xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision b34e08d5)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29 
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 
35 #include <asm/io.h>
36 
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
39 
40 /*
41  * The formats that the DMA controller supports, which is anything
42  * that is 8, 16, or 32 bits.
43  */
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
45 			    SNDRV_PCM_FMTBIT_U8 	| \
46 			    SNDRV_PCM_FMTBIT_S16_LE     | \
47 			    SNDRV_PCM_FMTBIT_S16_BE     | \
48 			    SNDRV_PCM_FMTBIT_U16_LE     | \
49 			    SNDRV_PCM_FMTBIT_U16_BE     | \
50 			    SNDRV_PCM_FMTBIT_S24_LE     | \
51 			    SNDRV_PCM_FMTBIT_S24_BE     | \
52 			    SNDRV_PCM_FMTBIT_U24_LE     | \
53 			    SNDRV_PCM_FMTBIT_U24_BE     | \
54 			    SNDRV_PCM_FMTBIT_S32_LE     | \
55 			    SNDRV_PCM_FMTBIT_S32_BE     | \
56 			    SNDRV_PCM_FMTBIT_U32_LE     | \
57 			    SNDRV_PCM_FMTBIT_U32_BE)
58 struct dma_object {
59 	struct snd_soc_platform_driver dai;
60 	dma_addr_t ssi_stx_phys;
61 	dma_addr_t ssi_srx_phys;
62 	unsigned int ssi_fifo_depth;
63 	struct ccsr_dma_channel __iomem *channel;
64 	unsigned int irq;
65 	bool assigned;
66 	char path[1];
67 };
68 
69 /*
70  * The number of DMA links to use.  Two is the bare minimum, but if you
71  * have really small links you might need more.
72  */
73 #define NUM_DMA_LINKS   2
74 
75 /** fsl_dma_private: p-substream DMA data
76  *
77  * Each substream has a 1-to-1 association with a DMA channel.
78  *
79  * The link[] array is first because it needs to be aligned on a 32-byte
80  * boundary, so putting it first will ensure alignment without padding the
81  * structure.
82  *
83  * @link[]: array of link descriptors
84  * @dma_channel: pointer to the DMA channel's registers
85  * @irq: IRQ for this DMA channel
86  * @substream: pointer to the substream object, needed by the ISR
87  * @ssi_sxx_phys: bus address of the STX or SRX register to use
88  * @ld_buf_phys: physical address of the LD buffer
89  * @current_link: index into link[] of the link currently being processed
90  * @dma_buf_phys: physical address of the DMA buffer
91  * @dma_buf_next: physical address of the next period to process
92  * @dma_buf_end: physical address of the byte after the end of the DMA
93  * @buffer period_size: the size of a single period
94  * @num_periods: the number of periods in the DMA buffer
95  */
96 struct fsl_dma_private {
97 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
98 	struct ccsr_dma_channel __iomem *dma_channel;
99 	unsigned int irq;
100 	struct snd_pcm_substream *substream;
101 	dma_addr_t ssi_sxx_phys;
102 	unsigned int ssi_fifo_depth;
103 	dma_addr_t ld_buf_phys;
104 	unsigned int current_link;
105 	dma_addr_t dma_buf_phys;
106 	dma_addr_t dma_buf_next;
107 	dma_addr_t dma_buf_end;
108 	size_t period_size;
109 	unsigned int num_periods;
110 };
111 
112 /**
113  * fsl_dma_hardare: define characteristics of the PCM hardware.
114  *
115  * The PCM hardware is the Freescale DMA controller.  This structure defines
116  * the capabilities of that hardware.
117  *
118  * Since the sampling rate and data format are not controlled by the DMA
119  * controller, we specify no limits for those values.  The only exception is
120  * period_bytes_min, which is set to a reasonably low value to prevent the
121  * DMA controller from generating too many interrupts per second.
122  *
123  * Since each link descriptor has a 32-bit byte count field, we set
124  * period_bytes_max to the largest 32-bit number.  We also have no maximum
125  * number of periods.
