xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision be41e941)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 
28 #include <asm/io.h>
29 
30 #include "fsl_dma.h"
31 
32 /*
33  * The formats that the DMA controller supports, which is anything
34  * that is 8, 16, or 32 bits.
35  */
36 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
37 			    SNDRV_PCM_FMTBIT_U8 	| \
38 			    SNDRV_PCM_FMTBIT_S16_LE     | \
39 			    SNDRV_PCM_FMTBIT_S16_BE     | \
40 			    SNDRV_PCM_FMTBIT_U16_LE     | \
41 			    SNDRV_PCM_FMTBIT_U16_BE     | \
42 			    SNDRV_PCM_FMTBIT_S24_LE     | \
43 			    SNDRV_PCM_FMTBIT_S24_BE     | \
44 			    SNDRV_PCM_FMTBIT_U24_LE     | \
45 			    SNDRV_PCM_FMTBIT_U24_BE     | \
46 			    SNDRV_PCM_FMTBIT_S32_LE     | \
47 			    SNDRV_PCM_FMTBIT_S32_BE     | \
48 			    SNDRV_PCM_FMTBIT_U32_LE     | \
49 			    SNDRV_PCM_FMTBIT_U32_BE)
50 
51 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 			  SNDRV_PCM_RATE_CONTINUOUS)
53 
54 /* DMA global data.  This structure is used by fsl_dma_open() to determine
55  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
56  * not allow the machine driver to provide this information to the PCM
57  * driver in advance, and there's no way to differentiate between the two
58  * DMA controllers.  So for now, this driver only supports one SSI device
59  * using two DMA channels.  We cannot support multiple DMA devices.
60  *
61  * ssi_stx_phys: bus address of SSI STX register
62  * ssi_srx_phys: bus address of SSI SRX register
63  * dma_channel: pointer to the DMA channel's registers
64  * irq: IRQ for this DMA channel
65  * assigned: set to 1 if that DMA channel is assigned to a substream
66  */
67 static struct {
68 	dma_addr_t ssi_stx_phys;
69 	dma_addr_t ssi_srx_phys;
70 	struct ccsr_dma_channel __iomem *dma_channel[2];
71 	unsigned int irq[2];
72 	unsigned int assigned[2];
73 } dma_global_data;
74 
75 /*
76  * The number of DMA links to use.  Two is the bare minimum, but if you
77  * have really small links you might need more.
78  */
79 #define NUM_DMA_LINKS   2
80 
81 /** fsl_dma_private: p-substream DMA data
82  *
83  * Each substream has a 1-to-1 association with a DMA channel.
84  *
85  * The link[] array is first because it needs to be aligned on a 32-byte
86  * boundary, so putting it first will ensure alignment without padding the
87  * structure.
88  *
89  * @link[]: array of link descriptors
90  * @controller_id: which DMA controller (0, 1, ...)
91  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92  * @dma_channel: pointer to the DMA channel's registers
93  * @irq: IRQ for this DMA channel
94  * @substream: pointer to the substream object, needed by the ISR
95  * @ssi_sxx_phys: bus address of the STX or SRX register to use
96  * @ld_buf_phys: physical address of the LD buffer
97  * @current_link: index into link[] of the link currently being processed
98  * @dma_buf_phys: physical address of the DMA buffer
99  * @dma_buf_next: physical address of the next period to process
100  * @dma_buf_end: physical address of the byte after the end of the DMA
101  * @buffer period_size: the size of a single period
102  * @num_periods: the number of periods in the DMA buffer
103  */
104 struct fsl_dma_private {
105 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 	unsigned int controller_id;
107 	unsigned int channel_id;
108 	struct ccsr_dma_channel __iomem *dma_channel;
109 	unsigned int irq;
110 	struct snd_pcm_substream *substream;
111 	dma_addr_t ssi_sxx_phys;
112 	dma_addr_t ld_buf_phys;
113 	unsigned int current_link;
114 	dma_addr_t dma_buf_phys;
115 	dma_addr_t dma_buf_next;
116 	dma_addr_t dma_buf_end;
117 	size_t period_size;
118 	unsigned int num_periods;
119 };
120 
121 /**
122  * fsl_dma_hardare: define characteristics of the PCM hardware.
