xref: /openbmc/linux/sound/soc/fsl/fsl_sai.c (revision fb0f25c8)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24 
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 		       FSL_SAI_CSR_FEIE)
31 
32 static const unsigned int fsl_sai_rates[] = {
33 	8000, 11025, 12000, 16000, 22050,
34 	24000, 32000, 44100, 48000, 64000,
35 	88200, 96000, 176400, 192000, 352800,
36 	384000, 705600, 768000, 1411200, 2822400,
37 };
38 
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 	.count = ARRAY_SIZE(fsl_sai_rates),
41 	.list = fsl_sai_rates,
42 };
43 
44 /**
45  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46  *
47  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48  * or Receiver's for both streams. This function is used to check if clocks of
49  * the stream's are synced by the opposite stream.
50  *
51  * @sai: SAI context
52  * @dir: stream direction
53  */
54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 	int adir = (dir == TX) ? RX : TX;
57 
58 	/* current dir in async mode while opposite dir in sync mode */
59 	return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61 
62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 	struct pinctrl_state *state = NULL;
65 
66 	if (sai->is_pdm_mode) {
67 		/* DSD512@44.1kHz, DSD512@48kHz */
68 		if (bclk >= 22579200)
69 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70 
71 		/* Get default DSD state */
72 		if (IS_ERR_OR_NULL(state))
73 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 	} else {
75 		/* 706k32b2c, 768k32b2c, etc */
76 		if (bclk >= 45158400)
77 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 	}
79 
80 	/* Get default state */
81 	if (IS_ERR_OR_NULL(state))
82 		state = pinctrl_lookup_state(sai->pinctrl, "default");
83 
84 	return state;
85 }
86 
87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 	struct fsl_sai *sai = (struct fsl_sai *)devid;
90 	unsigned int ofs = sai->soc_data->reg_offset;
91 	struct device *dev = &sai->pdev->dev;
92 	u32 flags, xcsr, mask;
93 	irqreturn_t iret = IRQ_NONE;
94 
95 	/*
96 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 	 * different shifts. And we here create a mask only for those
98 	 * IRQs that we activated.
99 	 */
100 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101 
102 	/* Tx IRQ */
103 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 	flags = xcsr & mask;
105 
106 	if (flags)
107 		iret = IRQ_HANDLED;
108 	else
109 		goto irq_rx;
110 
111 	if (flags & FSL_SAI_CSR_WSF)
112 		dev_dbg(dev, "isr: Start of Tx word detected\n");
113 
114 	if (flags & FSL_SAI_CSR_SEF)
115 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116 
117 	if (flags & FSL_SAI_CSR_FEF)
118 		dev_dbg(dev, "isr: Transmit underrun detected\n");
119 
120 	if (flags & FSL_SAI_CSR_FWF)
121 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122 
123 	if (flags & FSL_SAI_CSR_FRF)
124 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125 
126 	flags &= FSL_SAI_CSR_xF_W_MASK;
127 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
128 
129 	if (flags)
130 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131 
132 irq_rx:
133 	/* Rx IRQ */
134 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 	flags = xcsr & mask;
136 
137 	if (flags)
138 		iret = IRQ_HANDLED;
139 	else
140 		goto out;
141 
142 	if (flags & FSL_SAI_CSR_WSF)
143 		dev_dbg(dev, "isr: Start of Rx word detected\n");
144 
145 	if (flags & FSL_SAI_CSR_SEF)
146 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147 
148 	if (flags & FSL_SAI_CSR_FEF)
149 		dev_dbg(dev, "isr: Receive overflow detected\n");
150 
151 	if (flags & FSL_SAI_CSR_FWF)
152 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153 
154 	if (flags & FSL_SAI_CSR_FRF)
155 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156 
157 	flags &= FSL_SAI_CSR_xF_W_MASK;
158 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
159 
160 	if (flags)
161 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162 
163 out:
164 	return iret;
165 }
166 
167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 				u32 rx_mask, int slots, int slot_width)
169 {
170 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171 
172 	sai->slots = slots;
173 	sai->slot_width = slot_width;
174 
175 	return 0;
176 }
177 
178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 				      unsigned int ratio)
180 {
181 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182 
183 	sai->bclk_ratio = ratio;
184 
185 	return 0;
186 }
187 
188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 		int clk_id, unsigned int freq, bool tx)
190 {
191 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 	unsigned int ofs = sai->soc_data->reg_offset;
193 	u32 val_cr2 = 0;
194 
195 	switch (clk_id) {
196 	case FSL_SAI_CLK_BUS:
197 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 		break;
199 	case FSL_SAI_CLK_MAST1:
200 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 		break;
202 	case FSL_SAI_CLK_MAST2:
203 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 		break;
205 	case FSL_SAI_CLK_MAST3:
206 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
214 
215 	return 0;
216 }
217 
218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 	int ret;
222 
223 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 				     sai->pll8k_clk, sai->pll11k_clk, freq);
225 
226 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 	if (ret < 0)
228 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229 
230 	return ret;
231 }
232 
233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 		int clk_id, unsigned int freq, int dir)
235 {
236 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 	int ret;
238 
239 	if (dir == SND_SOC_CLOCK_IN)
240 		return 0;
241 
242 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 			return -EINVAL;
246 		}
247 
248 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 			return -EINVAL;
251 		}
252 
253 		if (sai->mclk_streams == 0) {
254 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 			if (ret < 0)
256 				return ret;
257 		}
258 	}
259 
260 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 	if (ret) {
262 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 		return ret;
264 	}
265 
266 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 	if (ret)
268 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269 
270 	return ret;
271 }
272 
273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 				unsigned int fmt, bool tx)
275 {
276 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 	unsigned int ofs = sai->soc_data->reg_offset;
278 	u32 val_cr2 = 0, val_cr4 = 0;
279 
280 	if (!sai->is_lsb_first)
281 		val_cr4 |= FSL_SAI_CR4_MF;
282 
283 	sai->is_pdm_mode = false;
284 	sai->is_dsp_mode = false;
285 	/* DAI mode */
286 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287 	case SND_SOC_DAIFMT_I2S:
288 		/*
289 		 * Frame low, 1clk before data, one word length for frame sync,
290 		 * frame sync starts one serial clock cycle earlier,
291 		 * that is, together with the last bit of the previous
292 		 * data word.
