xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 85ef2375)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 
28 #include <asm/io.h>
29 
30 #include "fsl_dma.h"
31 
32 /*
33  * The formats that the DMA controller supports, which is anything
34  * that is 8, 16, or 32 bits.
35  */
36 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
37 			    SNDRV_PCM_FMTBIT_U8 	| \
38 			    SNDRV_PCM_FMTBIT_S16_LE     | \
39 			    SNDRV_PCM_FMTBIT_S16_BE     | \
40 			    SNDRV_PCM_FMTBIT_U16_LE     | \
41 			    SNDRV_PCM_FMTBIT_U16_BE     | \
42 			    SNDRV_PCM_FMTBIT_S24_LE     | \
43 			    SNDRV_PCM_FMTBIT_S24_BE     | \
44 			    SNDRV_PCM_FMTBIT_U24_LE     | \
45 			    SNDRV_PCM_FMTBIT_U24_BE     | \
46 			    SNDRV_PCM_FMTBIT_S32_LE     | \
47 			    SNDRV_PCM_FMTBIT_S32_BE     | \
48 			    SNDRV_PCM_FMTBIT_U32_LE     | \
49 			    SNDRV_PCM_FMTBIT_U32_BE)
50 
51 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 			  SNDRV_PCM_RATE_CONTINUOUS)
53 
54 /* DMA global data.  This structure is used by fsl_dma_open() to determine
55  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
56  * not allow the machine driver to provide this information to the PCM
57  * driver in advance, and there's no way to differentiate between the two
58  * DMA controllers.  So for now, this driver only supports one SSI device
59  * using two DMA channels.  We cannot support multiple DMA devices.
60  *
61  * ssi_stx_phys: bus address of SSI STX register
62  * ssi_srx_phys: bus address of SSI SRX register
63  * dma_channel: pointer to the DMA channel's registers
64  * irq: IRQ for this DMA channel
65  * assigned: set to 1 if that DMA channel is assigned to a substream
66  */
67 static struct {
68 	dma_addr_t ssi_stx_phys;
69 	dma_addr_t ssi_srx_phys;
70 	struct ccsr_dma_channel __iomem *dma_channel[2];
71 	unsigned int irq[2];
72 	unsigned int assigned[2];
73 } dma_global_data;
74 
75 /*
76  * The number of DMA links to use.  Two is the bare minimum, but if you
77  * have really small links you might need more.
78  */
79 #define NUM_DMA_LINKS   2
80 
81 /** fsl_dma_private: p-substream DMA data
82  *
83  * Each substream has a 1-to-1 association with a DMA channel.
84  *
85  * The link[] array is first because it needs to be aligned on a 32-byte
86  * boundary, so putting it first will ensure alignment without padding the
87  * structure.
88  *
89  * @link[]: array of link descriptors
90  * @controller_id: which DMA controller (0, 1, ...)
91  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92  * @dma_channel: pointer to the DMA channel's registers
93  * @irq: IRQ for this DMA channel
94  * @substream: pointer to the substream object, needed by the ISR
95  * @ssi_sxx_phys: bus address of the STX or SRX register to use
96  * @ld_buf_phys: physical address of the LD buffer
97  * @current_link: index into link[] of the link currently being processed
98  * @dma_buf_phys: physical address of the DMA buffer
99  * @dma_buf_next: physical address of the next period to process
100  * @dma_buf_end: physical address of the byte after the end of the DMA
101  * @buffer period_size: the size of a single period
102  * @num_periods: the number of periods in the DMA buffer
103  */
104 struct fsl_dma_private {
105 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 	unsigned int controller_id;
107 	unsigned int channel_id;
108 	struct ccsr_dma_channel __iomem *dma_channel;
109 	unsigned int irq;
110 	struct snd_pcm_substream *substream;
111 	dma_addr_t ssi_sxx_phys;
112 	dma_addr_t ld_buf_phys;
113 	unsigned int current_link;
114 	dma_addr_t dma_buf_phys;
115 	dma_addr_t dma_buf_next;
116 	dma_addr_t dma_buf_end;
117 	size_t period_size;
118 	unsigned int num_periods;
119 };
120 
121 /**
122  * fsl_dma_hardare: define characteristics of the PCM hardware.