126  *
127  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128  * limitation in the SSI driver requires the sample rates for playback and
129  * capture to be the same.
130  */
131 static const struct snd_pcm_hardware fsl_dma_hardware = {
132 
133 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
134 				  SNDRV_PCM_INFO_MMAP |
135 				  SNDRV_PCM_INFO_MMAP_VALID |
136 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
137 				  SNDRV_PCM_INFO_PAUSE,
138 	.formats		= FSLDMA_PCM_FORMATS,
139 	.period_bytes_min       = 512,  	/* A reasonable limit */
140 	.period_bytes_max       = (u32) -1,
141 	.periods_min    	= NUM_DMA_LINKS,
142 	.periods_max    	= (unsigned int) -1,
143 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
144 };
145 
146 /**
147  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
148  *
149  * This function should be called by the ISR whenever the DMA controller
150  * halts data transfer.
151  */
152 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
153 {
154 	unsigned long flags;
155 
156 	snd_pcm_stream_lock_irqsave(substream, flags);
157 
158 	if (snd_pcm_running(substream))
159 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
160 
161 	snd_pcm_stream_unlock_irqrestore(substream, flags);
162 }
163 
164 /**
165  * fsl_dma_update_pointers - update LD pointers to point to the next period
166  *
167  * As each period is completed, this function changes the the link
168  * descriptor pointers for that period to point to the next period.
169  */
170 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
171 {
172 	struct fsl_dma_link_descriptor *link =
173 		&dma_private->link[dma_private->current_link];
174 
175 	/* Update our link descriptors to point to the next period. On a 36-bit
176 	 * system, we also need to update the ESAD bits.  We also set (keep) the
177 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
178 	 */
179 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
180 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
181 #ifdef CONFIG_PHYS_64BIT
182 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
183 			upper_32_bits(dma_private->dma_buf_next));
184 #endif
185 	} else {
186 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
187 #ifdef CONFIG_PHYS_64BIT
188 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
189 			upper_32_bits(dma_private->dma_buf_next));
190 #endif
191 	}
192 
193 	/* Update our variables for next time */
194 	dma_private->dma_buf_next += dma_private->period_size;
195 
196 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
197 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
198 
199 	if (++dma_private->current_link >= NUM_DMA_LINKS)
200 		dma_private->current_link = 0;
201 }
202 
203 /**
204  * fsl_dma_isr: interrupt handler for the DMA controller
205  *
206  * @irq: IRQ of the DMA channel
207  * @dev_id: pointer to the dma_private structure for this DMA channel
208  */
209 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
210 {
211 	struct fsl_dma_private *dma_private = dev_id;
212 	struct snd_pcm_substream *substream = dma_private->substream;
213 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
214 	struct device *dev = rtd->platform->dev;
215 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
216 	irqreturn_t ret = IRQ_NONE;
217 	u32 sr, sr2 = 0;
218 
219 	/* We got an interrupt, so read the status register to see what we
220 	   were interrupted for.
221 	 */
222 	sr = in_be32(&dma_channel->sr);
223 
224 	if (sr & CCSR_DMA_SR_TE) {
225 		dev_err(dev, "dma transmit error\n");
226 		fsl_dma_abort_stream(substream);
227 		sr2 |= CCSR_DMA_SR_TE;
228 		ret = IRQ_HANDLED;
229 	}
230 
231 	if (sr & CCSR_DMA_SR_CH)
232 		ret = IRQ_HANDLED;
233 
234 	if (sr & CCSR_DMA_SR_PE) {
235 		dev_err(dev, "dma programming error\n");
236 		fsl_dma_abort_stream(substream);
237 		sr2 |= CCSR_DMA_SR_PE;
238 		ret = IRQ_HANDLED;
239 	}
240 
241 	if (sr & CCSR_DMA_SR_EOLNI) {
242 		sr2 |= CCSR_DMA_SR_EOLNI;
243 		ret = IRQ_HANDLED;
244 	}
245 
246 	if (sr & CCSR_DMA_SR_CB)
247 		ret = IRQ_HANDLED;
248 
249 	if (sr & CCSR_DMA_SR_EOSI) {
250 		/* Tell ALSA we completed a period. */
251 		snd_pcm_period_elapsed(substream);
252 
253 		/*
254 		 * Update our link descriptors to point to the next period. We
255 		 * only need to do this if the number of periods is not equal to
256 		 * the number of links.