293 		 */
294 		val_cr2 |= FSL_SAI_CR2_BCP;
295 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296 		break;
297 	case SND_SOC_DAIFMT_LEFT_J:
298 		/*
299 		 * Frame high, one word length for frame sync,
300 		 * frame sync asserts with the first bit of the frame.
301 		 */
302 		val_cr2 |= FSL_SAI_CR2_BCP;
303 		break;
304 	case SND_SOC_DAIFMT_DSP_A:
305 		/*
306 		 * Frame high, 1clk before data, one bit for frame sync,
307 		 * frame sync starts one serial clock cycle earlier,
308 		 * that is, together with the last bit of the previous
309 		 * data word.
310 		 */
311 		val_cr2 |= FSL_SAI_CR2_BCP;
312 		val_cr4 |= FSL_SAI_CR4_FSE;
313 		sai->is_dsp_mode = true;
314 		break;
315 	case SND_SOC_DAIFMT_DSP_B:
316 		/*
317 		 * Frame high, one bit for frame sync,
318 		 * frame sync asserts with the first bit of the frame.
319 		 */
320 		val_cr2 |= FSL_SAI_CR2_BCP;
321 		sai->is_dsp_mode = true;
322 		break;
323 	case SND_SOC_DAIFMT_PDM:
324 		val_cr2 |= FSL_SAI_CR2_BCP;
325 		val_cr4 &= ~FSL_SAI_CR4_MF;
326 		sai->is_pdm_mode = true;
327 		break;
328 	case SND_SOC_DAIFMT_RIGHT_J:
329 		/* To be done */
330 	default:
331 		return -EINVAL;
332 	}
333 
334 	/* DAI clock inversion */
335 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336 	case SND_SOC_DAIFMT_IB_IF:
337 		/* Invert both clocks */
338 		val_cr2 ^= FSL_SAI_CR2_BCP;
339 		val_cr4 ^= FSL_SAI_CR4_FSP;
340 		break;
341 	case SND_SOC_DAIFMT_IB_NF:
342 		/* Invert bit clock */
343 		val_cr2 ^= FSL_SAI_CR2_BCP;
344 		break;
345 	case SND_SOC_DAIFMT_NB_IF:
346 		/* Invert frame clock */
347 		val_cr4 ^= FSL_SAI_CR4_FSP;
348 		break;
349 	case SND_SOC_DAIFMT_NB_NF:
350 		/* Nothing to do for both normal cases */
351 		break;
352 	default:
353 		return -EINVAL;
354 	}
355 
356 	/* DAI clock provider masks */
357 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358 	case SND_SOC_DAIFMT_BP_FP:
359 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361 		sai->is_consumer_mode = false;
362 		break;
363 	case SND_SOC_DAIFMT_BC_FC:
364 		sai->is_consumer_mode = true;
365 		break;
366 	case SND_SOC_DAIFMT_BP_FC:
367 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368 		sai->is_consumer_mode = false;
369 		break;
370 	case SND_SOC_DAIFMT_BC_FP:
371 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372 		sai->is_consumer_mode = true;
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383 
384 	return 0;
385 }
386 
387 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388 {
389 	int ret;
390 
391 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392 	if (ret) {
393 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394 		return ret;
395 	}
396 
397 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398 	if (ret)
399 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400 
401 	return ret;
402 }
403 
404 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405 {
406 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407 	unsigned int reg, ofs = sai->soc_data->reg_offset;
408 	unsigned long clk_rate;
409 	u32 savediv = 0, ratio, bestdiff = freq;
410 	int adir = tx ? RX : TX;
411 	int dir = tx ? TX : RX;
412 	u32 id;
413 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
414 
415 	/* Don't apply to consumer mode */
416 	if (sai->is_consumer_mode)
417 		return 0;
418 
419 	/*
420 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
421 	 * And given that MQS use case has to use MCLK1 though two clocks
422 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423 	 */
424 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425 
426 	for (; id < FSL_SAI_MCLK_MAX; id++) {
427 		int diff;
428 
429 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
430 		if (!clk_rate)
431 			continue;
432 
433 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434 		if (!ratio || ratio > 512)
435 			continue;
436 		if (ratio == 1 && !support_1_1_ratio)
437 			continue;
438 		if ((ratio & 1) && ratio > 1)
439 			continue;
440 
441 		diff = abs((long)clk_rate - ratio * freq);
442 
443 		/*
444 		 * Drop the source that can not be
445 		 * divided into the required rate.
446 		 */
447 		if (diff != 0 && clk_rate / diff < 1000)
448 			continue;
449 
450 		dev_dbg(dai->dev,
451 			"ratio %d for freq %dHz based on clock %ldHz\n",
452 			ratio, freq, clk_rate);
453 
454 
455 		if (diff < bestdiff) {
456 			savediv = ratio;
457 			sai->mclk_id[tx] = id;
458 			bestdiff = diff;
459 		}
460 
461 		if (diff == 0)
462 			break;
463 	}
464 
465 	if (savediv == 0) {
466 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467 				tx ? 'T' : 'R', freq);
468 		return -EINVAL;
469 	}
470 
471 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472 			sai->mclk_id[tx], savediv, bestdiff);
473 
474 	/*
475 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476 	 *    set TCR2 register for playback.
477 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478 	 *    and capture.
479 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480 	 *    and capture.
481 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482 	 *    ignore it.