123  *
124  * The PCM hardware is the Freescale DMA controller.  This structure defines
125  * the capabilities of that hardware.
126  *
127  * Since the sampling rate and data format are not controlled by the DMA
128  * controller, we specify no limits for those values.  The only exception is
129  * period_bytes_min, which is set to a reasonably low value to prevent the
130  * DMA controller from generating too many interrupts per second.
131  *
132  * Since each link descriptor has a 32-bit byte count field, we set
133  * period_bytes_max to the largest 32-bit number.  We also have no maximum
134  * number of periods.
135  *
136  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137  * limitation in the SSI driver requires the sample rates for playback and
138  * capture to be the same.
139  */
140 static const struct snd_pcm_hardware fsl_dma_hardware = {
141 
142 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
143 				  SNDRV_PCM_INFO_MMAP |
144 				  SNDRV_PCM_INFO_MMAP_VALID |
145 				  SNDRV_PCM_INFO_JOINT_DUPLEX,
146 	.formats		= FSLDMA_PCM_FORMATS,
147 	.rates  		= FSLDMA_PCM_RATES,
148 	.rate_min       	= 5512,
149 	.rate_max       	= 192000,
150 	.period_bytes_min       = 512,  	/* A reasonable limit */
151 	.period_bytes_max       = (u32) -1,
152 	.periods_min    	= NUM_DMA_LINKS,
153 	.periods_max    	= (unsigned int) -1,
154 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
155 };
156 
157 /**
158  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
159  *
160  * This function should be called by the ISR whenever the DMA controller
161  * halts data transfer.
162  */
163 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
164 {
165 	unsigned long flags;
166 
167 	snd_pcm_stream_lock_irqsave(substream, flags);
168 
169 	if (snd_pcm_running(substream))
170 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
171 
172 	snd_pcm_stream_unlock_irqrestore(substream, flags);
173 }
174 
175 /**
176  * fsl_dma_update_pointers - update LD pointers to point to the next period
177  *
178  * As each period is completed, this function changes the the link
179  * descriptor pointers for that period to point to the next period.
180  */
181 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
182 {
183 	struct fsl_dma_link_descriptor *link =
184 		&dma_private->link[dma_private->current_link];
185 
186 	/* Update our link descriptors to point to the next period */
187 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
188 		link->source_addr =
189 			cpu_to_be32(dma_private->dma_buf_next);
190 	else
191 		link->dest_addr =
192 			cpu_to_be32(dma_private->dma_buf_next);
193 
194 	/* Update our variables for next time */
195 	dma_private->dma_buf_next += dma_private->period_size;
196 
197 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
198 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
199 
200 	if (++dma_private->current_link >= NUM_DMA_LINKS)
201 		dma_private->current_link = 0;
202 }
203 
204 /**
205  * fsl_dma_isr: interrupt handler for the DMA controller
206  *
207  * @irq: IRQ of the DMA channel
208  * @dev_id: pointer to the dma_private structure for this DMA channel
209  */
210 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
211 {
212 	struct fsl_dma_private *dma_private = dev_id;
213 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
214 	irqreturn_t ret = IRQ_NONE;
215 	u32 sr, sr2 = 0;
216 
217 	/* We got an interrupt, so read the status register to see what we
218 	   were interrupted for.