123  *
124  * The PCM hardware is the Freescale DMA controller.  This structure defines
125  * the capabilities of that hardware.
126  *
127  * Since the sampling rate and data format are not controlled by the DMA
128  * controller, we specify no limits for those values.  The only exception is
129  * period_bytes_min, which is set to a reasonably low value to prevent the
130  * DMA controller from generating too many interrupts per second.
131  *
132  * Since each link descriptor has a 32-bit byte count field, we set
133  * period_bytes_max to the largest 32-bit number.  We also have no maximum
134  * number of periods.
135  *
136  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137  * limitation in the SSI driver requires the sample rates for playback and
138  * capture to be the same.
139  */
140 static const struct snd_pcm_hardware fsl_dma_hardware = {
141 
142 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
143 				  SNDRV_PCM_INFO_MMAP |
144 				  SNDRV_PCM_INFO_MMAP_VALID |
145 				  SNDRV_PCM_INFO_JOINT_DUPLEX,
146 	.formats		= FSLDMA_PCM_FORMATS,
147 	.rates  		= FSLDMA_PCM_RATES,
148 	.rate_min       	= 5512,
149 	.rate_max       	= 192000,
150 	.period_bytes_min       = 512,  	/* A reasonable limit */
151 	.period_bytes_max       = (u32) -1,
152 	.periods_min    	= NUM_DMA_LINKS,
153 	.periods_max    	= (unsigned int) -1,
154 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
155 };
156 
157 /**
158  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
159  *
160  * This function should be called by the ISR whenever the DMA controller
161  * halts data transfer.
162  */
163 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
164 {
165 	unsigned long flags;
166 
167 	snd_pcm_stream_lock_irqsave(substream, flags);
168 
169 	if (snd_pcm_running(substream))
170 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
171 
172 	snd_pcm_stream_unlock_irqrestore(substream, flags);
173 }
174 
175 /**
176  * fsl_dma_update_pointers - update LD pointers to point to the next period
177  *
178  * As each period is completed, this function changes the the link
179  * descriptor pointers for that period to point to the next period.
180  */
181 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
182 {
183 	struct fsl_dma_link_descriptor *link =
184 		&dma_private->link[dma_private->current_link];
185 
186 	/* Update our link descriptors to point to the next period */
187 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
188 		link->source_addr =
189 			cpu_to_be32(dma_private->dma_buf_next);
190 	else
191 		link->dest_addr =
192 			cpu_to_be32(dma_private->dma_buf_next);
193 
194 	/* Update our variables for next time */
195 	dma_private->dma_buf_next += dma_private->period_size;
196 
197 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
198 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
199 
200 	if (++dma_private->current_link >= NUM_DMA_LINKS)
201 		dma_private->current_link = 0;
202 }
203 
204 /**
205  * fsl_dma_isr: interrupt handler for the DMA controller
206  *
207  * @irq: IRQ of the DMA channel
208  * @dev_id: pointer to the dma_private structure for this DMA channel
209  */
210 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
211 {
212 	struct fsl_dma_private *dma_private = dev_id;
213 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
214 	irqreturn_t ret = IRQ_NONE;
215 	u32 sr, sr2 = 0;
216 
217 	/* We got an interrupt, so read the status register to see what we
218 	   were interrupted for.