483 	 */
484 	if (fsl_sai_dir_is_synced(sai, adir))
485 		reg = FSL_SAI_xCR2(!tx, ofs);
486 	else if (!sai->synchronous[dir])
487 		reg = FSL_SAI_xCR2(tx, ofs);
488 	else
489 		return 0;
490 
491 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493 
494 	if (savediv == 1) {
495 		regmap_update_bits(sai->regmap, reg,
496 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497 				   FSL_SAI_CR2_BYP);
498 		if (fsl_sai_dir_is_synced(sai, adir))
499 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500 					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501 		else
502 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503 					   FSL_SAI_CR2_BCI, 0);
504 	} else {
505 		regmap_update_bits(sai->regmap, reg,
506 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507 				   savediv / 2 - 1);
508 	}
509 
510 	return 0;
511 }
512 
513 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
514 		struct snd_pcm_hw_params *params,
515 		struct snd_soc_dai *cpu_dai)
516 {
517 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
518 	unsigned int ofs = sai->soc_data->reg_offset;
519 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
520 	unsigned int channels = params_channels(params);
521 	struct snd_dmaengine_dai_dma_data *dma_params;
522 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
523 	u32 word_width = params_width(params);
524 	int trce_mask = 0, dl_cfg_idx = 0;
525 	int dl_cfg_cnt = sai->dl_cfg_cnt;
526 	u32 dl_type = FSL_SAI_DL_I2S;
527 	u32 val_cr4 = 0, val_cr5 = 0;
528 	u32 slots = (channels == 1) ? 2 : channels;
529 	u32 slot_width = word_width;
530 	int adir = tx ? RX : TX;
531 	u32 pins, bclk;
532 	u32 watermark;
533 	int ret, i;
534 
535 	if (sai->slot_width)
536 		slot_width = sai->slot_width;
537 
538 	if (sai->slots)
539 		slots = sai->slots;
540 	else if (sai->bclk_ratio)
541 		slots = sai->bclk_ratio / slot_width;
542 
543 	pins = DIV_ROUND_UP(channels, slots);
544 
545 	/*
546 	 * PDM mode, channels are independent
547 	 * each channels are on one dataline/FIFO.
548 	 */
549 	if (sai->is_pdm_mode) {
550 		pins = channels;
551 		dl_type = FSL_SAI_DL_PDM;
552 	}
553 
554 	for (i = 0; i < dl_cfg_cnt; i++) {
555 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
556 			dl_cfg_idx = i;
557 			break;
558 		}
559 	}
560 
561 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
562 		dev_err(cpu_dai->dev, "channel not supported\n");
563 		return -EINVAL;
564 	}
565 
566 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
567 
568 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
569 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
570 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
571 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
572 			if (ret) {
573 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
574 				return ret;
575 			}
576 		}
577 	}
578 
579 	if (!sai->is_consumer_mode) {
580 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
581 		if (ret)
582 			return ret;
583 
584 		/* Do not enable the clock if it is already enabled */
585 		if (!(sai->mclk_streams & BIT(substream->stream))) {
586 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
587 			if (ret)
588 				return ret;
589 
590 			sai->mclk_streams |= BIT(substream->stream);
591 		}
592 	}
593 
594 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
595 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
596 
597 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
598 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
599 
600 	if (sai->is_lsb_first || sai->is_pdm_mode)
601 		val_cr5 |= FSL_SAI_CR5_FBT(0);
602 	else
603 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
604 
605 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
606 
607 	/* Set to output mode to avoid tri-stated data pins */
608 	if (tx)
609 		val_cr4 |= FSL_SAI_CR4_CHMOD;
610 
611 	/*
612 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
613 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
614 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
615 	 */
616 
617 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
618 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
619 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
620 				   FSL_SAI_CR4_CHMOD_MASK,
621 				   val_cr4);
622 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
623 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
624 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
625 	}
626 
627 	/*
628 	 * Combine mode has limation:
629 	 * - Can't used for singel dataline/FIFO case except the FIFO0
630 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
631 	 *   are successive and start from FIFO0
632 	 *
633 	 * So for common usage, all multi fifo case disable the combine mode.
634 	 */
635 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
636 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
637 				   FSL_SAI_CR4_FCOMB_MASK, 0);
638 	else
639 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
640 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
641 
642 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
643 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
644 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
645 
646 	if (sai->is_multi_fifo_dma) {
647 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
648 		if (tx) {
649 			sai->audio_config[tx].n_fifos_dst = pins;
650 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
651 		} else {
652 			sai->audio_config[tx].n_fifos_src = pins;
653 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
654 		}
655 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
656 		dma_params->peripheral_config = &sai->audio_config[tx];
657 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
658 
659 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
660 				 (dma_params->maxburst - 1);
661 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
662 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
663 				   watermark);
664 	}
665 
666 	/* Find a proper tcre setting */
667 	for (i = 0; i < sai->soc_data->pins; i++) {
668 		trce_mask = (1 << (i + 1)) - 1;
669 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
670 			break;
671 	}
672 
673 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
674 			   FSL_SAI_CR3_TRCE_MASK,
675 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
676 
677 	/*
678 	 * When the TERE and FSD_MSTR enabled before configuring the word width
679 	 * There will be no frame sync clock issue, because word width impact
680 	 * the generation of frame sync clock.
681 	 *
682 	 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
683 	 * We need to disable FSD_MSTR before configuring word width, then enable
684 	 * FSD_MSTR bit for this specific case.
685 	 */
686 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
687 	    !sai->is_consumer_mode)
688 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
689 				   FSL_SAI_CR4_FSD_MSTR, 0);
690 
691 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
692 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
693 			   FSL_SAI_CR4_CHMOD_MASK,
694 			   val_cr4);
695 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
696 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
697 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
698 
699 	/* Enable FSD_MSTR after configuring word width */
700 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
701 	    !sai->is_consumer_mode)
702 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
703 				   FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
704 
705 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
706 		     ~0UL - ((1 << min(channels, slots)) - 1));
707 
708 	return 0;
709 }
710 
711 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
712 		struct snd_soc_dai *cpu_dai)
713 {
714 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
715 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
716 	unsigned int ofs = sai->soc_data->reg_offset;
717 
718 	/* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
719 	regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
720 
721 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
722 			   FSL_SAI_CR3_TRCE_MASK, 0);
723 
724 	if (!sai->is_consumer_mode &&
725 			sai->mclk_streams & BIT(substream->stream)) {
726 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
727 		sai->mclk_streams &= ~BIT(substream->stream);
728 	}
729 
730 	return 0;
731 }
732 
733 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
734 {
735 	unsigned int ofs = sai->soc_data->reg_offset;
736 	bool tx = dir == TX;
737 	u32 xcsr, count = 100, mask;
738 
739 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
740 		mask = FSL_SAI_CSR_TERE;
741 	else
742 		mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
743 
744 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
745 			   mask, 0);
746 
747 	/* TERE will remain set till the end of current frame */
748 	do {
749 		udelay(10);
750 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
751 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
752 
753 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
754 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
755 
756 	/*
757 	 * For sai master mode, after several open/close sai,
758 	 * there will be no frame clock, and can't recover
759 	 * anymore. Add software reset to fix this issue.