219 	 */
220 	sr = in_be32(&dma_channel->sr);
221 
222 	if (sr & CCSR_DMA_SR_TE) {
223 		dev_err(dma_private->substream->pcm->card->dev,
224 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
225 			dma_private->controller_id,
226 			dma_private->channel_id, irq);
227 		fsl_dma_abort_stream(dma_private->substream);
228 		sr2 |= CCSR_DMA_SR_TE;
229 		ret = IRQ_HANDLED;
230 	}
231 
232 	if (sr & CCSR_DMA_SR_CH)
233 		ret = IRQ_HANDLED;
234 
235 	if (sr & CCSR_DMA_SR_PE) {
236 		dev_err(dma_private->substream->pcm->card->dev,
237 			"DMA%u programming error (channel=%u irq=%u)\n",
238 			dma_private->controller_id,
239 			dma_private->channel_id, irq);
240 		fsl_dma_abort_stream(dma_private->substream);
241 		sr2 |= CCSR_DMA_SR_PE;
242 		ret = IRQ_HANDLED;
243 	}
244 
245 	if (sr & CCSR_DMA_SR_EOLNI) {
246 		sr2 |= CCSR_DMA_SR_EOLNI;
247 		ret = IRQ_HANDLED;
248 	}
249 
250 	if (sr & CCSR_DMA_SR_CB)
251 		ret = IRQ_HANDLED;
252 
253 	if (sr & CCSR_DMA_SR_EOSI) {
254 		struct snd_pcm_substream *substream = dma_private->substream;
255 
256 		/* Tell ALSA we completed a period. */
257 		snd_pcm_period_elapsed(substream);
258 
259 		/*
260 		 * Update our link descriptors to point to the next period. We
261 		 * only need to do this if the number of periods is not equal to
262 		 * the number of links.
263 		 */
264 		if (dma_private->num_periods != NUM_DMA_LINKS)
265 			fsl_dma_update_pointers(dma_private);
266 
267 		sr2 |= CCSR_DMA_SR_EOSI;
268 		ret = IRQ_HANDLED;
269 	}
270 
271 	if (sr & CCSR_DMA_SR_EOLSI) {
272 		sr2 |= CCSR_DMA_SR_EOLSI;
273 		ret = IRQ_HANDLED;
274 	}
275 
276 	/* Clear the bits that we set */
277 	if (sr2)
278 		out_be32(&dma_channel->sr, sr2);
279 
280 	return ret;
281 }
282 
283 /**
284  * fsl_dma_new: initialize this PCM driver.
285  *
286  * This function is called when the codec driver calls snd_soc_new_pcms(),
287  * once for each .dai_link in the machine driver's snd_soc_card
288  * structure.
289  */
290 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
291 	struct snd_pcm *pcm)
292 {
293 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
294 	int ret;
295 
296 	if (!card->dev->dma_mask)
297 		card->dev->dma_mask = &fsl_dma_dmamask;
298 
299 	if (!card->dev->coherent_dma_mask)
300 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
301 
302 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
303 		fsl_dma_hardware.buffer_bytes_max,
304 		&pcm->streams[0].substream->dma_buffer);
305 	if (ret) {
306 		dev_err(card->dev,
307 			"Can't allocate playback DMA buffer (size=%u)\n",
308 			fsl_dma_hardware.buffer_bytes_max);
309 		return -ENOMEM;
310 	}
311 
312 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
313 		fsl_dma_hardware.buffer_bytes_max,
314 		&pcm->streams[1].substream->dma_buffer);
315 	if (ret) {
316 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
317 		dev_err(card->dev,
318 			"Can't allocate capture DMA buffer (size=%u)\n",
319 			fsl_dma_hardware.buffer_bytes_max);
320 		return -ENOMEM;
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  * fsl_dma_open: open a new substream.
328  *
329  * Each substream has its own DMA buffer.
330  *
331  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
332  * descriptors that ping-pong from one period to the next.  For example, if
333  * there are six periods and two link descriptors, this is how they look
334  * before playback starts:
335  *
336  *      	   The last link descriptor
337  *   ____________  points back to the first
338  *  |   	 |
339  *  V   	 |
340  *  ___    ___   |
341  * |   |->|   |->|
342  * |___|  |___|
343  *   |      |
344  *   |      |
345  *   V      V
346  *  _________________________________________
347  * |      |      |      |      |      |      |  The DMA buffer is
348  * |      |      |      |      |      |      |    divided into 6 parts
349  * |______|______|______|______|______|______|
350  *
351  * and here's how they look after the first period is finished playing:
352  *
353  *   ____________
354  *  |   	 |
355  *  V   	 |
356  *  ___    ___   |
357  * |   |->|   |->|
358  * |___|  |___|
359  *   |      |
360  *   |______________
361  *          |       |
362  *          V       V
363  *  _________________________________________
364  * |      |      |      |      |      |      |
365  * |      |      |      |      |      |      |
366  * |______|______|______|______|______|______|
367  *
368  * The first link descriptor now points to the third period.  The DMA
369  * controller is currently playing the second period.  When it finishes, it
370  * will jump back to the first descriptor and play the third period.