219 	 */
220 	sr = in_be32(&dma_channel->sr);
221 
222 	if (sr & CCSR_DMA_SR_TE) {
223 		dev_err(dma_private->substream->pcm->card->dev,
224 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
225 			dma_private->controller_id,
226 			dma_private->channel_id, irq);
227 		fsl_dma_abort_stream(dma_private->substream);
228 		sr2 |= CCSR_DMA_SR_TE;
229 		ret = IRQ_HANDLED;
230 	}
231 
232 	if (sr & CCSR_DMA_SR_CH)
233 		ret = IRQ_HANDLED;
234 
235 	if (sr & CCSR_DMA_SR_PE) {
236 		dev_err(dma_private->substream->pcm->card->dev,
237 			"DMA%u programming error (channel=%u irq=%u)\n",
238 			dma_private->controller_id,
239 			dma_private->channel_id, irq);
240 		fsl_dma_abort_stream(dma_private->substream);
241 		sr2 |= CCSR_DMA_SR_PE;
242 		ret = IRQ_HANDLED;
243 	}
244 
245 	if (sr & CCSR_DMA_SR_EOLNI) {
246 		sr2 |= CCSR_DMA_SR_EOLNI;
247 		ret = IRQ_HANDLED;
248 	}
249 
250 	if (sr & CCSR_DMA_SR_CB)
251 		ret = IRQ_HANDLED;
252 
253 	if (sr & CCSR_DMA_SR_EOSI) {
254 		struct snd_pcm_substream *substream = dma_private->substream;
255 
256 		/* Tell ALSA we completed a period. */
257 		snd_pcm_period_elapsed(substream);
258 
259 		/*
260 		 * Update our link descriptors to point to the next period. We
261 		 * only need to do this if the number of periods is not equal to
262 		 * the number of links.
263 		 */
264 		if (dma_private->num_periods != NUM_DMA_LINKS)
265 			fsl_dma_update_pointers(dma_private);
266 
267 		sr2 |= CCSR_DMA_SR_EOSI;
268 		ret = IRQ_HANDLED;
269 	}
270 
271 	if (sr & CCSR_DMA_SR_EOLSI) {
272 		sr2 |= CCSR_DMA_SR_EOLSI;
273 		ret = IRQ_HANDLED;
274 	}
275 
276 	/* Clear the bits that we set */
277 	if (sr2)
278 		out_be32(&dma_channel->sr, sr2);
279 
280 	return ret;
281 }
282 
283 /**
284  * fsl_dma_new: initialize this PCM driver.
285  *
286  * This function is called when the codec driver calls snd_soc_new_pcms(),
287  * once for each .dai_link in the machine driver's snd_soc_machine
288  * structure.
289  */
290 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
291 	struct snd_pcm *pcm)
292 {
293 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
294 	int ret;
295 
296 	if (!card->dev->dma_mask)
297 		card->dev->dma_mask = &fsl_dma_dmamask;
298 
299 	if (!card->dev->coherent_dma_mask)
300 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
301 
302 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
303 		fsl_dma_hardware.buffer_bytes_max,
304 		&pcm->streams[0].substream->dma_buffer);
305 	if (ret) {
306 		dev_err(card->dev,
307 			"Can't allocate playback DMA buffer (size=%u)\n",
308 			fsl_dma_hardware.buffer_bytes_max);
309 		return -ENOMEM;
310 	}
311 
312 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
313 		fsl_dma_hardware.buffer_bytes_max,
314 		&pcm->streams[1].substream->dma_buffer);
315 	if (ret) {
316 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
317 		dev_err(card->dev,
318 			"Can't allocate capture DMA buffer (size=%u)\n",
319 			fsl_dma_hardware.buffer_bytes_max);
320 		return -ENOMEM;
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  * fsl_dma_open: open a new substream.
328  *
329  * Each substream has its own DMA buffer.
330  */
331 static int fsl_dma_open(struct snd_pcm_substream *substream)
332 {
333 	struct snd_pcm_runtime *runtime = substream->runtime;
334 	struct fsl_dma_private *dma_private;
335 	dma_addr_t ld_buf_phys;
336 	unsigned int channel;
337 	int ret = 0;
338 
339 	/*
340 	 * Reject any DMA buffer whose size is not a multiple of the period
341 	 * size.  We need to make sure that the DMA buffer can be evenly divided
342 	 * into periods.