257 		 */
258 		if (dma_private->num_periods != NUM_DMA_LINKS)
259 			fsl_dma_update_pointers(dma_private);
260 
261 		sr2 |= CCSR_DMA_SR_EOSI;
262 		ret = IRQ_HANDLED;
263 	}
264 
265 	if (sr & CCSR_DMA_SR_EOLSI) {
266 		sr2 |= CCSR_DMA_SR_EOLSI;
267 		ret = IRQ_HANDLED;
268 	}
269 
270 	/* Clear the bits that we set */
271 	if (sr2)
272 		out_be32(&dma_channel->sr, sr2);
273 
274 	return ret;
275 }
276 
277 /**
278  * fsl_dma_new: initialize this PCM driver.
279  *
280  * This function is called when the codec driver calls snd_soc_new_pcms(),
281  * once for each .dai_link in the machine driver's snd_soc_card
282  * structure.
283  *
284  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
285  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
286  * is specified. Therefore, any DMA buffers we allocate will always be in low
287  * memory, but we support for 36-bit physical addresses anyway.
288  *
289  * Regardless of where the memory is actually allocated, since the device can
290  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
291  */
292 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
293 {
294 	struct snd_card *card = rtd->card->snd_card;
295 	struct snd_pcm *pcm = rtd->pcm;
296 	int ret;
297 
298 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
299 	if (ret)
300 		return ret;
301 
302 	/* Some codecs have separate DAIs for playback and capture, so we
303 	 * should allocate a DMA buffer only for the streams that are valid.
304 	 */
305 
306 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
307 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
308 			fsl_dma_hardware.buffer_bytes_max,
309 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
310 		if (ret) {
311 			dev_err(card->dev, "can't alloc playback dma buffer\n");
312 			return ret;
313 		}
314 	}
315 
316 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
317 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
318 			fsl_dma_hardware.buffer_bytes_max,
319 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
320 		if (ret) {
321 			dev_err(card->dev, "can't alloc capture dma buffer\n");
322 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
323 			return ret;
324 		}
325 	}
326 
327 	return 0;
328 }
329 
330 /**
331  * fsl_dma_open: open a new substream.
332  *
333  * Each substream has its own DMA buffer.
334  *
335  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
336  * descriptors that ping-pong from one period to the next.  For example, if
337  * there are six periods and two link descriptors, this is how they look
338  * before playback starts:
339  *
340  *      	   The last link descriptor
341  *   ____________  points back to the first
342  *  |   	 |
343  *  V   	 |
344  *  ___    ___   |
345  * |   |->|   |->|
346  * |___|  |___|
347  *   |      |
348  *   |      |
349  *   V      V
350  *  _________________________________________
351  * |      |      |      |      |      |      |  The DMA buffer is
352  * |      |      |      |      |      |      |    divided into 6 parts
353  * |______|______|______|______|______|______|
354  *
355  * and here's how they look after the first period is finished playing:
356  *
357  *   ____________
358  *  |   	 |
359  *  V   	 |
360  *  ___    ___   |
361  * |   |->|   |->|
362  * |___|  |___|
363  *   |      |
364  *   |______________
365  *          |       |
366  *          V       V
367  *  _________________________________________
368  * |      |      |      |      |      |      |
369  * |      |      |      |      |      |      |
370  * |______|______|______|______|______|______|
371  *
372  * The first link descriptor now points to the third period.  The DMA
373  * controller is currently playing the second period.  When it finishes, it
374  * will jump back to the first descriptor and play the third period.
375  *
376  * There are four reasons we do this:
377  *
378  * 1. The only way to get the DMA controller to automatically restart the
379  *    transfer when it gets to the end of the buffer is to use chaining
380  *    mode.  Basic direct mode doesn't offer that feature.
