1 /* 2 * Freescale DMA ALSA SoC PCM driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2010 Freescale Semiconductor, Inc. 7 * 8 * This file is licensed under the terms of the GNU General Public License 9 * version 2. This program is licensed "as is" without any warranty of any 10 * kind, whether express or implied. 11 * 12 * This driver implements ASoC support for the Elo DMA controller, which is 13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, 14 * the PCM driver is what handles the DMA buffer. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/platform_device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/interrupt.h> 22 #include <linux/delay.h> 23 #include <linux/gfp.h> 24 #include <linux/of_address.h> 25 #include <linux/of_irq.h> 26 #include <linux/of_platform.h> 27 #include <linux/list.h> 28 #include <linux/slab.h> 29 30 #include <sound/core.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/soc.h> 34 35 #include <asm/io.h> 36 37 #include "fsl_dma.h" 38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ 39 40 /* 41 * The formats that the DMA controller supports, which is anything 42 * that is 8, 16, or 32 bits. 43 */ 44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ 45 SNDRV_PCM_FMTBIT_U8 | \ 46 SNDRV_PCM_FMTBIT_S16_LE | \ 47 SNDRV_PCM_FMTBIT_S16_BE | \ 48 SNDRV_PCM_FMTBIT_U16_LE | \ 49 SNDRV_PCM_FMTBIT_U16_BE | \ 50 SNDRV_PCM_FMTBIT_S24_LE | \ 51 SNDRV_PCM_FMTBIT_S24_BE | \ 52 SNDRV_PCM_FMTBIT_U24_LE | \ 53 SNDRV_PCM_FMTBIT_U24_BE | \ 54 SNDRV_PCM_FMTBIT_S32_LE | \ 55 SNDRV_PCM_FMTBIT_S32_BE | \ 56 SNDRV_PCM_FMTBIT_U32_LE | \ 57 SNDRV_PCM_FMTBIT_U32_BE) 58 struct dma_object { 59 struct snd_soc_platform_driver dai; 60 dma_addr_t ssi_stx_phys; 61 dma_addr_t ssi_srx_phys; 62 unsigned int ssi_fifo_depth; 63 struct ccsr_dma_channel __iomem *channel; 64 unsigned int irq; 65 bool assigned; 66 char path[1]; 67 }; 68 69 /* 70 * The number of DMA links to use. Two is the bare minimum, but if you 71 * have really small links you might need more. 72 */ 73 #define NUM_DMA_LINKS 2 74 75 /** fsl_dma_private: p-substream DMA data 76 * 77 * Each substream has a 1-to-1 association with a DMA channel. 78 * 79 * The link[] array is first because it needs to be aligned on a 32-byte 80 * boundary, so putting it first will ensure alignment without padding the 81 * structure. 82 * 83 * @link[]: array of link descriptors 84 * @dma_channel: pointer to the DMA channel's registers 85 * @irq: IRQ for this DMA channel 86 * @substream: pointer to the substream object, needed by the ISR 87 * @ssi_sxx_phys: bus address of the STX or SRX register to use 88 * @ld_buf_phys: physical address of the LD buffer 89 * @current_link: index into link[] of the link currently being processed 90 * @dma_buf_phys: physical address of the DMA buffer 91 * @dma_buf_next: physical address of the next period to process 92 * @dma_buf_end: physical address of the byte after the end of the DMA 93 * @buffer period_size: the size of a single period 94 * @num_periods: the number of periods in the DMA buffer 95 */ 96 struct fsl_dma_private { 97 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; 98 struct ccsr_dma_channel __iomem *dma_channel; 99 unsigned int irq; 100 struct snd_pcm_substream *substream; 101 dma_addr_t ssi_sxx_phys; 102 unsigned int ssi_fifo_depth; 103 dma_addr_t ld_buf_phys; 104 unsigned int current_link; 105 dma_addr_t dma_buf_phys; 106 dma_addr_t dma_buf_next; 107 dma_addr_t dma_buf_end; 108 size_t period_size; 109 unsigned int num_periods; 110 }; 111 112 /** 113 * fsl_dma_hardare: define characteristics of the PCM hardware. 114 * 115 * The PCM hardware is the Freescale DMA controller. This structure defines 116 * the capabilities of that hardware. 117 * 118 * Since the sampling rate and data format are not controlled by the DMA 119 * controller, we specify no limits for those values. The only exception is 120 * period_bytes_min, which is set to a reasonably low value to prevent the 121 * DMA controller from generating too many interrupts per second. 122 * 123 * Since each link descriptor has a 32-bit byte count field, we set 124 * period_bytes_max to the largest 32-bit number. We also have no maximum 125 * number of periods. 