with old DTB cases */
1329 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1330 		sai->bus_clk = devm_clk_get(dev, "sai");
1331 	if (IS_ERR(sai->bus_clk)) {
1332 		dev_err(dev, "failed to get bus clock: %ld\n",
1333 				PTR_ERR(sai->bus_clk));
1334 		/* -EPROBE_DEFER */
1335 		return PTR_ERR(sai->bus_clk);
1336 	}
1337 
1338 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1339 		sprintf(tmp, "mclk%d", i);
1340 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1341 		if (IS_ERR(sai->mclk_clk[i])) {
1342 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1343 					i, PTR_ERR(sai->mclk_clk[i]));
1344 			sai->mclk_clk[i] = NULL;
1345 		}
1346 	}
1347 
1348 	if (sai->soc_data->mclk0_is_mclk1)
1349 		sai->mclk_clk[0] = sai->mclk_clk[1];
1350 	else
1351 		sai->mclk_clk[0] = sai->bus_clk;
1352 
1353 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1354 				&sai->pll11k_clk);
1355 
1356 	/* Use Multi FIFO mode depending on the support from SDMA script */
1357 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1358 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1359 		sai->is_multi_fifo_dma = true;
1360 
1361 	/* read dataline mask for rx and tx*/
1362 	ret = fsl_sai_read_dlcfg(sai);
1363 	if (ret < 0) {
1364 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1365 		return ret;
1366 	}
1367 
1368 	irq = platform_get_irq(pdev, 0);
1369 	if (irq < 0)
1370 		return irq;
1371 
1372 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1373 			       np->name, sai);
1374 	if (ret) {
1375 		dev_err(dev, "failed to claim irq %u\n", irq);
1376 		return ret;
1377 	}
1378 
1379 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1380 	       sizeof(fsl_sai_dai_template));
1381 
1382 	/* Sync Tx with Rx as default by following old DT binding */
1383 	sai->synchronous[RX] = true;
1384 	sai->synchronous[TX] = false;
1385 	sai->cpu_dai_drv.symmetric_rate = 1;
1386 	sai->cpu_dai_drv.symmetric_channels = 1;
1387 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1388 
1389 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1390 	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1391 		/* error out if both synchronous and asynchronous are present */
1392 		dev_err(dev, "invalid binding for synchronous mode\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1397 		/* Sync Rx with Tx */
1398 		sai->synchronous[RX] = false;
1399 		sai->synchronous[TX] = true;
1400 	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1401 		/* Discard all settings for asynchronous mode */
1402 		sai->synchronous[RX] = false;
1403 		sai->synchronous[TX] = false;
1404 		sai->cpu_dai_drv.symmetric_rate = 0;
1405 		sai->cpu_dai_drv.symmetric_channels = 0;
1406 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1407 	}
1408 
1409 	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1410 
1411 	if (sai->mclk_direction_output &&
1412 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1413 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1414 		if (IS_ERR(gpr)) {
1415 			dev_err(dev, "cannot find iomuxc registers\n");
1416 			return PTR_ERR(gpr);
1417 		}
1418 
1419 		index = of_alias_get_id(np, "sai");
1420 		if (index < 0)
1421 			return index;
1422 
1423 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1424 				   MCLK_DIR(index));
1425 	}
1426 
1427 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1428 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1429 	sai->dma_params_rx.maxburst =
1430 		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1431 	sai->dma_params_tx.maxburst =
1432 		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1433 
1434 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1435 
1436 	platform_set_drvdata(pdev, sai);
1437 	pm_runtime_enable(dev);
1438 	if (!pm_runtime_enabled(dev)) {
1439 		ret = fsl_sai_runtime_resume(dev);
1440 		if (ret)
1441 			goto err_pm_disable;
1442 	}
1443 
1444 	ret = pm_runtime_resume_and_get(dev);
1445 	if (ret < 0)
1446 		goto err_pm_get_sync;
1447 
1448 	/* Get sai version */
1449 	ret = fsl_sai_check_version(dev);
1450 	if (ret < 0)
1451 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1452 
1453 	/* Select MCLK direction */