371  *
372  * There are four reasons we do this:
373  *
374  * 1. The only way to get the DMA controller to automatically restart the
375  *    transfer when it gets to the end of the buffer is to use chaining
376  *    mode.  Basic direct mode doesn't offer that feature.
377  * 2. We need to receive an interrupt at the end of every period.  The DMA
378  *    controller can generate an interrupt at the end of every link transfer
379  *    (aka segment).  Making each period into a DMA segment will give us the
380  *    interrupts we need.
381  * 3. By creating only two link descriptors, regardless of the number of
382  *    periods, we do not need to reallocate the link descriptors if the
383  *    number of periods changes.
384  * 4. All of the audio data is still stored in a single, contiguous DMA
385  *    buffer, which is what ALSA expects.  We're just dividing it into
386  *    contiguous parts, and creating a link descriptor for each one.
387  */
388 static int fsl_dma_open(struct snd_pcm_substream *substream)
389 {
390 	struct snd_pcm_runtime *runtime = substream->runtime;
391 	struct fsl_dma_private *dma_private;
392 	struct ccsr_dma_channel __iomem *dma_channel;
393 	dma_addr_t ld_buf_phys;
394 	u64 temp_link;  	/* Pointer to next link descriptor */
395 	u32 mr;
396 	unsigned int channel;
397 	int ret = 0;
398 	unsigned int i;
399 
400 	/*
401 	 * Reject any DMA buffer whose size is not a multiple of the period
402 	 * size.  We need to make sure that the DMA buffer can be evenly divided
403 	 * into periods.
404 	 */
405 	ret = snd_pcm_hw_constraint_integer(runtime,
406 		SNDRV_PCM_HW_PARAM_PERIODS);
407 	if (ret < 0) {
408 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
409 		return ret;
410 	}
411 
412 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413 
414 	if (dma_global_data.assigned[channel]) {
415 		dev_err(substream->pcm->card->dev,
416 			"DMA channel already assigned\n");
417 		return -EBUSY;
418 	}
419 
420 	dma_private = dma_alloc_coherent(substream->pcm->dev,
421 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
422 	if (!dma_private) {
423 		dev_err(substream->pcm->card->dev,
424 			"can't allocate DMA private data\n");
425 		return -ENOMEM;
426 	}
427 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
428 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
429 	else
430 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
431 
432 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
433 	dma_private->irq = dma_global_data.irq[channel];
434 	dma_private->substream = substream;
435 	dma_private->ld_buf_phys = ld_buf_phys;
436 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
437 
438 	/* We only support one DMA controller for now */
439 	dma_private->controller_id = 0;
440 	dma_private->channel_id = channel;
441 
442 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
443 	if (ret) {
444 		dev_err(substream->pcm->card->dev,
445 			"can't register ISR for IRQ %u (ret=%i)\n",
446 			dma_private->irq, ret);
447 		dma_free_coherent(substream->pcm->dev,
448 			sizeof(struct fsl_dma_private),
449 			dma_private, dma_private->ld_buf_phys);
450 		return ret;
451 	}
452 
453 	dma_global_data.assigned[channel] = 1;
454 
455 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
456 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
457 	runtime->private_data = dma_private;
458 
459 	/* Program the fixed DMA controller parameters */
460 
461 	dma_channel = dma_private->dma_channel;
462 
463 	temp_link = dma_private->ld_buf_phys +
464 		sizeof(struct fsl_dma_link_descriptor);
465 
466 	for (i = 0; i < NUM_DMA_LINKS; i++) {
467 		dma_private->link[i].next = cpu_to_be64(temp_link);
468 
469 		temp_link += sizeof(struct fsl_dma_link_descriptor);
470 	}
471 	/* The last link descriptor points to the first */
472 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
473 
474 	/* Tell the DMA controller where the first link descriptor is */
475 	out_be32(&dma_channel->clndar,
476 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
477 	out_be32(&dma_channel->eclndar,
478 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
479 
480 	/* The manual says the BCR must be clear before enabling EMP */
481 	out_be32(&dma_channel->bcr, 0);
482 
483 	/*
484 	 * Program the mode register for interrupts, external master control,
485 	 * and source/destination hold.  Also clear the Channel Abort bit.