126 * 127 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a 128 * limitation in the SSI driver requires the sample rates for playback and 129 * capture to be the same. 130 */ 131 static const struct snd_pcm_hardware fsl_dma_hardware = { 132 133 .info = SNDRV_PCM_INFO_INTERLEAVED | 134 SNDRV_PCM_INFO_MMAP | 135 SNDRV_PCM_INFO_MMAP_VALID | 136 SNDRV_PCM_INFO_JOINT_DUPLEX | 137 SNDRV_PCM_INFO_PAUSE, 138 .formats = FSLDMA_PCM_FORMATS, 139 .period_bytes_min = 512, /* A reasonable limit */ 140 .period_bytes_max = (u32) -1, 141 .periods_min = NUM_DMA_LINKS, 142 .periods_max = (unsigned int) -1, 143 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ 144 }; 145 146 /** 147 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted 148 * 149 * This function should be called by the ISR whenever the DMA controller 150 * halts data transfer. 151 */ 152 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) 153 { 154 unsigned long flags; 155 156 snd_pcm_stream_lock_irqsave(substream, flags); 157 158 if (snd_pcm_running(substream)) 159 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 160 161 snd_pcm_stream_unlock_irqrestore(substream, flags); 162 } 163 164 /** 165 * fsl_dma_update_pointers - update LD pointers to point to the next period 166 * 167 * As each period is completed, this function changes the the link 168 * descriptor pointers for that period to point to the next period. 169 */ 170 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) 171 { 172 struct fsl_dma_link_descriptor *link = 173 &dma_private->link[dma_private->current_link]; 174 175 /* Update our link descriptors to point to the next period. On a 36-bit 176 * system, we also need to update the ESAD bits. We also set (keep) the 177 * snoop bits. See the comments in fsl_dma_hw_params() about snooping. 178 */ 179 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 180 link->source_addr = cpu_to_be32(dma_private->dma_buf_next); 181 #ifdef CONFIG_PHYS_64BIT 182 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 183 upper_32_bits(dma_private->dma_buf_next)); 184 #endif 185 } else { 186 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); 187 #ifdef CONFIG_PHYS_64BIT 188 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 189 upper_32_bits(dma_private->dma_buf_next)); 190 #endif 191 } 192 193 /* Update our variables for next time */ 194 dma_private->dma_buf_next += dma_private->period_size; 195 196 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 197 dma_private->dma_buf_next = dma_private->dma_buf_phys; 198 199 if (++dma_private->current_link >= NUM_DMA_LINKS) 200 dma_private->current_link = 0; 201 } 202 203 /** 204 * fsl_dma_isr: interrupt handler for the DMA controller 205 * 206 * @irq: IRQ of the DMA channel 207 * @dev_id: pointer to the dma_private structure for this DMA channel 208 */ 209 static irqreturn_t fsl_dma_isr(int irq, void *dev_id) 210 { 211 struct fsl_dma_private *dma_private = dev_id; 212 struct snd_pcm_substream *substream = dma_private->substream; 213 struct snd_soc_pcm_runtime *rtd = substream->private_data; 214 struct device *dev = rtd->platform->dev; 215 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 216 irqreturn_t ret = IRQ_NONE; 217 u32 sr, sr2 = 0; 218 219 /* We got an interrupt, so read the status register to see what we 220 were interrupted for. 221 */ 222 sr = in_be32(&dma_channel->sr); 223 224 if (sr & CCSR_DMA_SR_TE) { 225 dev_err(dev, "dma transmit error\n"); 226 fsl_dma_abort_stream(substream); 227 sr2 |= CCSR_DMA_SR_TE; 228 ret = IRQ_HANDLED; 229 } 230 231 if (sr & CCSR_DMA_SR_CH) 232 ret = IRQ_HANDLED; 233 234 if (sr & CCSR_DMA_SR_PE) { 235 dev_err(dev, "dma programming error\n"); 236 fsl_dma_abort_stream(substream); 237 sr2 |= CCSR_DMA_SR_PE; 238 ret = IRQ_HANDLED; 239 } 240 241 if (sr & CCSR_DMA_SR_EOLNI) { 242 sr2 |= CCSR_DMA_SR_EOLNI; 243 ret = IRQ_HANDLED; 244 } 245 246 if (sr & CCSR_DMA_SR_CB) 247 ret = IRQ_HANDLED; 248 249 if (sr & CCSR_DMA_SR_EOSI) { 250 /* Tell ALSA we completed a period. */ 251 snd_pcm_period_elapsed(substream); 252 253 /* 254 * Update our link descriptors to point to the next period. We 255 * only need to do this if the number of periods is not equal to 256 * the number of links. 