1454 	if (sai->mclk_direction_output &&
1455 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1456 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1457 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1458 	}
1459 
1460 	ret = pm_runtime_put_sync(dev);
1461 	if (ret < 0 && ret != -ENOSYS)
1462 		goto err_pm_get_sync;
1463 
1464 	/*
1465 	 * Register platform component before registering cpu dai for there
1466 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1467 	 */
1468 	if (sai->soc_data->use_imx_pcm) {
1469 		ret = imx_pcm_dma_init(pdev);
1470 		if (ret) {
1471 			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1472 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1473 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1474 			goto err_pm_get_sync;
1475 		}
1476 	} else {
1477 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1478 		if (ret) {
1479 			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1480 			goto err_pm_get_sync;
1481 		}
1482 	}
1483 
1484 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1485 					      &sai->cpu_dai_drv, 1);
1486 	if (ret)
1487 		goto err_pm_get_sync;
1488 
1489 	return ret;
1490 
1491 err_pm_get_sync:
1492 	if (!pm_runtime_status_suspended(dev))
1493 		fsl_sai_runtime_suspend(dev);
1494 err_pm_disable:
1495 	pm_runtime_disable(dev);
1496 
1497 	return ret;
1498 }
1499 
1500 static void fsl_sai_remove(struct platform_device *pdev)
1501 {
1502 	pm_runtime_disable(&pdev->dev);
1503 	if (!pm_runtime_status_suspended(&pdev->dev))
1504 		fsl_sai_runtime_suspend(&pdev->dev);
1505 }
1506 
1507 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1508 	.use_imx_pcm = false,
1509 	.use_edma = false,
1510 	.fifo_depth = 32,
1511 	.pins = 1,
1512 	.reg_offset = 0,
1513 	.mclk0_is_mclk1 = false,
1514 	.flags = 0,
1515 	.max_register = FSL_SAI_RMR,
1516 };
1517 
1518 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1519 	.use_imx_pcm = true,
1520 	.use_edma = false,
1521 	.fifo_depth = 32,
1522 	.pins = 1,
1523 	.reg_offset = 0,
1524 	.mclk0_is_mclk1 = true,
1525 	.flags = 0,
1526 	.max_register = FSL_SAI_RMR,
1527 };
1528 
1529 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1530 	.use_imx_pcm = true,
1531 	.use_edma = false,
1532 	.fifo_depth = 16,
1533 	.pins = 2,
1534 	.reg_offset = 8,
1535 	.mclk0_is_mclk1 = false,
1536 	.flags = PMQOS_CPU_LATENCY,
1537 	.max_register = FSL_SAI_RMR,
1538 };
1539 
1540 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1541 	.use_imx_pcm = true,
1542 	.use_edma = false,
1543 	.fifo_depth = 128,
1544 	.pins = 8,
1545 	.reg_offset = 8,
1546 	.mclk0_is_mclk1 = false,
1547 	.flags = 0,
1548 	.max_register = FSL_SAI_RMR,
1549 };
1550 
1551 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1552 	.use_imx_pcm = true,
1553 	.use_edma = true,
1554 	.fifo_depth = 64,
1555 	.pins = 4,
1556 	.reg_offset = 0,
1557 	.mclk0_is_mclk1 = false,
1558 	.flags = 0,
1559 	.max_register = FSL_SAI_RMR,
1560 };
1561 
1562 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1563 	.use_imx_pcm = true,
1564 	.use_edma = false,
1565 	.fifo_depth = 128,
1566 	.reg_offset = 8,
1567 	.mclk0_is_mclk1 = false,
1568 	.pins = 8,
1569 	.flags = 0,
1570 	.max_register = FSL_SAI_MCTL,
1571 };
1572 
1573 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1574 	.use_imx_pcm = true,
1575 	.use_edma = false,
1576 	.fifo_depth = 128,
1577 	.reg_offset = 8,
1578 	.mclk0_is_mclk1 = false,
1579 	.pins = 8,
1580 	.flags = 0,
1581 	.max_register = FSL_SAI_MDIV,
1582 };
1583 
1584 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1585 	.use_imx_pcm = true,
1586 	.use_edma = false,
1587 	.fifo_depth = 128,
1588 	.reg_offset = 8,
1589 	.mclk0_is_mclk1 = false,
1590 	.pins = 8,
1591 	.flags = 0,
1592 	.max_register = FSL_SAI_MDIV,
1593 	.mclk_with_tere = true,
1594 };
1595 
1596 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1597 	.use_imx_pcm = true,
1598 	.use_edma = true,
1599 	.fifo_depth = 16,
1600 	.reg_offset = 8,
1601 	.mclk0_is_mclk1 = false,
1602 	.pins = 4,
1603 	.flags = PMQOS_CPU_LATENCY,
1604 	.max_register = FSL_SAI_RTCAP,
1605 };
1606 
1607 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1608 	.use_imx_pcm = true,
1609 	.use_edma = true,