343 	 */
344 	ret = snd_pcm_hw_constraint_integer(runtime,
345 		SNDRV_PCM_HW_PARAM_PERIODS);
346 	if (ret < 0) {
347 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
348 		return ret;
349 	}
350 
351 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
352 
353 	if (dma_global_data.assigned[channel]) {
354 		dev_err(substream->pcm->card->dev,
355 			"DMA channel already assigned\n");
356 		return -EBUSY;
357 	}
358 
359 	dma_private = dma_alloc_coherent(substream->pcm->dev,
360 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
361 	if (!dma_private) {
362 		dev_err(substream->pcm->card->dev,
363 			"can't allocate DMA private data\n");
364 		return -ENOMEM;
365 	}
366 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
367 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
368 	else
369 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
370 
371 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
372 	dma_private->irq = dma_global_data.irq[channel];
373 	dma_private->substream = substream;
374 	dma_private->ld_buf_phys = ld_buf_phys;
375 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
376 
377 	/* We only support one DMA controller for now */
378 	dma_private->controller_id = 0;
379 	dma_private->channel_id = channel;
380 
381 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
382 	if (ret) {
383 		dev_err(substream->pcm->card->dev,
384 			"can't register ISR for IRQ %u (ret=%i)\n",
385 			dma_private->irq, ret);
386 		dma_free_coherent(substream->pcm->dev,
387 			sizeof(struct fsl_dma_private),
388 			dma_private, dma_private->ld_buf_phys);
389 		return ret;
390 	}
391 
392 	dma_global_data.assigned[channel] = 1;
393 
394 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
395 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
396 	runtime->private_data = dma_private;
397 
398 	return 0;
399 }
400 
401 /**
402  * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
403  *
404  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
405  * descriptors that ping-pong from one period to the next.  For example, if
406  * there are six periods and two link descriptors, this is how they look
407  * before playback starts:
408  *
409  *      	   The last link descriptor
410  *   ____________  points back to the first
411  *  |   	 |
412  *  V   	 |
413  *  ___    ___   |
414  * |   |->|   |->|
415  * |___|  |___|
416  *   |      |
417  *   |      |
418  *   V      V
419  *  _________________________________________
420  * |      |      |      |      |      |      |  The DMA buffer is
421  * |      |      |      |      |      |      |    divided into 6 parts
422  * |______|______|______|______|______|______|
423  *
424  * and here's how they look after the first period is finished playing:
425  *
426  *   ____________
427  *  |   	 |
428  *  V   	 |
429  *  ___    ___   |
430  * |   |->|   |->|
431  * |___|  |___|
432  *   |      |
433  *   |______________
434  *          |       |
435  *          V       V
436  *  _________________________________________
437  * |      |      |      |      |      |      |
438  * |      |      |      |      |      |      |
439  * |______|______|______|______|______|______|
440  *
441  * The first link descriptor now points to the third period.  The DMA
442  * controller is currently playing the second period.  When it finishes, it
443  * will jump back to the first descriptor and play the third period.
444  *
445  * There are four reasons we do this:
446  *
447  * 1. The only way to get the DMA controller to automatically restart the
448  *    transfer when it gets to the end of the buffer is to use chaining
449  *    mode.  Basic direct mode doesn't offer that feature.
450  * 2. We need to receive an interrupt at the end of every period.  The DMA
451  *    controller can generate an interrupt at the end of every link transfer
452  *    (aka segment).  Making each period into a DMA segment will give us the
453  *    interrupts we need.
454  * 3. By creating only two link descriptors, regardless of the number of
455  *    periods, we do not need to reallocate the link descriptors if the
456  *    number of periods changes.
457  * 4. All of the audio data is still stored in a single, contiguous DMA
458  *    buffer, which is what ALSA expects.  We're just dividing it into
459  *    contiguous parts, and creating a link descriptor for each one.