257 */ 258 if (dma_private->num_periods != NUM_DMA_LINKS) 259 fsl_dma_update_pointers(dma_private); 260 261 sr2 |= CCSR_DMA_SR_EOSI; 262 ret = IRQ_HANDLED; 263 } 264 265 if (sr & CCSR_DMA_SR_EOLSI) { 266 sr2 |= CCSR_DMA_SR_EOLSI; 267 ret = IRQ_HANDLED; 268 } 269 270 /* Clear the bits that we set */ 271 if (sr2) 272 out_be32(&dma_channel->sr, sr2); 273 274 return ret; 275 } 276 277 /** 278 * fsl_dma_new: initialize this PCM driver. 279 * 280 * This function is called when the codec driver calls snd_soc_new_pcms(), 281 * once for each .dai_link in the machine driver's snd_soc_card 282 * structure. 283 * 284 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which 285 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM 286 * is specified. Therefore, any DMA buffers we allocate will always be in low 287 * memory, but we support for 36-bit physical addresses anyway. 288 * 289 * Regardless of where the memory is actually allocated, since the device can 290 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. 291 */ 292 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) 293 { 294 struct snd_card *card = rtd->card->snd_card; 295 struct snd_pcm *pcm = rtd->pcm; 296 int ret; 297 298 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36)); 299 if (ret) 300 return ret; 301 302 /* Some codecs have separate DAIs for playback and capture, so we 303 * should allocate a DMA buffer only for the streams that are valid. 304 */ 305 306 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { 307 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 308 fsl_dma_hardware.buffer_bytes_max, 309 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 310 if (ret) { 311 dev_err(card->dev, "can't alloc playback dma buffer\n"); 312 return ret; 313 } 314 } 315 316 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { 317 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 318 fsl_dma_hardware.buffer_bytes_max, 319 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); 320 if (ret) { 321 dev_err(card->dev, "can't alloc capture dma buffer\n"); 322 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 323 return ret; 324 } 325 } 326 327 return 0; 328 } 329 330 /** 331 * fsl_dma_open: open a new substream. 332 * 333 * Each substream has its own DMA buffer. 334 * 335 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link 336 * descriptors that ping-pong from one period to the next. For example, if 337 * there are six periods and two link descriptors, this is how they look 338 * before playback starts: 339 * 340 * The last link descriptor 341 * ____________ points back to the first 342 * | | 343 * V | 344 * ___ ___ | 345 * | |->| |->| 346 * |___| |___| 347 * | | 348 * | | 349 * V V 350 * _________________________________________ 351 * | | | | | | | The DMA buffer is 352 * | | | | | | | divided into 6 parts 353 * |______|______|______|______|______|______| 354 * 355 * and here's how they look after the first period is finished playing: 356 * 357 * ____________ 358 * | | 359 * V | 360 * ___ ___ | 361 * | |->| |->| 362 * |___| |___| 363 * | | 364 * |______________ 365 * | | 366 * V V 367 * _________________________________________ 368 * | | | | | | | 369 * | | | | | | | 370 * |______|______|______|______|______|______| 371 * 372 * The first link descriptor now points to the third period. The DMA 373 * controller is currently playing the second period. When it finishes, it 374 * will jump back to the first descriptor and play the third period. 375 * 376 * There are four reasons we do this: 377 * 378 * 1. The only way to get the DMA controller to automatically restart the 379 * transfer when it gets to the end of the buffer is to use chaining 380 * mode. Basic direct mode doesn't offer that feature. 381 * 2. We need to receive an interrupt at the end of every period. The DMA 382 * controller can generate an interrupt at the end of every link transfer 383 * (aka segment). Making each period into a DMA segment will give us the 384 * interrupts we need. 385 * 3. By creating only two link descriptors, regardless of the number of 386 * periods, we do not need to reallocate the link descriptors if the 387 * number of periods changes. 