760 	 * This is a hardware bug, and will be fix in the
761 	 * next sai version.
762 	 */
763 	if (!sai->is_consumer_mode) {
764 		/* Software Reset */
765 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
766 		/* Clear SR bit to finish the reset */
767 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
768 	}
769 }
770 
771 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
772 		struct snd_soc_dai *cpu_dai)
773 {
774 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
775 	unsigned int ofs = sai->soc_data->reg_offset;
776 
777 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
778 	int adir = tx ? RX : TX;
779 	int dir = tx ? TX : RX;
780 	u32 xcsr;
781 
782 	/*
783 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
784 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
785 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
786 	 */
787 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
788 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
789 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
790 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
791 
792 	/*
793 	 * It is recommended that the transmitter is the last enabled
794 	 * and the first disabled.
795 	 */
796 	switch (cmd) {
797 	case SNDRV_PCM_TRIGGER_START:
798 	case SNDRV_PCM_TRIGGER_RESUME:
799 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
800 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
801 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
802 
803 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
804 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
805 		/*
806 		 * Enable the opposite direction for synchronous mode
807 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
808 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
809 		 *
810 		 * RM recommends to enable RE after TE for case 1 and to enable
811 		 * TE after RE for case 2, but we here may not always guarantee
812 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
813 		 * TE after RE, which is against what RM recommends but should
814 		 * be safe to do, judging by years of testing results.
815 		 */
816 		if (fsl_sai_dir_is_synced(sai, adir))
817 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
818 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
819 
820 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
821 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
822 		break;
823 	case SNDRV_PCM_TRIGGER_STOP:
824 	case SNDRV_PCM_TRIGGER_SUSPEND:
825 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
826 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
827 				   FSL_SAI_CSR_FRDE, 0);
828 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
829 				   FSL_SAI_CSR_xIE_MASK, 0);
830 
831 		/* Check if the opposite FRDE is also disabled */
832 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
833 
834 		/*
835 		 * If opposite stream provides clocks for synchronous mode and
836 		 * it is inactive, disable it before disabling the current one
837 		 */
838 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
839 			fsl_sai_config_disable(sai, adir);
840 
841 		/*
842 		 * Disable current stream if either of:
843 		 * 1. current stream doesn't provide clocks for synchronous mode
844 		 * 2. current stream provides clocks for synchronous mode but no
845 		 *    more stream is active.
846 		 */
847 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
848 			fsl_sai_config_disable(sai, dir);
849 
850 		break;
851 	default:
852 		return -EINVAL;
853 	}
854 
855 	return 0;
856 }
857 
858 static int fsl_sai_startup(struct snd_pcm_substream *substream,
859 		struct snd_soc_dai *cpu_dai)
860 {
861 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
862 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
863 	int ret;
864 
865 	/*
866 	 * EDMA controller needs period size to be a multiple of
867 	 * tx/rx maxburst
868 	 */
869 	if (sai->soc_data->use_edma)
870 		snd_pcm_hw_constraint_step(substream->runtime, 0,
871 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
872 					   tx ? sai->dma_params_tx.maxburst :
873 					   sai->dma_params_rx.maxburst);
874 
875 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
876 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
877 
878 	return ret;
879 }
880 
881 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
882 {
883 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
884 	unsigned int ofs = sai->soc_data->reg_offset;
885 
886 	/* Software Reset for both Tx and Rx */
887 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
888 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
889 	/* Clear SR bit to finish the reset */
890 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
891 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
892 
893 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
894 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
895 			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
896 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
897 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
898 			   sai->dma_params_rx.maxburst - 1);
899 
900 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
901 				&sai->dma_params_rx);
902 
903 	return 0;
904 }
905 
906 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
907 	.probe		= fsl_sai_dai_probe,
908 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
909 	.set_sysclk	= fsl_sai_set_dai_sysclk,
910 	.set_fmt	= fsl_sai_set_dai_fmt,
911 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
912 	.hw_params	= fsl_sai_hw_params,
913 	.hw_free	= fsl_sai_hw_free,
914 	.trigger	= fsl_sai_trigger,
915 	.startup	= fsl_sai_startup,
916 };
917 
918 static int fsl_sai_dai_resume(struct snd_soc_component *component)
919 {
920 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
921 	struct device *dev = &sai->pdev->dev;
922 	int ret;
923 
924 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
925 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
926 		if (ret) {
927 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