460  *
461  * Note that due to a quirk of the SSI's STX register, the target address
462  * for the DMA operations depends on the sample size.  So we don't program
463  * the dest_addr (for playback -- source_addr for capture) fields in the
464  * link descriptors here.  We do that in fsl_dma_prepare()
465  */
466 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
467 	struct snd_pcm_hw_params *hw_params)
468 {
469 	struct snd_pcm_runtime *runtime = substream->runtime;
470 	struct fsl_dma_private *dma_private = runtime->private_data;
471 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
472 
473 	dma_addr_t temp_addr;   /* Pointer to next period */
474 	u64 temp_link;  	/* Pointer to next link descriptor */
475 	u32 mr; 		/* Temporary variable for MR register */
476 
477 	unsigned int i;
478 
479 	/* Get all the parameters we need */
480 	size_t buffer_size = params_buffer_bytes(hw_params);
481 	size_t period_size = params_period_bytes(hw_params);
482 
483 	/* Initialize our DMA tracking variables */
484 	dma_private->period_size = period_size;
485 	dma_private->num_periods = params_periods(hw_params);
486 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
487 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
488 		(NUM_DMA_LINKS * period_size);
489 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
490 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
491 
492 	/*
493 	 * Initialize each link descriptor.
494 	 *
495 	 * The actual address in STX0 (destination for playback, source for
496 	 * capture) is based on the sample size, but we don't know the sample
497 	 * size in this function, so we'll have to adjust that later.  See
498 	 * comments in fsl_dma_prepare().
499 	 *
500 	 * The DMA controller does not have a cache, so the CPU does not
501 	 * need to tell it to flush its cache.  However, the DMA
502 	 * controller does need to tell the CPU to flush its cache.
503 	 * That's what the SNOOP bit does.
504 	 *
505 	 * Also, even though the DMA controller supports 36-bit addressing, for
506 	 * simplicity we currently support only 32-bit addresses for the audio
507 	 * buffer itself.
508 	 */
509 	temp_addr = substream->dma_buffer.addr;
510 	temp_link = dma_private->ld_buf_phys +
511 		sizeof(struct fsl_dma_link_descriptor);
512 
513 	for (i = 0; i < NUM_DMA_LINKS; i++) {
514 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
515 
516 		link->count = cpu_to_be32(period_size);
517 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
518 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
519 		link->next = cpu_to_be64(temp_link);
520 
521 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
522 			link->source_addr = cpu_to_be32(temp_addr);
523 		else
524 			link->dest_addr = cpu_to_be32(temp_addr);
525 
526 		temp_addr += period_size;
527 		temp_link += sizeof(struct fsl_dma_link_descriptor);
528 	}
529 	/* The last link descriptor points to the first */
530 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
531 
532 	/* Tell the DMA controller where the first link descriptor is */
533 	out_be32(&dma_channel->clndar,
534 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
535 	out_be32(&dma_channel->eclndar,
536 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
537 
538 	/* The manual says the BCR must be clear before enabling EMP */
539 	out_be32(&dma_channel->bcr, 0);
540 
541 	/*
542 	 * Program the mode register for interrupts, external master control,
543 	 * and source/destination hold.  Also clear the Channel Abort bit.
544 	 */
545 	mr = in_be32(&dma_channel->mr) &
546 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
547 
548 	/*
549 	 * We want External Master Start and External Master Pause enabled,
550 	 * because the SSI is controlling the DMA controller.  We want the DMA
551 	 * controller to be set up in advance, and then we signal only the SSI
552 	 * to start transfering.
553 	 *
554 	 * We want End-Of-Segment Interrupts enabled, because this will generate
555 	 * an interrupt at the end of each segment (each link descriptor
556 	 * represents one segment).  Each DMA segment is the same thing as an
557 	 * ALSA period, so this is how we get an interrupt at the end of every
558 	 * period.
559 	 *
560 	 * We want Error Interrupt enabled, so that we can get an error if
561 	 * the DMA controller is mis-programmed somehow.
562 	 */
563 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
564 		CCSR_DMA_MR_EMS_EN;
565 
566 	/* For playback, we want the destination address to be held.  For
567 	   capture, set the source address to be held. */
568 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
569 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
570 
571 	out_be32(&dma_channel->mr, mr);
572 
573 	return 0;
574 }
575 
576 /**
577  * fsl_dma_prepare - prepare the DMA registers for playback.
578  *
579  * This function is called after the specifics of the audio data are known,
580  * i.e. snd_pcm_runtime is initialized.
581  *
582  * In this function, we finish programming the registers of the DMA
583  * controller that are dependent on the sample size.