1610 	.fifo_depth = 128,
1611 	.reg_offset = 8,
1612 	.mclk0_is_mclk1 = false,
1613 	.pins = 4,
1614 	.flags = 0,
1615 	.max_register = FSL_SAI_MCTL,
1616 	.max_burst = {8, 8},
1617 };
1618 
1619 static const struct of_device_id fsl_sai_ids[] = {
1620 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1621 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1622 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1623 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1624 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1625 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1626 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1627 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1628 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1629 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1630 	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1631 	{ /* sentinel */ }
1632 };
1633 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1634 
1635 static int fsl_sai_runtime_suspend(struct device *dev)
1636 {
1637 	struct fsl_sai *sai = dev_get_drvdata(dev);
1638 
1639 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1640 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1641 
1642 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1643 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1644 
1645 	clk_disable_unprepare(sai->bus_clk);
1646 
1647 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1648 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1649 
1650 	regcache_cache_only(sai->regmap, true);
1651 
1652 	return 0;
1653 }
1654 
1655 static int fsl_sai_runtime_resume(struct device *dev)
1656 {
1657 	struct fsl_sai *sai = dev_get_drvdata(dev);
1658 	unsigned int ofs = sai->soc_data->reg_offset;
1659 	int ret;
1660 
1661 	ret = clk_prepare_enable(sai->bus_clk);
1662 	if (ret) {
1663 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1664 		return ret;
1665 	}
1666 
1667 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1668 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1669 		if (ret)
1670 			goto disable_bus_clk;
1671 	}
1672 
1673 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1674 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1675 		if (ret)
1676 			goto disable_tx_clk;
1677 	}
1678 
1679 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1680 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1681 
1682 	regcache_cache_only(sai->regmap, false);
1683 	regcache_mark_dirty(sai->regmap);
1684 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1685 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1686 	usleep_range(1000, 2000);
1687 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1688 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1689 
1690 	ret = regcache_sync(sai->regmap);
1691 	if (ret)
1692 		goto disable_rx_clk;
1693 
1694 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1695 		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1696 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1697 
1698 	return 0;
1699 
1700 disable_rx_clk:
1701 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1702 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1703 disable_tx_clk:
1704 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1705 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1706 disable_bus_clk:
1707 	clk_disable_unprepare(sai->bus_clk);
1708 
1709 	return ret;
1710 }
1711 
1712 static const struct dev_pm_ops fsl_sai_pm_ops = {
1713 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1714 			   fsl_sai_runtime_resume, NULL)
1715 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1716 				pm_runtime_force_resume)
1717 };
1718 
1719 static struct platform_driver fsl_sai_driver = {
1720 	.probe = fsl_sai_probe,
1721 	.remove_new = fsl_sai_remove,
1722 	.driver = {
1723 		.name = "fsl-sai",
1724 		.pm = &fsl_sai_pm_ops,
1725 		.of_match_table = fsl_sai_ids,
1726 	},
1727 };
1728 module_platform_driver(fsl_sai_driver);
1729 
1730 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1731 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1732 MODULE_ALIAS("platform:fsl-sai");
1733 MODULE_LICENSE("GPL");
1734