388 * 4. All of the audio data is still stored in a single, contiguous DMA 389 * buffer, which is what ALSA expects. We're just dividing it into 390 * contiguous parts, and creating a link descriptor for each one. 391 */ 392 static int fsl_dma_open(struct snd_pcm_substream *substream) 393 { 394 struct snd_pcm_runtime *runtime = substream->runtime; 395 struct snd_soc_pcm_runtime *rtd = substream->private_data; 396 struct device *dev = rtd->platform->dev; 397 struct dma_object *dma = 398 container_of(rtd->platform->driver, struct dma_object, dai); 399 struct fsl_dma_private *dma_private; 400 struct ccsr_dma_channel __iomem *dma_channel; 401 dma_addr_t ld_buf_phys; 402 u64 temp_link; /* Pointer to next link descriptor */ 403 u32 mr; 404 unsigned int channel; 405 int ret = 0; 406 unsigned int i; 407 408 /* 409 * Reject any DMA buffer whose size is not a multiple of the period 410 * size. We need to make sure that the DMA buffer can be evenly divided 411 * into periods. 412 */ 413 ret = snd_pcm_hw_constraint_integer(runtime, 414 SNDRV_PCM_HW_PARAM_PERIODS); 415 if (ret < 0) { 416 dev_err(dev, "invalid buffer size\n"); 417 return ret; 418 } 419 420 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; 421 422 if (dma->assigned) { 423 dev_err(dev, "dma channel already assigned\n"); 424 return -EBUSY; 425 } 426 427 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), 428 &ld_buf_phys, GFP_KERNEL); 429 if (!dma_private) { 430 dev_err(dev, "can't allocate dma private data\n"); 431 return -ENOMEM; 432 } 433 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 434 dma_private->ssi_sxx_phys = dma->ssi_stx_phys; 435 else 436 dma_private->ssi_sxx_phys = dma->ssi_srx_phys; 437 438 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; 439 dma_private->dma_channel = dma->channel; 440 dma_private->irq = dma->irq; 441 dma_private->substream = substream; 442 dma_private->ld_buf_phys = ld_buf_phys; 443 dma_private->dma_buf_phys = substream->dma_buffer.addr; 444 445 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", 446 dma_private); 447 if (ret) { 448 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", 449 dma_private->irq, ret); 450 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 451 dma_private, dma_private->ld_buf_phys); 452 return ret; 453 } 454 455 dma->assigned = 1; 456 457 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); 458 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); 459 runtime->private_data = dma_private; 460 461 /* Program the fixed DMA controller parameters */ 462 463 dma_channel = dma_private->dma_channel; 464 465 temp_link = dma_private->ld_buf_phys + 466 sizeof(struct fsl_dma_link_descriptor); 467 468 for (i = 0; i < NUM_DMA_LINKS; i++) { 469 dma_private->link[i].next = cpu_to_be64(temp_link); 470 471 temp_link += sizeof(struct fsl_dma_link_descriptor); 472 } 473 /* The last link descriptor points to the first */ 474 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); 475 476 /* Tell the DMA controller where the first link descriptor is */ 477 out_be32(&dma_channel->clndar, 478 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); 479 out_be32(&dma_channel->eclndar, 480 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); 481 482 /* The manual says the BCR must be clear before enabling EMP */ 483 out_be32(&dma_channel->bcr, 0); 484 485 /* 486 * Program the mode register for interrupts, external master control, 487 * and source/destination hold. Also clear the Channel Abort bit. 488 */ 489 mr = in_be32(&dma_channel->mr) & 490 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); 491 492 /* 493 * We want External Master Start and External Master Pause enabled, 494 * because the SSI is controlling the DMA controller. We want the DMA 495 * controller to be set up in advance, and then we signal only the SSI 496 * to start transferring. 