381  * 2. We need to receive an interrupt at the end of every period.  The DMA
382  *    controller can generate an interrupt at the end of every link transfer
383  *    (aka segment).  Making each period into a DMA segment will give us the
384  *    interrupts we need.
385  * 3. By creating only two link descriptors, regardless of the number of
386  *    periods, we do not need to reallocate the link descriptors if the
387  *    number of periods changes.
388  * 4. All of the audio data is still stored in a single, contiguous DMA
389  *    buffer, which is what ALSA expects.  We're just dividing it into
390  *    contiguous parts, and creating a link descriptor for each one.
391  */
392 static int fsl_dma_open(struct snd_pcm_substream *substream)
393 {
394 	struct snd_pcm_runtime *runtime = substream->runtime;
395 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
396 	struct device *dev = rtd->platform->dev;
397 	struct dma_object *dma =
398 		container_of(rtd->platform->driver, struct dma_object, dai);
399 	struct fsl_dma_private *dma_private;
400 	struct ccsr_dma_channel __iomem *dma_channel;
401 	dma_addr_t ld_buf_phys;
402 	u64 temp_link;  	/* Pointer to next link descriptor */
403 	u32 mr;
404 	unsigned int channel;
405 	int ret = 0;
406 	unsigned int i;
407 
408 	/*
409 	 * Reject any DMA buffer whose size is not a multiple of the period
410 	 * size.  We need to make sure that the DMA buffer can be evenly divided
411 	 * into periods.
412 	 */
413 	ret = snd_pcm_hw_constraint_integer(runtime,
414 		SNDRV_PCM_HW_PARAM_PERIODS);
415 	if (ret < 0) {
416 		dev_err(dev, "invalid buffer size\n");
417 		return ret;
418 	}
419 
420 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
421 
422 	if (dma->assigned) {
423 		dev_err(dev, "dma channel already assigned\n");
424 		return -EBUSY;
425 	}
426 
427 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
428 					 &ld_buf_phys, GFP_KERNEL);
429 	if (!dma_private) {
430 		dev_err(dev, "can't allocate dma private data\n");
431 		return -ENOMEM;
432 	}
433 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
434 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
435 	else
436 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
437 
438 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
439 	dma_private->dma_channel = dma->channel;
440 	dma_private->irq = dma->irq;
441 	dma_private->substream = substream;
442 	dma_private->ld_buf_phys = ld_buf_phys;
443 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
444 
445 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
446 			  dma_private);
447 	if (ret) {
448 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
449 			dma_private->irq, ret);
450 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
451 			dma_private, dma_private->ld_buf_phys);
452 		return ret;
453 	}
454 
455 	dma->assigned = 1;
456 
457 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
458 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
459 	runtime->private_data = dma_private;
460 
461 	/* Program the fixed DMA controller parameters */
462 
463 	dma_channel = dma_private->dma_channel;
464 
465 	temp_link = dma_private->ld_buf_phys +
466 		sizeof(struct fsl_dma_link_descriptor);
467 
468 	for (i = 0; i < NUM_DMA_LINKS; i++) {
469 		dma_private->link[i].next = cpu_to_be64(temp_link);
470 
471 		temp_link += sizeof(struct fsl_dma_link_descriptor);
472 	}
473 	/* The last link descriptor points to the first */
474 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
475 
476 	/* Tell the DMA controller where the first link descriptor is */
477 	out_be32(&dma_channel->clndar,
478 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
479 	out_be32(&dma_channel->eclndar,
480 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
481 
482 	/* The manual says the BCR must be clear before enabling EMP */
483 	out_be32(&dma_channel->bcr, 0);
484 
485 	/*
486 	 * Program the mode register for interrupts, external master control,
487 	 * and source/destination hold.  Also clear the Channel Abort bit.
