xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29 
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 
35 #include <asm/io.h>
36 
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
39 
40 /*
41  * The formats that the DMA controller supports, which is anything
42  * that is 8, 16, or 32 bits.
43  */
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
45 			    SNDRV_PCM_FMTBIT_U8 	| \
46 			    SNDRV_PCM_FMTBIT_S16_LE     | \
47 			    SNDRV_PCM_FMTBIT_S16_BE     | \
48 			    SNDRV_PCM_FMTBIT_U16_LE     | \
49 			    SNDRV_PCM_FMTBIT_U16_BE     | \
50 			    SNDRV_PCM_FMTBIT_S24_LE     | \
51 			    SNDRV_PCM_FMTBIT_S24_BE     | \
52 			    SNDRV_PCM_FMTBIT_U24_LE     | \
53 			    SNDRV_PCM_FMTBIT_U24_BE     | \
54 			    SNDRV_PCM_FMTBIT_S32_LE     | \
55 			    SNDRV_PCM_FMTBIT_S32_BE     | \
56 			    SNDRV_PCM_FMTBIT_U32_LE     | \
57 			    SNDRV_PCM_FMTBIT_U32_BE)
58 struct dma_object {
59 	struct snd_soc_platform_driver dai;
60 	dma_addr_t ssi_stx_phys;
61 	dma_addr_t ssi_srx_phys;
62 	unsigned int ssi_fifo_depth;
63 	struct ccsr_dma_channel __iomem *channel;
64 	unsigned int irq;
65 	bool assigned;
66 };
67 
68 /*
69  * The number of DMA links to use.  Two is the bare minimum, but if you
70  * have really small links you might need more.
71  */
72 #define NUM_DMA_LINKS   2
73 
74 /** fsl_dma_private: p-substream DMA data
75  *
76  * Each substream has a 1-to-1 association with a DMA channel.
77  *
78  * The link[] array is first because it needs to be aligned on a 32-byte
79  * boundary, so putting it first will ensure alignment without padding the
80  * structure.
81  *
82  * @link[]: array of link descriptors
83  * @dma_channel: pointer to the DMA channel's registers
84  * @irq: IRQ for this DMA channel
85  * @substream: pointer to the substream object, needed by the ISR
86  * @ssi_sxx_phys: bus address of the STX or SRX register to use
87  * @ld_buf_phys: physical address of the LD buffer
88  * @current_link: index into link[] of the link currently being processed
89  * @dma_buf_phys: physical address of the DMA buffer
90  * @dma_buf_next: physical address of the next period to process
91  * @dma_buf_end: physical address of the byte after the end of the DMA
92  * @buffer period_size: the size of a single period
93  * @num_periods: the number of periods in the DMA buffer
94  */
95 struct fsl_dma_private {
96 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
97 	struct ccsr_dma_channel __iomem *dma_channel;
98 	unsigned int irq;
99 	struct snd_pcm_substream *substream;
100 	dma_addr_t ssi_sxx_phys;
101 	unsigned int ssi_fifo_depth;
102 	dma_addr_t ld_buf_phys;
103 	unsigned int current_link;
104 	dma_addr_t dma_buf_phys;
105 	dma_addr_t dma_buf_next;
106 	dma_addr_t dma_buf_end;
107 	size_t period_size;
108 	unsigned int num_periods;
109 };
110 
111 /**
112  * fsl_dma_hardare: define characteristics of the PCM hardware.
113  *
114  * The PCM hardware is the Freescale DMA controller.  This structure defines
115  * the capabilities of that hardware.
116  *
117  * Since the sampling rate and data format are not controlled by the DMA
118  * controller, we specify no limits for those values.  The only exception is
119  * period_bytes_min, which is set to a reasonably low value to prevent the
120  * DMA controller from generating too many interrupts per second.
121  *
122  * Since each link descriptor has a 32-bit byte count field, we set
123  * period_bytes_max to the largest 32-bit number.  We also have no maximum
124  * number of periods.
125  *
126  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127  * limitation in the SSI driver requires the sample rates for playback and
128  * capture to be the same.
129  */
130 static const struct snd_pcm_hardware fsl_dma_hardware = {
131 
132 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
133 				  SNDRV_PCM_INFO_MMAP |
134 				  SNDRV_PCM_INFO_MMAP_VALID |
135 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
136 				  SNDRV_PCM_INFO_PAUSE,
137 	.formats		= FSLDMA_PCM_FORMATS,
138 	.period_bytes_min       = 512,  	/* A reasonable limit */
139 	.period_bytes_max       = (u32) -1,
140 	.periods_min    	= NUM_DMA_LINKS,
141 	.periods_max    	= (unsigned int) -1,
142 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
143 };
144 
145 /**
146  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
147  *
148  * This function should be called by the ISR whenever the DMA controller
149  * halts data transfer.