497 * 498 * We want End-Of-Segment Interrupts enabled, because this will generate 499 * an interrupt at the end of each segment (each link descriptor 500 * represents one segment). Each DMA segment is the same thing as an 501 * ALSA period, so this is how we get an interrupt at the end of every 502 * period. 503 * 504 * We want Error Interrupt enabled, so that we can get an error if 505 * the DMA controller is mis-programmed somehow. 506 */ 507 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | 508 CCSR_DMA_MR_EMS_EN; 509 510 /* For playback, we want the destination address to be held. For 511 capture, set the source address to be held. */ 512 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 513 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; 514 515 out_be32(&dma_channel->mr, mr); 516 517 return 0; 518 } 519 520 /** 521 * fsl_dma_hw_params: continue initializing the DMA links 522 * 523 * This function obtains hardware parameters about the opened stream and 524 * programs the DMA controller accordingly. 525 * 526 * One drawback of big-endian is that when copying integers of different 527 * sizes to a fixed-sized register, the address to which the integer must be 528 * copied is dependent on the size of the integer. 529 * 530 * For example, if P is the address of a 32-bit register, and X is a 32-bit 531 * integer, then X should be copied to address P. However, if X is a 16-bit 532 * integer, then it should be copied to P+2. If X is an 8-bit register, 533 * then it should be copied to P+3. 534 * 535 * So for playback of 8-bit samples, the DMA controller must transfer single 536 * bytes from the DMA buffer to the last byte of the STX0 register, i.e. 537 * offset by 3 bytes. For 16-bit samples, the offset is two bytes. 538 * 539 * For 24-bit samples, the offset is 1 byte. However, the DMA controller 540 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, 541 * and 8 bytes at a time). So we do not support packed 24-bit samples. 542 * 24-bit data must be padded to 32 bits. 543 */ 544 static int fsl_dma_hw_params(struct snd_pcm_substream *substream, 545 struct snd_pcm_hw_params *hw_params) 546 { 547 struct snd_pcm_runtime *runtime = substream->runtime; 548 struct fsl_dma_private *dma_private = runtime->private_data; 549 struct snd_soc_pcm_runtime *rtd = substream->private_data; 550 struct device *dev = rtd->platform->dev; 551 552 /* Number of bits per sample */ 553 unsigned int sample_bits = 554 snd_pcm_format_physical_width(params_format(hw_params)); 555 556 /* Number of bytes per frame */ 557 unsigned int sample_bytes = sample_bits / 8; 558 559 /* Bus address of SSI STX register */ 560 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; 561 562 /* Size of the DMA buffer, in bytes */ 563 size_t buffer_size = params_buffer_bytes(hw_params); 564 565 /* Number of bytes per period */ 566 size_t period_size = params_period_bytes(hw_params); 567 568 /* Pointer to next period */ 569 dma_addr_t temp_addr = substream->dma_buffer.addr; 570 571 /* Pointer to DMA controller */ 572 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 573 574 u32 mr; /* DMA Mode Register */ 575 576 unsigned int i; 577 578 /* Initialize our DMA tracking variables */ 579 dma_private->period_size = period_size; 580 dma_private->num_periods = params_periods(hw_params); 581 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; 582 dma_private->dma_buf_next = dma_private->dma_buf_phys + 583 (NUM_DMA_LINKS * period_size); 584 585 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 586 /* This happens if the number of periods == NUM_DMA_LINKS */ 587 dma_private->dma_buf_next = dma_private->dma_buf_phys; 588 589 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | 590 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); 591 592 /* Due to a quirk of the SSI's STX register, the target address 593 * for the DMA operations depends on the sample size. So we calculate 594 * that offset here. While we're at it, also tell the DMA controller 595 * how much data to transfer per sample. 