486 	 */
487 	mr = in_be32(&dma_channel->mr) &
488 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
489 
490 	/*
491 	 * We want External Master Start and External Master Pause enabled,
492 	 * because the SSI is controlling the DMA controller.  We want the DMA
493 	 * controller to be set up in advance, and then we signal only the SSI
494 	 * to start transferring.
495 	 *
496 	 * We want End-Of-Segment Interrupts enabled, because this will generate
497 	 * an interrupt at the end of each segment (each link descriptor
498 	 * represents one segment).  Each DMA segment is the same thing as an
499 	 * ALSA period, so this is how we get an interrupt at the end of every
500 	 * period.
501 	 *
502 	 * We want Error Interrupt enabled, so that we can get an error if
503 	 * the DMA controller is mis-programmed somehow.
504 	 */
505 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
506 		CCSR_DMA_MR_EMS_EN;
507 
508 	/* For playback, we want the destination address to be held.  For
509 	   capture, set the source address to be held. */
510 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
511 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
512 
513 	out_be32(&dma_channel->mr, mr);
514 
515 	return 0;
516 }
517 
518 /**
519  * fsl_dma_hw_params: continue initializing the DMA links
520  *
521  * This function obtains hardware parameters about the opened stream and
522  * programs the DMA controller accordingly.
523  *
524  * One drawback of big-endian is that when copying integers of different
525  * sizes to a fixed-sized register, the address to which the integer must be
526  * copied is dependent on the size of the integer.
527  *
528  * For example, if P is the address of a 32-bit register, and X is a 32-bit
529  * integer, then X should be copied to address P.  However, if X is a 16-bit
530  * integer, then it should be copied to P+2.  If X is an 8-bit register,
531  * then it should be copied to P+3.
532  *
533  * So for playback of 8-bit samples, the DMA controller must transfer single
534  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
535  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
536  *
537  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
538  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
539  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
540  * 24-bit data must be padded to 32 bits.
541  */
542 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
543 	struct snd_pcm_hw_params *hw_params)
544 {
545 	struct snd_pcm_runtime *runtime = substream->runtime;
546 	struct fsl_dma_private *dma_private = runtime->private_data;
547 
548 	/* Number of bits per sample */
549 	unsigned int sample_size =
550 		snd_pcm_format_physical_width(params_format(hw_params));
551 
552 	/* Number of bytes per frame */
553 	unsigned int frame_size = 2 * (sample_size / 8);
554 
555 	/* Bus address of SSI STX register */
556 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
557 
558 	/* Size of the DMA buffer, in bytes */
559 	size_t buffer_size = params_buffer_bytes(hw_params);
560 
561 	/* Number of bytes per period */
562 	size_t period_size = params_period_bytes(hw_params);
563 
564 	/* Pointer to next period */
565 	dma_addr_t temp_addr = substream->dma_buffer.addr;
566 
567 	/* Pointer to DMA controller */
568 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
569 
570 	u32 mr; /* DMA Mode Register */
571 
572 	unsigned int i;
573 
574 	/* Initialize our DMA tracking variables */
575 	dma_private->period_size = period_size;
576 	dma_private->num_periods = params_periods(hw_params);
577 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
578 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
579 		(NUM_DMA_LINKS * period_size);
580 
581 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
582 		/* This happens if the number of periods == NUM_DMA_LINKS */
583 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
584 
585 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
586 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
587 
588 	/* Due to a quirk of the SSI's STX register, the target address
589 	 * for the DMA operations depends on the sample size.  So we calculate
590 	 * that offset here.  While we're at it, also tell the DMA controller
591 	 * how much data to transfer per sample.
592 	 */
593 	switch (sample_size) {
594 	case 8:
595 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
596 		ssi_sxx_phys += 3;
597 		break;
598 	case 16:
599 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
600 		ssi_sxx_phys += 2;
601 		break;
602 	case 32:
603 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
604 		break;
605 	default:
606 		/* We should never get here */
607 		dev_err(substream->pcm->card->dev,
608 			"unsupported sample size %u\n", sample_size);
609 		return -EINVAL;
610 	}
611 
612 	/*
613 	 * BWC should always be a multiple of the frame size.  BWC determines
614 	 * how many bytes are sent/received before the DMA controller checks the
615 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
616 	 * hold three frames, so we want to send two frames at a time. For
617 	 * capture, the receive FIFO is triggered when it contains one frame, so
618 	 * we want to receive one frame at a time.