928 			return ret;
929 		}
930 	}
931 
932 	return 0;
933 }
934 
935 static struct snd_soc_dai_driver fsl_sai_dai_template = {
936 	.playback = {
937 		.stream_name = "CPU-Playback",
938 		.channels_min = 1,
939 		.channels_max = 32,
940 		.rate_min = 8000,
941 		.rate_max = 2822400,
942 		.rates = SNDRV_PCM_RATE_KNOT,
943 		.formats = FSL_SAI_FORMATS,
944 	},
945 	.capture = {
946 		.stream_name = "CPU-Capture",
947 		.channels_min = 1,
948 		.channels_max = 32,
949 		.rate_min = 8000,
950 		.rate_max = 2822400,
951 		.rates = SNDRV_PCM_RATE_KNOT,
952 		.formats = FSL_SAI_FORMATS,
953 	},
954 	.ops = &fsl_sai_pcm_dai_ops,
955 };
956 
957 static const struct snd_soc_component_driver fsl_component = {
958 	.name			= "fsl-sai",
959 	.resume			= fsl_sai_dai_resume,
960 	.legacy_dai_naming	= 1,
961 };
962 
963 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
964 	{FSL_SAI_TCR1(0), 0},
965 	{FSL_SAI_TCR2(0), 0},
966 	{FSL_SAI_TCR3(0), 0},
967 	{FSL_SAI_TCR4(0), 0},
968 	{FSL_SAI_TCR5(0), 0},
969 	{FSL_SAI_TDR0, 0},
970 	{FSL_SAI_TDR1, 0},
971 	{FSL_SAI_TDR2, 0},
972 	{FSL_SAI_TDR3, 0},
973 	{FSL_SAI_TDR4, 0},
974 	{FSL_SAI_TDR5, 0},
975 	{FSL_SAI_TDR6, 0},
976 	{FSL_SAI_TDR7, 0},
977 	{FSL_SAI_TMR, 0},
978 	{FSL_SAI_RCR1(0), 0},
979 	{FSL_SAI_RCR2(0), 0},
980 	{FSL_SAI_RCR3(0), 0},
981 	{FSL_SAI_RCR4(0), 0},
982 	{FSL_SAI_RCR5(0), 0},
983 	{FSL_SAI_RMR, 0},
984 };
985 
986 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
987 	{FSL_SAI_TCR1(8), 0},
988 	{FSL_SAI_TCR2(8), 0},
989 	{FSL_SAI_TCR3(8), 0},
990 	{FSL_SAI_TCR4(8), 0},
991 	{FSL_SAI_TCR5(8), 0},
992 	{FSL_SAI_TDR0, 0},
993 	{FSL_SAI_TDR1, 0},
994 	{FSL_SAI_TDR2, 0},
995 	{FSL_SAI_TDR3, 0},
996 	{FSL_SAI_TDR4, 0},
997 	{FSL_SAI_TDR5, 0},
998 	{FSL_SAI_TDR6, 0},
999 	{FSL_SAI_TDR7, 0},
1000 	{FSL_SAI_TMR, 0},
1001 	{FSL_SAI_RCR1(8), 0},
1002 	{FSL_SAI_RCR2(8), 0},
1003 	{FSL_SAI_RCR3(8), 0},
1004 	{FSL_SAI_RCR4(8), 0},
1005 	{FSL_SAI_RCR5(8), 0},
1006 	{FSL_SAI_RMR, 0},
1007 	{FSL_SAI_MCTL, 0},
1008 	{FSL_SAI_MDIV, 0},
1009 };
1010 
1011 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1012 {
1013 	struct fsl_sai *sai = dev_get_drvdata(dev);
1014 	unsigned int ofs = sai->soc_data->reg_offset;
1015 
1016 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1017 		return true;
1018 
1019 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1020 		return true;
1021 
1022 	switch (reg) {
1023 	case FSL_SAI_TFR0:
1024 	case FSL_SAI_TFR1:
1025 	case FSL_SAI_TFR2:
1026 	case FSL_SAI_TFR3:
1027 	case FSL_SAI_TFR4:
1028 	case FSL_SAI_TFR5:
1029 	case FSL_SAI_TFR6:
1030 	case FSL_SAI_TFR7:
1031 	case FSL_SAI_TMR:
1032 	case FSL_SAI_RDR0:
1033 	case FSL_SAI_RDR1:
1034 	case FSL_SAI_RDR2:
1035 	case FSL_SAI_RDR3:
1036 	case FSL_SAI_RDR4:
1037 	case FSL_SAI_RDR5:
1038 	case FSL_SAI_RDR6:
1039 	case FSL_SAI_RDR7:
1040 	case FSL_SAI_RFR0:
1041 	case FSL_SAI_RFR1:
1042 	case FSL_SAI_RFR2:
1043 	case FSL_SAI_RFR3:
1044 	case FSL_SAI_RFR4:
1045 	case FSL_SAI_RFR5:
1046 	case FSL_SAI_RFR6:
1047 	case FSL_SAI_RFR7:
1048 	case FSL_SAI_RMR:
1049 	case FSL_SAI_MCTL:
1050 	case FSL_SAI_MDIV:
1051 	case FSL_SAI_VERID:
1052 	case FSL_SAI_PARAM:
1053 	case FSL_SAI_TTCTN:
1054 	case FSL_SAI_RTCTN:
1055 	case FSL_SAI_TTCTL:
1056 	case FSL_SAI_TBCTN:
1057 	case FSL_SAI_TTCAP:
1058 	case FSL_SAI_RTCTL:
1059 	case FSL_SAI_RBCTN:
1060 	case FSL_SAI_RTCAP:
1061 		return true;
1062 	default:
1063 		return false;
1064 	}
1065 }
1066 
1067 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1068 {
1069 	struct fsl_sai *sai = dev_get_drvdata(dev);
1070 	unsigned int ofs = sai->soc_data->reg_offset;
1071 
1072 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1073 		return true;
1074 
1075 	/* Set VERID and PARAM be volatile for reading value in probe */
1076 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1077 		return true;
1078 
1079 	switch (reg) {
1080 	case FSL_SAI_TFR0:
1081 	case FSL_SAI_TFR1:
1082 	case FSL_SAI_TFR2:
1083 	case FSL_SAI_TFR3:
1084 	case FSL_SAI_TFR4:
1085 	case FSL_SAI_TFR5:
1086 	case FSL_SAI_TFR6:
1087 	case FSL_SAI_TFR7:
1088 	case FSL_SAI_RFR0:
1089 	case FSL_SAI_RFR1:
1090 	case FSL_SAI_RFR2:
1091 	case FSL_SAI_RFR3:
1092 	case FSL_SAI_RFR4:
1093 	case FSL_SAI_RFR5:
1094 	case FSL_SAI_RFR6:
1095 	case FSL_SAI_RFR7:
1096 	case FSL_SAI_RDR0:
1097 	case FSL_SAI_RDR1:
1098 	case FSL_SAI_RDR2:
1099 	case FSL_SAI_RDR3:
1100 	case FSL_SAI_RDR4:
1101 	case FSL_SAI_RDR5:
1102 	case FSL_SAI_RDR6:
1103 	case FSL_SAI_RDR7:
1104 		return true;
1105 	default:
1106 		return false;
1107 	}
1108 }
1109 
1110 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1111 {
1112 	struct fsl_sai *sai = dev_get_drvdata(dev);
1113 	unsigned int ofs = sai->soc_data->reg_offset;
1114 
1115 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1116 		return true;
1117 
1118 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1119 		return true;
1120 
1121 	switch (reg) {
1122 	case FSL_SAI_TDR0:
1123 	case FSL_SAI_TDR1:
1124 	case FSL_SAI_TDR2:
1125 	case FSL_SAI_TDR3:
1126 	case FSL_SAI_TDR4:
1127 	case FSL_SAI_TDR5:
1128 	case FSL_SAI_TDR6:
1129 	case FSL_SAI_TDR7:
1130 	case FSL_SAI_TMR:
1131 	case FSL_SAI_RMR:
1132 	case FSL_SAI_MCTL:
1133 	case FSL_SAI_MDIV:
1134 	case FSL_SAI_TTCTL:
1135 	case FSL_SAI_RTCTL:
1136 		return true;
1137 	default:
1138 		return false;
1139 	}
1140 }
1141 
1142 static struct regmap_config fsl_sai_regmap_config = {
1143 	.reg_bits = 32,
1144 	.reg_stride = 4,
1145 	.val_bits = 32,
1146 	.fast_io = true,
1147 
1148 	.max_register = FSL_SAI_RMR,
1149 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1150 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1151 	.readable_reg = fsl_sai_readable_reg,
1152 	.volatile_reg = fsl_sai_volatile_reg,
1153 	.writeable_reg = fsl_sai_writeable_reg,
1154 	.cache_type = REGCACHE_FLAT,
1155 };
1156 
1157 static int fsl_sai_check_version(struct device *dev)
1158 {
1159 	struct fsl_sai *sai = dev_get_drvdata(dev);
1160 	unsigned char ofs = sai->soc_data->reg_offset;
1161 	unsigned int val;
1162 	int ret;
1163 