596 */ 597 switch (sample_bits) { 598 case 8: 599 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; 600 ssi_sxx_phys += 3; 601 break; 602 case 16: 603 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; 604 ssi_sxx_phys += 2; 605 break; 606 case 32: 607 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; 608 break; 609 default: 610 /* We should never get here */ 611 dev_err(dev, "unsupported sample size %u\n", sample_bits); 612 return -EINVAL; 613 } 614 615 /* 616 * BWC determines how many bytes are sent/received before the DMA 617 * controller checks the SSI to see if it needs to stop. BWC should 618 * always be a multiple of the frame size, so that we always transmit 619 * whole frames. Each frame occupies two slots in the FIFO. The 620 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two 621 * (MR[BWC] can only represent even powers of two). 622 * 623 * To simplify the process, we set BWC to the largest value that is 624 * less than or equal to the FIFO watermark. For playback, this ensures 625 * that we transfer the maximum amount without overrunning the FIFO. 626 * For capture, this ensures that we transfer the maximum amount without 627 * underrunning the FIFO. 628 * 629 * f = SSI FIFO depth 630 * w = SSI watermark value (which equals f - 2) 631 * b = DMA bandwidth count (in bytes) 632 * s = sample size (in bytes, which equals frame_size * 2) 633 * 634 * For playback, we never transmit more than the transmit FIFO 635 * watermark, otherwise we might write more data than the FIFO can hold. 636 * The watermark is equal to the FIFO depth minus two. 637 * 638 * For capture, two equations must hold: 639 * w > f - (b / s) 640 * w >= b / s 641 * 642 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set 643 * b = s * w, which is equal to 644 * (dma_private->ssi_fifo_depth - 2) * sample_bytes. 645 */ 646 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); 647 648 out_be32(&dma_channel->mr, mr); 649 650 for (i = 0; i < NUM_DMA_LINKS; i++) { 651 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 652 653 link->count = cpu_to_be32(period_size); 654 655 /* The snoop bit tells the DMA controller whether it should tell 656 * the ECM to snoop during a read or write to an address. For 657 * audio, we use DMA to transfer data between memory and an I/O 658 * device (the SSI's STX0 or SRX0 register). Snooping is only 659 * needed if there is a cache, so we need to snoop memory 660 * addresses only. For playback, that means we snoop the source 661 * but not the destination. For capture, we snoop the 662 * destination but not the source. 663 * 664 * Note that failing to snoop properly is unlikely to cause 665 * cache incoherency if the period size is larger than the 666 * size of L1 cache. This is because filling in one period will 667 * flush out the data for the previous period. So if you 668 * increased period_bytes_min to a large enough size, you might 669 * get more performance by not snooping, and you'll still be 670 * okay. You'll need to update fsl_dma_update_pointers() also. 671 */ 672 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 673 link->source_addr = cpu_to_be32(temp_addr); 674 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 675 upper_32_bits(temp_addr)); 676 677 link->dest_addr = cpu_to_be32(ssi_sxx_phys); 678 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 679 upper_32_bits(ssi_sxx_phys)); 680 } else { 681 link->source_addr = cpu_to_be32(ssi_sxx_phys); 682 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 683 upper_32_bits(ssi_sxx_phys)); 684 685 link->dest_addr = cpu_to_be32(temp_addr); 686 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 687 upper_32_bits(temp_addr)); 688 } 689 690 temp_addr += period_size; 691 } 692 693 return 0; 694 } 695 696 /** 697 * fsl_dma_pointer: determine the current position of the DMA transfer 698 * 699 * This function is called by ALSA when ALSA wants to know where in the 700 * stream buffer the hardware currently is. 701 * 702 * For playback, the SAR register contains the physical address of the most 703 * recent DMA transfer. For capture, the value is in the DAR register. 704 * 705 * The base address of the buffer is stored in the source_addr field of the 706 * first link descriptor. 