488 	 */
489 	mr = in_be32(&dma_channel->mr) &
490 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
491 
492 	/*
493 	 * We want External Master Start and External Master Pause enabled,
494 	 * because the SSI is controlling the DMA controller.  We want the DMA
495 	 * controller to be set up in advance, and then we signal only the SSI
496 	 * to start transferring.
497 	 *
498 	 * We want End-Of-Segment Interrupts enabled, because this will generate
499 	 * an interrupt at the end of each segment (each link descriptor
500 	 * represents one segment).  Each DMA segment is the same thing as an
501 	 * ALSA period, so this is how we get an interrupt at the end of every
502 	 * period.
503 	 *
504 	 * We want Error Interrupt enabled, so that we can get an error if
505 	 * the DMA controller is mis-programmed somehow.
506 	 */
507 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
508 		CCSR_DMA_MR_EMS_EN;
509 
510 	/* For playback, we want the destination address to be held.  For
511 	   capture, set the source address to be held. */
512 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
513 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
514 
515 	out_be32(&dma_channel->mr, mr);
516 
517 	return 0;
518 }
519 
520 /**
521  * fsl_dma_hw_params: continue initializing the DMA links
522  *
523  * This function obtains hardware parameters about the opened stream and
524  * programs the DMA controller accordingly.
525  *
526  * One drawback of big-endian is that when copying integers of different
527  * sizes to a fixed-sized register, the address to which the integer must be
528  * copied is dependent on the size of the integer.
529  *
530  * For example, if P is the address of a 32-bit register, and X is a 32-bit
531  * integer, then X should be copied to address P.  However, if X is a 16-bit
532  * integer, then it should be copied to P+2.  If X is an 8-bit register,
533  * then it should be copied to P+3.
534  *
535  * So for playback of 8-bit samples, the DMA controller must transfer single
536  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
537  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
538  *
539  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
540  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
541  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
542  * 24-bit data must be padded to 32 bits.
543  */
544 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
545 	struct snd_pcm_hw_params *hw_params)
546 {
547 	struct snd_pcm_runtime *runtime = substream->runtime;
548 	struct fsl_dma_private *dma_private = runtime->private_data;
549 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 	struct device *dev = rtd->platform->dev;
551 
552 	/* Number of bits per sample */
553 	unsigned int sample_bits =
554 		snd_pcm_format_physical_width(params_format(hw_params));
555 
556 	/* Number of bytes per frame */
557 	unsigned int sample_bytes = sample_bits / 8;
558 
559 	/* Bus address of SSI STX register */
560 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
561 
562 	/* Size of the DMA buffer, in bytes */
563 	size_t buffer_size = params_buffer_bytes(hw_params);
564 
565 	/* Number of bytes per period */
566 	size_t period_size = params_period_bytes(hw_params);
567 
568 	/* Pointer to next period */
569 	dma_addr_t temp_addr = substream->dma_buffer.addr;
570 
571 	/* Pointer to DMA controller */
572 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
573 
574 	u32 mr; /* DMA Mode Register */
575 
576 	unsigned int i;
577 
578 	/* Initialize our DMA tracking variables */
579 	dma_private->period_size = period_size;
580 	dma_private->num_periods = params_periods(hw_params);
581 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
582 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
583 		(NUM_DMA_LINKS * period_size);
584 
585 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
586 		/* This happens if the number of periods == NUM_DMA_LINKS */
587 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
588 
589 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
590 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
591 
592 	/* Due to a quirk of the SSI's STX register, the target address
593 	 * for the DMA operations depends on the sample size.  So we calculate
594 	 * that offset here.  While we're at it, also tell the DMA controller
595 	 * how much data to transfer per sample.
596 	 */
597 	switch (sample_bits) {
598 	case 8:
599 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
600 		ssi_sxx_phys += 3;
601 		break;
602 	case 16:
603 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
604 		ssi_sxx_phys += 2;
605 		break;
606 	case 32:
607 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
608 		break;
609 	default:
610 		/* We should never get here */
611 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
612 		return -EINVAL;
613 	}
614 
615 	/*
616 	 * BWC determines how many bytes are sent/received before the DMA
617 	 * controller checks the SSI to see if it needs to stop. BWC should
618 	 * always be a multiple of the frame size, so that we always transmit
619 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
620 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
621 	 * (MR[BWC] can only represent even powers of two).