1164 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1165 		return 0;
1166 
1167 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1172 
1173 	sai->verid.version = val &
1174 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1175 	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1176 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1177 
1178 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1179 	if (ret < 0)
1180 		return ret;
1181 
1182 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1183 
1184 	/* Max slots per frame, power of 2 */
1185 	sai->param.slot_num = 1 <<
1186 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1187 
1188 	/* Words per fifo, power of 2 */
1189 	sai->param.fifo_depth = 1 <<
1190 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1191 
1192 	/* Number of datalines implemented */
1193 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Calculate the offset between first two datalines, don't
1200  * different offset in one case.
1201  */
1202 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1203 {
1204 	int fbidx, nbidx, offset;
1205 
1206 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1207 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1208 	offset = nbidx - fbidx - 1;
1209 
1210 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1211 }
1212 
1213 /*
1214  * read the fsl,dataline property from dts file.
1215  * It has 3 value for each configuration, first one means the type:
1216  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1217  * dataline mask for 'tx'. for example
1218  *
1219  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1220  *
1221  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1222  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1223  *
1224  */
1225 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1226 {
1227 	struct platform_device *pdev = sai->pdev;
1228 	struct device_node *np = pdev->dev.of_node;
1229 	struct device *dev = &pdev->dev;
1230 	int ret, elems, i, index, num_cfg;
1231 	char *propname = "fsl,dataline";
1232 	struct fsl_sai_dl_cfg *cfg;
1233 	unsigned long dl_mask;
1234 	unsigned int soc_dl;
1235 	u32 rx, tx, type;
1236 
1237 	elems = of_property_count_u32_elems(np, propname);
1238 
1239 	if (elems <= 0) {
1240 		elems = 0;
1241 	} else if (elems % 3) {
1242 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1243 		return -EINVAL;
1244 	}
1245 
1246 	num_cfg = elems / 3;
1247 	/*  Add one more for default value */
1248 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1249 	if (!cfg)
1250 		return -ENOMEM;
1251 
1252 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1253 	soc_dl = BIT(sai->soc_data->pins) - 1;
1254 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1255 	cfg[0].pins[0] = sai->soc_data->pins;
1256 	cfg[0].mask[0] = soc_dl;
1257 	cfg[0].start_off[0] = 0;
1258 	cfg[0].next_off[0] = 0;
1259 
1260 	cfg[0].pins[1] = sai->soc_data->pins;
1261 	cfg[0].mask[1] = soc_dl;
1262 	cfg[0].start_off[1] = 0;
1263 	cfg[0].next_off[1] = 0;
1264 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1265 		/*
1266 		 * type of dataline
1267 		 * 0 means default mode
1268 		 * 1 means I2S mode
1269 		 * 2 means PDM mode
1270 		 */
1271 		ret = of_property_read_u32_index(np, propname, index++, &type);
1272 		if (ret)
1273 			return -EINVAL;
1274 
1275 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1276 		if (ret)
1277 			return -EINVAL;
1278 
1279 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1280 		if (ret)
1281 			return -EINVAL;
1282 
1283 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1284 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1285 			return -EINVAL;
1286 		}
1287 
1288 		rx = rx & soc_dl;
1289 		tx = tx & soc_dl;
1290 
1291 		cfg[i].type = type;
1292 		cfg[i].pins[0] = hweight8(rx);
1293 		cfg[i].mask[0] = rx;
1294 		dl_mask = rx;
1295 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1296 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1297 
1298 		cfg[i].pins[1] = hweight8(tx);
1299 		cfg[i].mask[1] = tx;
1300 		dl_mask = tx;
1301 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1302 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1303 	}
1304 
1305 	sai->dl_cfg = cfg;
1306 	sai->dl_cfg_cnt = num_cfg + 1;
1307 	return 0;
1308 }
1309 
1310 static int fsl_sai_runtime_suspend(struct device *dev);
1311 static int fsl_sai_runtime_resume(struct device *dev);
1312 
1313 static int fsl_sai_probe(struct platform_device *pdev)
1314 {
1315 	struct device_node *np = pdev->dev.of_node;
1316 	struct device *dev = &pdev->dev;
1317 	struct fsl_sai *sai;
1318 	struct regmap *gpr;
1319 	void __iomem *base;
1320 	char tmp[8];
1321 	int irq, ret, i;
1322 	int index;
1323 	u32 dmas[4];
1324 
1325 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1326 	if (!sai)
1327 		return -ENOMEM;
1328 
1329 	sai->pdev = pdev;
1330 	sai->soc_data = of_device_get_match_data(dev);
1331 
1332 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1333 
1334 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1335 	if (IS_ERR(base))
1336 		return PTR_ERR(base);
1337 
1338 	if (sai->soc_data->reg_offset == 8) {
1339 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1340 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1341 		fsl_sai_regmap_config.num_reg_defaults =
1342 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1343 	}
1344 
1345 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1346 	if (IS_ERR(sai->regmap)) {
1347 		dev_err(dev, "regmap init failed\n");
1348 		return PTR_ERR(sai->regmap);
1349 	}
1350 
1351 	sai->bus_clk = devm_clk_get(dev, "bus");
1352 	/* Compatible with old DTB cases */
1353 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1354 		sai->bus_clk = devm_clk_get(dev, "sai");
1355 	if (IS_ERR(sai->bus_clk)) {
1356 		dev_err(dev, "failed to get bus clock: %ld\n",
1357 				PTR_ERR(sai->bus_clk));
1358 		/* -EPROBE_DEFER */
1359 		return PTR_ERR(sai->bus_clk);
1360 	}
1361 
1362 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1363 		sprintf(tmp, "mclk%d", i);