707 */ 708 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) 709 { 710 struct snd_pcm_runtime *runtime = substream->runtime; 711 struct fsl_dma_private *dma_private = runtime->private_data; 712 struct snd_soc_pcm_runtime *rtd = substream->private_data; 713 struct device *dev = rtd->platform->dev; 714 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 715 dma_addr_t position; 716 snd_pcm_uframes_t frames; 717 718 /* Obtain the current DMA pointer, but don't read the ESAD bits if we 719 * only have 32-bit DMA addresses. This function is typically called 720 * in interrupt context, so we need to optimize it. 721 */ 722 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 723 position = in_be32(&dma_channel->sar); 724 #ifdef CONFIG_PHYS_64BIT 725 position |= (u64)(in_be32(&dma_channel->satr) & 726 CCSR_DMA_ATR_ESAD_MASK) << 32; 727 #endif 728 } else { 729 position = in_be32(&dma_channel->dar); 730 #ifdef CONFIG_PHYS_64BIT 731 position |= (u64)(in_be32(&dma_channel->datr) & 732 CCSR_DMA_ATR_ESAD_MASK) << 32; 733 #endif 734 } 735 736 /* 737 * When capture is started, the SSI immediately starts to fill its FIFO. 738 * This means that the DMA controller is not started until the FIFO is 739 * full. However, ALSA calls this function before that happens, when 740 * MR.DAR is still zero. In this case, just return zero to indicate 741 * that nothing has been received yet. 742 */ 743 if (!position) 744 return 0; 745 746 if ((position < dma_private->dma_buf_phys) || 747 (position > dma_private->dma_buf_end)) { 748 dev_err(dev, "dma pointer is out of range, halting stream\n"); 749 return SNDRV_PCM_POS_XRUN; 750 } 751 752 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); 753 754 /* 755 * If the current address is just past the end of the buffer, wrap it 756 * around. 757 */ 758 if (frames == runtime->buffer_size) 759 frames = 0; 760 761 return frames; 762 } 763 764 /** 765 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() 766 * 767 * Release the resources allocated in fsl_dma_hw_params() and de-program the 768 * registers. 769 * 770 * This function can be called multiple times. 771 */ 772 static int fsl_dma_hw_free(struct snd_pcm_substream *substream) 773 { 774 struct snd_pcm_runtime *runtime = substream->runtime; 775 struct fsl_dma_private *dma_private = runtime->private_data; 776 777 if (dma_private) { 778 struct ccsr_dma_channel __iomem *dma_channel; 779 780 dma_channel = dma_private->dma_channel; 781 782 /* Stop the DMA */ 783 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); 784 out_be32(&dma_channel->mr, 0); 785 786 /* Reset all the other registers */ 787 out_be32(&dma_channel->sr, -1); 788 out_be32(&dma_channel->clndar, 0); 789 out_be32(&dma_channel->eclndar, 0); 790 out_be32(&dma_channel->satr, 0); 791 out_be32(&dma_channel->sar, 0); 792 out_be32(&dma_channel->datr, 0); 793 out_be32(&dma_channel->dar, 0); 794 out_be32(&dma_channel->bcr, 0); 795 out_be32(&dma_channel->nlndar, 0); 796 out_be32(&dma_channel->enlndar, 0); 797 } 798 799 return 0; 800 } 801 802 /** 803 * fsl_dma_close: close the stream. 804 */ 805 static int fsl_dma_close(struct snd_pcm_substream *substream) 806 { 807 struct snd_pcm_runtime *runtime = substream->runtime; 808 struct fsl_dma_private *dma_private = runtime->private_data; 809 struct snd_soc_pcm_runtime *rtd = substream->private_data; 810 struct device *dev = rtd->platform->dev; 811 struct dma_object *dma = 812 container_of(rtd->platform->driver, struct dma_object, dai); 813 814 if (dma_private) { 815 if (dma_private->irq) 816 free_irq(dma_private->irq, dma_private); 817 818 /* Deallocate the fsl_dma_private structure */ 819 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 820 dma_private, dma_private->ld_buf_phys); 821 substream->runtime->private_data = NULL; 822 } 823 824 dma->assigned = 0; 825 826 return 0; 827 } 828 829 /* 830 * Remove this PCM driver. 