622 	 *
623 	 * To simplify the process, we set BWC to the largest value that is
624 	 * less than or equal to the FIFO watermark.  For playback, this ensures
625 	 * that we transfer the maximum amount without overrunning the FIFO.
626 	 * For capture, this ensures that we transfer the maximum amount without
627 	 * underrunning the FIFO.
628 	 *
629 	 * f = SSI FIFO depth
630 	 * w = SSI watermark value (which equals f - 2)
631 	 * b = DMA bandwidth count (in bytes)
632 	 * s = sample size (in bytes, which equals frame_size * 2)
633 	 *
634 	 * For playback, we never transmit more than the transmit FIFO
635 	 * watermark, otherwise we might write more data than the FIFO can hold.
636 	 * The watermark is equal to the FIFO depth minus two.
637 	 *
638 	 * For capture, two equations must hold:
639 	 *	w > f - (b / s)
640 	 *	w >= b / s
641 	 *
642 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
643 	 * b = s * w, which is equal to
644 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
645 	 */
646 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
647 
648 	out_be32(&dma_channel->mr, mr);
649 
650 	for (i = 0; i < NUM_DMA_LINKS; i++) {
651 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
652 
653 		link->count = cpu_to_be32(period_size);
654 
655 		/* The snoop bit tells the DMA controller whether it should tell
656 		 * the ECM to snoop during a read or write to an address. For
657 		 * audio, we use DMA to transfer data between memory and an I/O
658 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
659 		 * needed if there is a cache, so we need to snoop memory
660 		 * addresses only.  For playback, that means we snoop the source
661 		 * but not the destination.  For capture, we snoop the
662 		 * destination but not the source.
663 		 *
664 		 * Note that failing to snoop properly is unlikely to cause
665 		 * cache incoherency if the period size is larger than the
666 		 * size of L1 cache.  This is because filling in one period will
667 		 * flush out the data for the previous period.  So if you
668 		 * increased period_bytes_min to a large enough size, you might
669 		 * get more performance by not snooping, and you'll still be
670 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
671 		 */
672 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
673 			link->source_addr = cpu_to_be32(temp_addr);
674 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
675 				upper_32_bits(temp_addr));
676 
677 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
678 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
679 				upper_32_bits(ssi_sxx_phys));
680 		} else {
681 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
682 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
683 				upper_32_bits(ssi_sxx_phys));
684 
685 			link->dest_addr = cpu_to_be32(temp_addr);
686 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
687 				upper_32_bits(temp_addr));
688 		}
689 
690 		temp_addr += period_size;
691 	}
692 
693 	return 0;
694 }
695 
696 /**
697  * fsl_dma_pointer: determine the current position of the DMA transfer
698  *
699  * This function is called by ALSA when ALSA wants to know where in the
700  * stream buffer the hardware currently is.
701  *
702  * For playback, the SAR register contains the physical address of the most
703  * recent DMA transfer.  For capture, the value is in the DAR register.
704  *
705  * The base address of the buffer is stored in the source_addr field of the
706  * first link descriptor.
707  */
708 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
709 {
710 	struct snd_pcm_runtime *runtime = substream->runtime;
711 	struct fsl_dma_private *dma_private = runtime->private_data;
712 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
713 	struct device *dev = rtd->platform->dev;
714 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
715 	dma_addr_t position;
716 	snd_pcm_uframes_t frames;
717 
718 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
719 	 * only have 32-bit DMA addresses.  This function is typically called
720 	 * in interrupt context, so we need to optimize it.
721 	 */
722 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
723 		position = in_be32(&dma_channel->sar);
724 #ifdef CONFIG_PHYS_64BIT
725 		position |= (u64)(in_be32(&dma_channel->satr) &
726 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
727 #endif
728 	} else {
729 		position = in_be32(&dma_channel->dar);
730 #ifdef CONFIG_PHYS_64BIT
731 		position |= (u64)(in_be32(&dma_channel->datr) &
732 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
733 #endif
734 	}
735 
736 	/*
737 	 * When capture is started, the SSI immediately starts to fill its FIFO.