1364 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1365 		if (IS_ERR(sai->mclk_clk[i])) {
1366 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1367 					i, PTR_ERR(sai->mclk_clk[i]));
1368 			sai->mclk_clk[i] = NULL;
1369 		}
1370 	}
1371 
1372 	if (sai->soc_data->mclk0_is_mclk1)
1373 		sai->mclk_clk[0] = sai->mclk_clk[1];
1374 	else
1375 		sai->mclk_clk[0] = sai->bus_clk;
1376 
1377 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1378 				&sai->pll11k_clk);
1379 
1380 	/* Use Multi FIFO mode depending on the support from SDMA script */
1381 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1382 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1383 		sai->is_multi_fifo_dma = true;
1384 
1385 	/* read dataline mask for rx and tx*/
1386 	ret = fsl_sai_read_dlcfg(sai);
1387 	if (ret < 0) {
1388 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1389 		return ret;
1390 	}
1391 
1392 	irq = platform_get_irq(pdev, 0);
1393 	if (irq < 0)
1394 		return irq;
1395 
1396 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1397 			       np->name, sai);
1398 	if (ret) {
1399 		dev_err(dev, "failed to claim irq %u\n", irq);
1400 		return ret;
1401 	}
1402 
1403 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1404 	       sizeof(fsl_sai_dai_template));
1405 
1406 	/* Sync Tx with Rx as default by following old DT binding */
1407 	sai->synchronous[RX] = true;
1408 	sai->synchronous[TX] = false;
1409 	sai->cpu_dai_drv.symmetric_rate = 1;
1410 	sai->cpu_dai_drv.symmetric_channels = 1;
1411 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1412 
1413 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1414 	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1415 		/* error out if both synchronous and asynchronous are present */
1416 		dev_err(dev, "invalid binding for synchronous mode\n");
1417 		return -EINVAL;
1418 	}
1419 
1420 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1421 		/* Sync Rx with Tx */
1422 		sai->synchronous[RX] = false;
1423 		sai->synchronous[TX] = true;
1424 	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1425 		/* Discard all settings for asynchronous mode */
1426 		sai->synchronous[RX] = false;
1427 		sai->synchronous[TX] = false;
1428 		sai->cpu_dai_drv.symmetric_rate = 0;
1429 		sai->cpu_dai_drv.symmetric_channels = 0;
1430 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1431 	}
1432 
1433 	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1434 
1435 	if (sai->mclk_direction_output &&
1436 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1437 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1438 		if (IS_ERR(gpr)) {
1439 			dev_err(dev, "cannot find iomuxc registers\n");
1440 			return PTR_ERR(gpr);
1441 		}
1442 
1443 		index = of_alias_get_id(np, "sai");
1444 		if (index < 0)
1445 			return index;
1446 
1447 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1448 				   MCLK_DIR(index));
1449 	}
1450 
1451 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1452 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1453 	sai->dma_params_rx.maxburst =
1454 		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1455 	sai->dma_params_tx.maxburst =
1456 		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1457 
1458 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1459 
1460 	platform_set_drvdata(pdev, sai);
1461 	pm_runtime_enable(dev);
1462 	if (!pm_runtime_enabled(dev)) {
1463 		ret = fsl_sai_runtime_resume(dev);
1464 		if (ret)
1465 			goto err_pm_disable;
1466 	}
1467 
1468 	ret = pm_runtime_resume_and_get(dev);
1469 	if (ret < 0)
1470 		goto err_pm_get_sync;
1471 
1472 	/* Get sai version */
1473 	ret = fsl_sai_check_version(dev);
1474 	if (ret < 0)
1475 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1476 
1477 	/* Select MCLK direction */
1478 	if (sai->mclk_direction_output &&
1479 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1480 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1481 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1482 	}
1483 
1484 	ret = pm_runtime_put_sync(dev);
1485 	if (ret < 0 && ret != -ENOSYS)
1486 		goto err_pm_get_sync;
1487 
1488 	/*
1489 	 * Register platform component before registering cpu dai for there
1490 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1491 	 */
1492 	if (sai->soc_data->use_imx_pcm) {
1493 		ret = imx_pcm_dma_init(pdev);
1494 		if (ret) {
1495 			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1496 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1497 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1498 			goto err_pm_get_sync;
1499 		}
1500 	} else {
1501 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1502 		if (ret) {
1503 			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1504 			goto err_pm_get_sync;
1505 		}
1506 	}
1507 
1508 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1509 					      &sai->cpu_dai_drv, 1);
1510 	if (ret)
1511 		goto err_pm_get_sync;
1512 
1513 	return ret;
1514 
1515 err_pm_get_sync:
1516 	if (!pm_runtime_status_suspended(dev))
1517 		fsl_sai_runtime_suspend(dev);
1518 err_pm_disable:
1519 	pm_runtime_disable(dev);
1520 
1521 	return ret;
1522 }
1523 
1524 static void fsl_sai_remove(struct platform_device *pdev)
1525 {
1526 	pm_runtime_disable(&pdev->dev);
1527 	if (!pm_runtime_status_suspended(&pdev->dev))
1528 		fsl_sai_runtime_suspend(&pdev->dev);
1529 }
1530 
1531 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1532 	.use_imx_pcm = false,
1533 	.use_edma = false,
1534 	.fifo_depth = 32,
1535 	.pins = 1,
1536 	.reg_offset = 0,
1537 	.mclk0_is_mclk1 = false,
1538 	.flags = 0,
1539 	.max_register = FSL_SAI_RMR,
1540 };
1541 
1542 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1543 	.use_imx_pcm = true,
1544 	.use_edma = false,
1545 	.fifo_depth = 32,
1546 	.pins = 1,
1547 	.reg_offset = 0,
1548 	.mclk0_is_mclk1 = true,
1549 	.flags = 0,
1550 	.max_register = FSL_SAI_RMR,
1551 };
1552 
1553 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1554 	.use_imx_pcm = true,
1555 	.use_edma = false,
1556 	.fifo_depth = 16,
1557 	.pins = 2,
1558 	.reg_offset = 8,
1559 	.mclk0_is_mclk1 = false,