619 	 */
620 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
621 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
622 	else
623 		mr |= CCSR_DMA_MR_BWC(frame_size);
624 
625 	out_be32(&dma_channel->mr, mr);
626 
627 	for (i = 0; i < NUM_DMA_LINKS; i++) {
628 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
629 
630 		link->count = cpu_to_be32(period_size);
631 
632 		/* Even though the DMA controller supports 36-bit addressing,
633 		 * for simplicity we allow only 32-bit addresses for the audio
634 		 * buffer itself.  This was enforced in fsl_dma_new() with the
635 		 * DMA mask.
636 		 *
637 		 * The snoop bit tells the DMA controller whether it should tell
638 		 * the ECM to snoop during a read or write to an address. For
639 		 * audio, we use DMA to transfer data between memory and an I/O
640 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
641 		 * needed if there is a cache, so we need to snoop memory
642 		 * addresses only.  For playback, that means we snoop the source
643 		 * but not the destination.  For capture, we snoop the
644 		 * destination but not the source.
645 		 *
646 		 * Note that failing to snoop properly is unlikely to cause
647 		 * cache incoherency if the period size is larger than the
648 		 * size of L1 cache.  This is because filling in one period will
649 		 * flush out the data for the previous period.  So if you
650 		 * increased period_bytes_min to a large enough size, you might
651 		 * get more performance by not snooping, and you'll still be
652 		 * okay.
653 		 */
654 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
655 			link->source_addr = cpu_to_be32(temp_addr);
656 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
657 
658 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
659 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
660 		} else {
661 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
662 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
663 
664 			link->dest_addr = cpu_to_be32(temp_addr);
665 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
666 		}
667 
668 		temp_addr += period_size;
669 	}
670 
671 	return 0;
672 }
673 
674 /**
675  * fsl_dma_pointer: determine the current position of the DMA transfer
676  *
677  * This function is called by ALSA when ALSA wants to know where in the
678  * stream buffer the hardware currently is.
679  *
680  * For playback, the SAR register contains the physical address of the most
681  * recent DMA transfer.  For capture, the value is in the DAR register.
682  *
683  * The base address of the buffer is stored in the source_addr field of the
684  * first link descriptor.
685  */
686 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
687 {
688 	struct snd_pcm_runtime *runtime = substream->runtime;
689 	struct fsl_dma_private *dma_private = runtime->private_data;
690 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
691 	dma_addr_t position;
692 	snd_pcm_uframes_t frames;
693 
694 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
695 		position = in_be32(&dma_channel->sar);
696 	else
697 		position = in_be32(&dma_channel->dar);
698 
699 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
700 
701 	/*
702 	 * If the current address is just past the end of the buffer, wrap it
703 	 * around.
704 	 */
705 	if (frames == runtime->buffer_size)
706 		frames = 0;
707 
708 	return frames;
709 }
710 
711 /**
712  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
713  *
714  * Release the resources allocated in fsl_dma_hw_params() and de-program the
715  * registers.
716  *
717  * This function can be called multiple times.
718  */
719 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
720 {
721 	struct snd_pcm_runtime *runtime = substream->runtime;
722 	struct fsl_dma_private *dma_private = runtime->private_data;
723 
724 	if (dma_private) {
725 		struct ccsr_dma_channel __iomem *dma_channel;
726 
727 		dma_channel = dma_private->dma_channel;
728 
729 		/* Stop the DMA */
730 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
731 		out_be32(&dma_channel->mr, 0);
732 
733 		/* Reset all the other registers */
734 		out_be32(&dma_channel->sr, -1);
735 		out_be32(&dma_channel->clndar, 0);
736 		out_be32(&dma_channel->eclndar, 0);
737 		out_be32(&dma_channel->satr, 0);
738 		out_be32(&dma_channel->sar, 0);
739 		out_be32(&dma_channel->datr, 0);
740 		out_be32(&dma_channel->dar, 0);
741 		out_be32(&dma_channel->bcr, 0);
742 		out_be32(&dma_channel->nlndar, 0);
743 		out_be32(&dma_channel->enlndar, 0);
744 	}
745 
746 	return 0;
747 }
748 
749 /**
750  * fsl_dma_close: close the stream.