584  *
585  * One of the drawbacks with big-endian is that when copying integers of
586  * different sizes to a fixed-sized register, the address to which the
587  * integer must be copied is dependent on the size of the integer.
588  *
589  * For example, if P is the address of a 32-bit register, and X is a 32-bit
590  * integer, then X should be copied to address P.  However, if X is a 16-bit
591  * integer, then it should be copied to P+2.  If X is an 8-bit register,
592  * then it should be copied to P+3.
593  *
594  * So for playback of 8-bit samples, the DMA controller must transfer single
595  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
596  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
597  *
598  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
599  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
600  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
601  * 24-bit data must be padded to 32 bits.
602  */
603 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
604 {
605 	struct snd_pcm_runtime *runtime = substream->runtime;
606 	struct fsl_dma_private *dma_private = runtime->private_data;
607 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
608 	u32 mr;
609 	unsigned int i;
610 	dma_addr_t ssi_sxx_phys;	/* Bus address of SSI STX register */
611 	unsigned int frame_size;	/* Number of bytes per frame */
612 
613 	ssi_sxx_phys = dma_private->ssi_sxx_phys;
614 
615 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
616 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
617 
618 	switch (runtime->sample_bits) {
619 	case 8:
620 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
621 		ssi_sxx_phys += 3;
622 		break;
623 	case 16:
624 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
625 		ssi_sxx_phys += 2;
626 		break;
627 	case 32:
628 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
629 		break;
630 	default:
631 		dev_err(substream->pcm->card->dev,
632 			"unsupported sample size %u\n", runtime->sample_bits);
633 		return -EINVAL;
634 	}
635 
636 	frame_size = runtime->frame_bits / 8;
637 	/*
638 	 * BWC should always be a multiple of the frame size.  BWC determines
639 	 * how many bytes are sent/received before the DMA controller checks the
640 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
641 	 * hold three frames, so we want to send two frames at a time. For
642 	 * capture, the receive FIFO is triggered when it contains one frame, so
643 	 * we want to receive one frame at a time.
644 	 */
645 
646 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
647 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
648 	else
649 		mr |= CCSR_DMA_MR_BWC(frame_size);
650 
651 	out_be32(&dma_channel->mr, mr);
652 
653 	/*
654 	 * Program the address of the DMA transfer to/from the SSI.
655 	 */
656 	for (i = 0; i < NUM_DMA_LINKS; i++) {
657 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
658 
659 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
660 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
661 		else
662 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * fsl_dma_pointer: determine the current position of the DMA transfer
670  *
671  * This function is called by ALSA when ALSA wants to know where in the
672  * stream buffer the hardware currently is.
673  *
674  * For playback, the SAR register contains the physical address of the most
675  * recent DMA transfer.  For capture, the value is in the DAR register.
676  *
677  * The base address of the buffer is stored in the source_addr field of the
678  * first link descriptor.
679  */
680 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
681 {
682 	struct snd_pcm_runtime *runtime = substream->runtime;
683 	struct fsl_dma_private *dma_private = runtime->private_data;
684 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
685 	dma_addr_t position;
686 	snd_pcm_uframes_t frames;
687 
688 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
689 		position = in_be32(&dma_channel->sar);
690 	else
691 		position = in_be32(&dma_channel->dar);
692 
693 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
694 
695 	/*
696 	 * If the current address is just past the end of the buffer, wrap it
697 	 * around.
698 	 */
699 	if (frames == runtime->buffer_size)
700 		frames = 0;
701 
702 	return frames;
703 }
704 
705 /**
706  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
707  *
708  * Release the resources allocated in fsl_dma_hw_params() and de-program the
709  * registers.
710  *
711  * This function can be called multiple times.