1560 	.flags = PMQOS_CPU_LATENCY,
1561 	.max_register = FSL_SAI_RMR,
1562 };
1563 
1564 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1565 	.use_imx_pcm = true,
1566 	.use_edma = false,
1567 	.fifo_depth = 128,
1568 	.pins = 8,
1569 	.reg_offset = 8,
1570 	.mclk0_is_mclk1 = false,
1571 	.flags = 0,
1572 	.max_register = FSL_SAI_RMR,
1573 };
1574 
1575 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1576 	.use_imx_pcm = true,
1577 	.use_edma = true,
1578 	.fifo_depth = 64,
1579 	.pins = 4,
1580 	.reg_offset = 0,
1581 	.mclk0_is_mclk1 = false,
1582 	.flags = 0,
1583 	.max_register = FSL_SAI_RMR,
1584 };
1585 
1586 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1587 	.use_imx_pcm = true,
1588 	.use_edma = false,
1589 	.fifo_depth = 128,
1590 	.reg_offset = 8,
1591 	.mclk0_is_mclk1 = false,
1592 	.pins = 8,
1593 	.flags = 0,
1594 	.max_register = FSL_SAI_MCTL,
1595 };
1596 
1597 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1598 	.use_imx_pcm = true,
1599 	.use_edma = false,
1600 	.fifo_depth = 128,
1601 	.reg_offset = 8,
1602 	.mclk0_is_mclk1 = false,
1603 	.pins = 8,
1604 	.flags = 0,
1605 	.max_register = FSL_SAI_MDIV,
1606 };
1607 
1608 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1609 	.use_imx_pcm = true,
1610 	.use_edma = false,
1611 	.fifo_depth = 128,
1612 	.reg_offset = 8,
1613 	.mclk0_is_mclk1 = false,
1614 	.pins = 8,
1615 	.flags = 0,
1616 	.max_register = FSL_SAI_MDIV,
1617 	.mclk_with_tere = true,
1618 };
1619 
1620 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1621 	.use_imx_pcm = true,
1622 	.use_edma = true,
1623 	.fifo_depth = 16,
1624 	.reg_offset = 8,
1625 	.mclk0_is_mclk1 = false,
1626 	.pins = 4,
1627 	.flags = PMQOS_CPU_LATENCY,
1628 	.max_register = FSL_SAI_RTCAP,
1629 };
1630 
1631 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1632 	.use_imx_pcm = true,
1633 	.use_edma = true,
1634 	.fifo_depth = 128,
1635 	.reg_offset = 8,
1636 	.mclk0_is_mclk1 = false,
1637 	.pins = 4,
1638 	.flags = 0,
1639 	.max_register = FSL_SAI_MCTL,
1640 	.max_burst = {8, 8},
1641 };
1642 
1643 static const struct of_device_id fsl_sai_ids[] = {
1644 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1645 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1646 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1647 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1648 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1649 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1650 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1651 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1652 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1653 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1654 	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1655 	{ /* sentinel */ }
1656 };
1657 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1658 
1659 static int fsl_sai_runtime_suspend(struct device *dev)
1660 {
1661 	struct fsl_sai *sai = dev_get_drvdata(dev);
1662 
1663 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1664 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1665 
1666 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1667 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1668 
1669 	clk_disable_unprepare(sai->bus_clk);
1670 
1671 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1672 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1673 
1674 	regcache_cache_only(sai->regmap, true);
1675 
1676 	return 0;
1677 }
1678 
1679 static int fsl_sai_runtime_resume(struct device *dev)
1680 {
1681 	struct fsl_sai *sai = dev_get_drvdata(dev);
1682 	unsigned int ofs = sai->soc_data->reg_offset;
1683 	int ret;
1684 
1685 	ret = clk_prepare_enable(sai->bus_clk);
1686 	if (ret) {
1687 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1688 		return ret;
1689 	}
1690 
1691 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1692 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1693 		if (ret)
1694 			goto disable_bus_clk;
1695 	}
1696 
1697 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1698 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1699 		if (ret)
1700 			goto disable_tx_clk;
1701 	}
1702 
1703 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1704 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1705 
1706 	regcache_cache_only(sai->regmap, false);
1707 	regcache_mark_dirty(sai->regmap);
1708 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1709 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1710 	usleep_range(1000, 2000);
1711 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1712 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1713 
1714 	ret = regcache_sync(sai->regmap);
1715 	if (ret)
1716 		goto disable_rx_clk;
1717 
1718 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1719 		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1720 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1721 
1722 	return 0;
1723 
1724 disable_rx_clk:
1725 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1726 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1727 disable_tx_clk:
1728 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1729 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1730 disable_bus_clk:
1731 	clk_disable_unprepare(sai->bus_clk);
1732 
1733 	return ret;
1734 }
1735 
1736 static const struct dev_pm_ops fsl_sai_pm_ops = {
1737 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1738 			   fsl_sai_runtime_resume, NULL)
1739 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1740 				pm_runtime_force_resume)
1741 };
1742 
1743 static struct platform_driver fsl_sai_driver = {
1744 	.probe = fsl_sai_probe,
1745 	.remove_new = fsl_sai_remove,
1746 	.driver = {
1747 		.name = "fsl-sai",
1748 		.pm = &fsl_sai_pm_ops,
1749 		.of_match_table = fsl_sai_ids,
1750 	},
1751 };
1752 module_platform_driver(fsl_sai_driver);
1753 
1754 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1755 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1756 MODULE_ALIAS("platform:fsl-sai");
1757 MODULE_LICENSE("GPL");
1758