751  */
752 static int fsl_dma_close(struct snd_pcm_substream *substream)
753 {
754 	struct snd_pcm_runtime *runtime = substream->runtime;
755 	struct fsl_dma_private *dma_private = runtime->private_data;
756 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
757 
758 	if (dma_private) {
759 		if (dma_private->irq)
760 			free_irq(dma_private->irq, dma_private);
761 
762 		if (dma_private->ld_buf_phys) {
763 			dma_unmap_single(substream->pcm->dev,
764 				dma_private->ld_buf_phys,
765 				sizeof(dma_private->link), DMA_TO_DEVICE);
766 		}
767 
768 		/* Deallocate the fsl_dma_private structure */
769 		dma_free_coherent(substream->pcm->dev,
770 			sizeof(struct fsl_dma_private),
771 			dma_private, dma_private->ld_buf_phys);
772 		substream->runtime->private_data = NULL;
773 	}
774 
775 	dma_global_data.assigned[dir] = 0;
776 
777 	return 0;
778 }
779 
780 /*
781  * Remove this PCM driver.
782  */
783 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
784 {
785 	struct snd_pcm_substream *substream;
786 	unsigned int i;
787 
788 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
789 		substream = pcm->streams[i].substream;
790 		if (substream) {
791 			snd_dma_free_pages(&substream->dma_buffer);
792 			substream->dma_buffer.area = NULL;
793 			substream->dma_buffer.addr = 0;
794 		}
795 	}
796 }
797 
798 static struct snd_pcm_ops fsl_dma_ops = {
799 	.open   	= fsl_dma_open,
800 	.close  	= fsl_dma_close,
801 	.ioctl  	= snd_pcm_lib_ioctl,
802 	.hw_params      = fsl_dma_hw_params,
803 	.hw_free	= fsl_dma_hw_free,
804 	.pointer	= fsl_dma_pointer,
805 };
806 
807 struct snd_soc_platform fsl_soc_platform = {
808 	.name   	= "fsl-dma",
809 	.pcm_ops	= &fsl_dma_ops,
810 	.pcm_new	= fsl_dma_new,
811 	.pcm_free       = fsl_dma_free_dma_buffers,
812 };
813 EXPORT_SYMBOL_GPL(fsl_soc_platform);
814 
815 /**
816  * fsl_dma_configure: store the DMA parameters from the fabric driver.
817  *
818  * This function is called by the ASoC fabric driver to give us the DMA and
819  * SSI channel information.
820  *
821  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
822  * data when a substream is created, so for now we need to store this data
823  * into a global variable.  This means that we can only support one DMA
824  * controller, and hence only one SSI.
825  */
826 int fsl_dma_configure(struct fsl_dma_info *dma_info)
827 {
828 	static int initialized;
829 
830 	/* We only support one DMA controller for now */
831 	if (initialized)
832 		return 0;
833 
834 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
835 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
836 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
837 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
838 	dma_global_data.irq[0] = dma_info->dma_irq[0];
839 	dma_global_data.irq[1] = dma_info->dma_irq[1];
840 	dma_global_data.assigned[0] = 0;
841 	dma_global_data.assigned[1] = 0;
842 
843 	initialized = 1;
844 	return 1;
845 }
846 EXPORT_SYMBOL_GPL(fsl_dma_configure);
847 
848 static int __init fsl_soc_platform_init(void)
849 {
850 	return snd_soc_register_platform(&fsl_soc_platform);
851 }
852 module_init(fsl_soc_platform_init);
853 
854 static void __exit fsl_soc_platform_exit(void)
855 {
856 	snd_soc_unregister_platform(&fsl_soc_platform);
857 }
858 module_exit(fsl_soc_platform_exit);
859 
860 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
861 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
862 MODULE_LICENSE("GPL");
863