712  */
713 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
714 {
715 	struct snd_pcm_runtime *runtime = substream->runtime;
716 	struct fsl_dma_private *dma_private = runtime->private_data;
717 
718 	if (dma_private) {
719 		struct ccsr_dma_channel __iomem *dma_channel;
720 
721 		dma_channel = dma_private->dma_channel;
722 
723 		/* Stop the DMA */
724 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
725 		out_be32(&dma_channel->mr, 0);
726 
727 		/* Reset all the other registers */
728 		out_be32(&dma_channel->sr, -1);
729 		out_be32(&dma_channel->clndar, 0);
730 		out_be32(&dma_channel->eclndar, 0);
731 		out_be32(&dma_channel->satr, 0);
732 		out_be32(&dma_channel->sar, 0);
733 		out_be32(&dma_channel->datr, 0);
734 		out_be32(&dma_channel->dar, 0);
735 		out_be32(&dma_channel->bcr, 0);
736 		out_be32(&dma_channel->nlndar, 0);
737 		out_be32(&dma_channel->enlndar, 0);
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  * fsl_dma_close: close the stream.
745  */
746 static int fsl_dma_close(struct snd_pcm_substream *substream)
747 {
748 	struct snd_pcm_runtime *runtime = substream->runtime;
749 	struct fsl_dma_private *dma_private = runtime->private_data;
750 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
751 
752 	if (dma_private) {
753 		if (dma_private->irq)
754 			free_irq(dma_private->irq, dma_private);
755 
756 		if (dma_private->ld_buf_phys) {
757 			dma_unmap_single(substream->pcm->dev,
758 				dma_private->ld_buf_phys,
759 				sizeof(dma_private->link), DMA_TO_DEVICE);
760 		}
761 
762 		/* Deallocate the fsl_dma_private structure */
763 		dma_free_coherent(substream->pcm->dev,
764 			sizeof(struct fsl_dma_private),
765 			dma_private, dma_private->ld_buf_phys);
766 		substream->runtime->private_data = NULL;
767 	}
768 
769 	dma_global_data.assigned[dir] = 0;
770 
771 	return 0;
772 }
773 
774 /*
775  * Remove this PCM driver.
776  */
777 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
778 {
779 	struct snd_pcm_substream *substream;
780 	unsigned int i;
781 
782 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
783 		substream = pcm->streams[i].substream;
784 		if (substream) {
785 			snd_dma_free_pages(&substream->dma_buffer);
786 			substream->dma_buffer.area = NULL;
787 			substream->dma_buffer.addr = 0;
788 		}
789 	}
790 }
791 
792 static struct snd_pcm_ops fsl_dma_ops = {
793 	.open   	= fsl_dma_open,
794 	.close  	= fsl_dma_close,
795 	.ioctl  	= snd_pcm_lib_ioctl,
796 	.hw_params      = fsl_dma_hw_params,
797 	.hw_free	= fsl_dma_hw_free,
798 	.prepare	= fsl_dma_prepare,
799 	.pointer	= fsl_dma_pointer,
800 };
801 
802 struct snd_soc_platform fsl_soc_platform = {
803 	.name   	= "fsl-dma",
804 	.pcm_ops	= &fsl_dma_ops,
805 	.pcm_new	= fsl_dma_new,
806 	.pcm_free       = fsl_dma_free_dma_buffers,
807 };
808 EXPORT_SYMBOL_GPL(fsl_soc_platform);
809 
810 /**
811  * fsl_dma_configure: store the DMA parameters from the fabric driver.
812  *
813  * This function is called by the ASoC fabric driver to give us the DMA and
814  * SSI channel information.
815  *
816  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
817  * data when a substream is created, so for now we need to store this data
818  * into a global variable.  This means that we can only support one DMA
819  * controller, and hence only one SSI.
820  */
821 int fsl_dma_configure(struct fsl_dma_info *dma_info)
822 {
823 	static int initialized;
824 
825 	/* We only support one DMA controller for now */
826 	if (initialized)
827 		return 0;
828 
829 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
830 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
831 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
832 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
833 	dma_global_data.irq[0] = dma_info->dma_irq[0];
834 	dma_global_data.irq[1] = dma_info->dma_irq[1];
835 	dma_global_data.assigned[0] = 0;
836 	dma_global_data.assigned[1] = 0;
837 
838 	initialized = 1;
839 	return 1;
840 }
841 EXPORT_SYMBOL_GPL(fsl_dma_configure);
842 
843 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
844 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
845 MODULE_LICENSE("GPL");
846