738 	 * This means that the DMA controller is not started until the FIFO is
739 	 * full.  However, ALSA calls this function before that happens, when
740 	 * MR.DAR is still zero.  In this case, just return zero to indicate
741 	 * that nothing has been received yet.
742 	 */
743 	if (!position)
744 		return 0;
745 
746 	if ((position < dma_private->dma_buf_phys) ||
747 	    (position > dma_private->dma_buf_end)) {
748 		dev_err(dev, "dma pointer is out of range, halting stream\n");
749 		return SNDRV_PCM_POS_XRUN;
750 	}
751 
752 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
753 
754 	/*
755 	 * If the current address is just past the end of the buffer, wrap it
756 	 * around.
757 	 */
758 	if (frames == runtime->buffer_size)
759 		frames = 0;
760 
761 	return frames;
762 }
763 
764 /**
765  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
766  *
767  * Release the resources allocated in fsl_dma_hw_params() and de-program the
768  * registers.
769  *
770  * This function can be called multiple times.
771  */
772 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
773 {
774 	struct snd_pcm_runtime *runtime = substream->runtime;
775 	struct fsl_dma_private *dma_private = runtime->private_data;
776 
777 	if (dma_private) {
778 		struct ccsr_dma_channel __iomem *dma_channel;
779 
780 		dma_channel = dma_private->dma_channel;
781 
782 		/* Stop the DMA */
783 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
784 		out_be32(&dma_channel->mr, 0);
785 
786 		/* Reset all the other registers */
787 		out_be32(&dma_channel->sr, -1);
788 		out_be32(&dma_channel->clndar, 0);
789 		out_be32(&dma_channel->eclndar, 0);
790 		out_be32(&dma_channel->satr, 0);
791 		out_be32(&dma_channel->sar, 0);
792 		out_be32(&dma_channel->datr, 0);
793 		out_be32(&dma_channel->dar, 0);
794 		out_be32(&dma_channel->bcr, 0);
795 		out_be32(&dma_channel->nlndar, 0);
796 		out_be32(&dma_channel->enlndar, 0);
797 	}
798 
799 	return 0;
800 }
801 
802 /**
803  * fsl_dma_close: close the stream.
804  */
805 static int fsl_dma_close(struct snd_pcm_substream *substream)
806 {
807 	struct snd_pcm_runtime *runtime = substream->runtime;
808 	struct fsl_dma_private *dma_private = runtime->private_data;
809 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
810 	struct device *dev = rtd->platform->dev;
811 	struct dma_object *dma =
812 		container_of(rtd->platform->driver, struct dma_object, dai);
813 
814 	if (dma_private) {
815 		if (dma_private->irq)
816 			free_irq(dma_private->irq, dma_private);
817 
818 		/* Deallocate the fsl_dma_private structure */
819 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
820 				  dma_private, dma_private->ld_buf_phys);
821 		substream->runtime->private_data = NULL;
822 	}
823 
824 	dma->assigned = 0;
825 
826 	return 0;
827 }
828 
829 /*
830  * Remove this PCM driver.
831  */
832 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
833 {
834 	struct snd_pcm_substream *substream;
835 	unsigned int i;
836 
837 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
838 		substream = pcm->streams[i].substream;
839 		if (substream) {
840 			snd_dma_free_pages(&substream->dma_buffer);
841 			substream->dma_buffer.area = NULL;
842 			substream->dma_buffer.addr = 0;
843 		}
844 	}
845 }
846 
847 /**
848  * find_ssi_node -- returns the SSI node that points to its DMA channel node
849  *
850  * Although this DMA driver attempts to operate independently of the other
851  * devices, it still needs to determine some information about the SSI device
852  * that it's working with.  Unfortunately, the device tree does not contain
853  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
854  * other way.  So we need to scan the device tree for SSI nodes until we find
855  * the one that points to the given DMA channel node.  It's ugly, but at least
856  * it's contained in this one function.