831 */ 832 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) 833 { 834 struct snd_pcm_substream *substream; 835 unsigned int i; 836 837 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { 838 substream = pcm->streams[i].substream; 839 if (substream) { 840 snd_dma_free_pages(&substream->dma_buffer); 841 substream->dma_buffer.area = NULL; 842 substream->dma_buffer.addr = 0; 843 } 844 } 845 } 846 847 /** 848 * find_ssi_node -- returns the SSI node that points to its DMA channel node 849 * 850 * Although this DMA driver attempts to operate independently of the other 851 * devices, it still needs to determine some information about the SSI device 852 * that it's working with. Unfortunately, the device tree does not contain 853 * a pointer from the DMA channel node to the SSI node -- the pointer goes the 854 * other way. So we need to scan the device tree for SSI nodes until we find 855 * the one that points to the given DMA channel node. It's ugly, but at least 856 * it's contained in this one function. 857 */ 858 static struct device_node *find_ssi_node(struct device_node *dma_channel_np) 859 { 860 struct device_node *ssi_np, *np; 861 862 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { 863 /* Check each DMA phandle to see if it points to us. We 864 * assume that device_node pointers are a valid comparison. 865 */ 866 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); 867 of_node_put(np); 868 if (np == dma_channel_np) 869 return ssi_np; 870 871 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); 872 of_node_put(np); 873 if (np == dma_channel_np) 874 return ssi_np; 875 } 876 877 return NULL; 878 } 879 880 static struct snd_pcm_ops fsl_dma_ops = { 881 .open = fsl_dma_open, 882 .close = fsl_dma_close, 883 .ioctl = snd_pcm_lib_ioctl, 884 .hw_params = fsl_dma_hw_params, 885 .hw_free = fsl_dma_hw_free, 886 .pointer = fsl_dma_pointer, 887 }; 888 889 static int fsl_soc_dma_probe(struct platform_device *pdev) 890 { 891 struct dma_object *dma; 892 struct device_node *np = pdev->dev.of_node; 893 struct device_node *ssi_np; 894 struct resource res; 895 const uint32_t *iprop; 896 int ret; 897 898 /* Find the SSI node that points to us. */ 899 ssi_np = find_ssi_node(np); 900 if (!ssi_np) { 901 dev_err(&pdev->dev, "cannot find parent SSI node\n"); 902 return -ENODEV; 903 } 904 905 ret = of_address_to_resource(ssi_np, 0, &res); 906 if (ret) { 907 dev_err(&pdev->dev, "could not determine resources for %s\n", 908 ssi_np->full_name); 909 of_node_put(ssi_np); 910 return ret; 911 } 912 913 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); 914 if (!dma) { 915 dev_err(&pdev->dev, "could not allocate dma object\n"); 916 of_node_put(ssi_np); 917 return -ENOMEM; 918 } 919 920 strcpy(dma->path, np->full_name); 921 dma->dai.ops = &fsl_dma_ops; 922 dma->dai.pcm_new = fsl_dma_new; 923 dma->dai.pcm_free = fsl_dma_free_dma_buffers; 924 925 /* Store the SSI-specific information that we need */ 926 dma->ssi_stx_phys = res.start + CCSR_SSI_STX0; 927 dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0; 928 929 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); 930 if (iprop) 931 dma->ssi_fifo_depth = be32_to_cpup(iprop); 932 else 933 /* Older 8610 DTs didn't have the fifo-depth property */ 934 dma->ssi_fifo_depth = 8; 935 936 of_node_put(ssi_np); 937 938 ret = snd_soc_register_platform(&pdev->dev, &dma->dai); 939 if (ret) { 940 dev_err(&pdev->dev, "could not register platform\n"); 941 kfree(dma); 942 return ret; 943 } 944 945 dma->channel = of_iomap(np, 0); 946 dma->irq = irq_of_parse_and_map(np, 0); 947 948 dev_set_drvdata(&pdev->dev, dma); 949 950 return 0; 951 } 952 953 static int fsl_soc_dma_remove(struct platform_device *pdev) 954 { 955 struct dma_object *dma = dev_get_drvdata(&pdev->dev); 956 957 snd_soc_unregister_platform(&pdev->dev); 958 iounmap(dma->channel); 959 irq_dispose_mapping(dma->irq); 960 kfree(dma); 961 962 return 0; 963 } 964 965 static const struct of_device_id fsl_soc_dma_ids[] = { 966 { .compatible = "fsl,ssi-dma-channel", }, 967 {} 968 }; 969 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); 970 971 static struct platform_driver fsl_soc_dma_driver = { 972 .driver = { 973 .name = "fsl-pcm-audio", 974 .owner = THIS_MODULE, 975 .of_match_table = fsl_soc_dma_ids, 976 }, 977 .probe = fsl_soc_dma_probe, 978 .remove = fsl_soc_dma_remove, 979 }; 980 981 module_platform_driver(fsl_soc_dma_driver); 982 983 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 984 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); 985 MODULE_LICENSE("GPL v2"); 986