857  */
858 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
859 {
860 	struct device_node *ssi_np, *np;
861 
862 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
863 		/* Check each DMA phandle to see if it points to us.  We
864 		 * assume that device_node pointers are a valid comparison.
865 		 */
866 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
867 		of_node_put(np);
868 		if (np == dma_channel_np)
869 			return ssi_np;
870 
871 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
872 		of_node_put(np);
873 		if (np == dma_channel_np)
874 			return ssi_np;
875 	}
876 
877 	return NULL;
878 }
879 
880 static struct snd_pcm_ops fsl_dma_ops = {
881 	.open   	= fsl_dma_open,
882 	.close  	= fsl_dma_close,
883 	.ioctl  	= snd_pcm_lib_ioctl,
884 	.hw_params      = fsl_dma_hw_params,
885 	.hw_free	= fsl_dma_hw_free,
886 	.pointer	= fsl_dma_pointer,
887 };
888 
889 static int fsl_soc_dma_probe(struct platform_device *pdev)
890  {
891 	struct dma_object *dma;
892 	struct device_node *np = pdev->dev.of_node;
893 	struct device_node *ssi_np;
894 	struct resource res;
895 	const uint32_t *iprop;
896 	int ret;
897 
898 	/* Find the SSI node that points to us. */
899 	ssi_np = find_ssi_node(np);
900 	if (!ssi_np) {
901 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
902 		return -ENODEV;
903 	}
904 
905 	ret = of_address_to_resource(ssi_np, 0, &res);
906 	if (ret) {
907 		dev_err(&pdev->dev, "could not determine resources for %s\n",
908 			ssi_np->full_name);
909 		of_node_put(ssi_np);
910 		return ret;
911 	}
912 
913 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
914 	if (!dma) {
915 		dev_err(&pdev->dev, "could not allocate dma object\n");
916 		of_node_put(ssi_np);
917 		return -ENOMEM;
918 	}
919 
920 	strcpy(dma->path, np->full_name);
921 	dma->dai.ops = &fsl_dma_ops;
922 	dma->dai.pcm_new = fsl_dma_new;
923 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
924 
925 	/* Store the SSI-specific information that we need */
926 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
927 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
928 
929 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
930 	if (iprop)
931 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
932 	else
933                 /* Older 8610 DTs didn't have the fifo-depth property */
934 		dma->ssi_fifo_depth = 8;
935 
936 	of_node_put(ssi_np);
937 
938 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
939 	if (ret) {
940 		dev_err(&pdev->dev, "could not register platform\n");
941 		kfree(dma);
942 		return ret;
943 	}
944 
945 	dma->channel = of_iomap(np, 0);
946 	dma->irq = irq_of_parse_and_map(np, 0);
947 
948 	dev_set_drvdata(&pdev->dev, dma);
949 
950 	return 0;
951 }
952 
953 static int fsl_soc_dma_remove(struct platform_device *pdev)
954 {
955 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
956 
957 	snd_soc_unregister_platform(&pdev->dev);
958 	iounmap(dma->channel);
959 	irq_dispose_mapping(dma->irq);
960 	kfree(dma);
961 
962 	return 0;
963 }
964 
965 static const struct of_device_id fsl_soc_dma_ids[] = {
966 	{ .compatible = "fsl,ssi-dma-channel", },
967 	{}
968 };
969 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
970 
971 static struct platform_driver fsl_soc_dma_driver = {
972 	.driver = {
973 		.name = "fsl-pcm-audio",
974 		.owner = THIS_MODULE,
975 		.of_match_table = fsl_soc_dma_ids,
976 	},
977 	.probe = fsl_soc_dma_probe,
978 	.remove = fsl_soc_dma_remove,
979 };
980 
981 module_platform_driver(fsl_soc_dma_driver);
982 
983 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
984 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
985 MODULE_LICENSE("GPL v2");
986