150  */
151 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
152 {
153 	snd_pcm_stop_xrun(substream);
154 }
155 
156 /**
157  * fsl_dma_update_pointers - update LD pointers to point to the next period
158  *
159  * As each period is completed, this function changes the the link
160  * descriptor pointers for that period to point to the next period.
161  */
162 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
163 {
164 	struct fsl_dma_link_descriptor *link =
165 		&dma_private->link[dma_private->current_link];
166 
167 	/* Update our link descriptors to point to the next period. On a 36-bit
168 	 * system, we also need to update the ESAD bits.  We also set (keep) the
169 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
170 	 */
171 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
173 #ifdef CONFIG_PHYS_64BIT
174 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
175 			upper_32_bits(dma_private->dma_buf_next));
176 #endif
177 	} else {
178 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
179 #ifdef CONFIG_PHYS_64BIT
180 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
181 			upper_32_bits(dma_private->dma_buf_next));
182 #endif
183 	}
184 
185 	/* Update our variables for next time */
186 	dma_private->dma_buf_next += dma_private->period_size;
187 
188 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
189 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
190 
191 	if (++dma_private->current_link >= NUM_DMA_LINKS)
192 		dma_private->current_link = 0;
193 }
194 
195 /**
196  * fsl_dma_isr: interrupt handler for the DMA controller
197  *
198  * @irq: IRQ of the DMA channel
199  * @dev_id: pointer to the dma_private structure for this DMA channel
200  */
201 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
202 {
203 	struct fsl_dma_private *dma_private = dev_id;
204 	struct snd_pcm_substream *substream = dma_private->substream;
205 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
206 	struct device *dev = rtd->platform->dev;
207 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
208 	irqreturn_t ret = IRQ_NONE;
209 	u32 sr, sr2 = 0;
210 
211 	/* We got an interrupt, so read the status register to see what we
212 	   were interrupted for.
213 	 */
214 	sr = in_be32(&dma_channel->sr);
215 
216 	if (sr & CCSR_DMA_SR_TE) {
217 		dev_err(dev, "dma transmit error\n");
218 		fsl_dma_abort_stream(substream);
219 		sr2 |= CCSR_DMA_SR_TE;
220 		ret = IRQ_HANDLED;
221 	}
222 
223 	if (sr & CCSR_DMA_SR_CH)
224 		ret = IRQ_HANDLED;
225 
226 	if (sr & CCSR_DMA_SR_PE) {
227 		dev_err(dev, "dma programming error\n");
228 		fsl_dma_abort_stream(substream);
229 		sr2 |= CCSR_DMA_SR_PE;
230 		ret = IRQ_HANDLED;
231 	}
232 
233 	if (sr & CCSR_DMA_SR_EOLNI) {
234 		sr2 |= CCSR_DMA_SR_EOLNI;
235 		ret = IRQ_HANDLED;
236 	}
237 
238 	if (sr & CCSR_DMA_SR_CB)
239 		ret = IRQ_HANDLED;
240 
241 	if (sr & CCSR_DMA_SR_EOSI) {
242 		/* Tell ALSA we completed a period. */
243 		snd_pcm_period_elapsed(substream);
244 
245 		/*
246 		 * Update our link descriptors to point to the next period. We
247 		 * only need to do this if the number of periods is not equal to
248 		 * the number of links.
249 		 */
250 		if (dma_private->num_periods != NUM_DMA_LINKS)
251 			fsl_dma_update_pointers(dma_private);
252 
253 		sr2 |= CCSR_DMA_SR_EOSI;
254 		ret = IRQ_HANDLED;
255 	}
256 
257 	if (sr & CCSR_DMA_SR_EOLSI) {
258 		sr2 |= CCSR_DMA_SR_EOLSI;
259 		ret = IRQ_HANDLED;
260 	}
261 
262 	/* Clear the bits that we set */
263 	if (sr2)
264 		out_be32(&dma_channel->sr, sr2);
265 
266 	return ret;
267 }
268 
269 /**
270  * fsl_dma_new: initialize this PCM driver.
271  *
272  * This function is called when the codec driver calls snd_soc_new_pcms(),
273  * once for each .dai_link in the machine driver's snd_soc_card
274  * structure.
275  *
276  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
277  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
278  * is specified. Therefore, any DMA buffers we allocate will always be in low
279  * memory, but we support for 36-bit physical addresses anyway.
280  *
281  * Regardless of where the memory is actually allocated, since the device can
282  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
283  */
284 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
285 {
286 	struct snd_card *card = rtd->card->snd_card;
287 	struct snd_pcm *pcm = rtd->pcm;
288 	int ret;
289 
290 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
291 	if (ret)
292 		return ret;
293 
294 	/* Some codecs have separate DAIs for playback and capture, so we
295 	 * should allocate a DMA buffer only for the streams that are valid.
296 	 */
297 
298 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
299 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
300 			fsl_dma_hardware.buffer_bytes_max,
301 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
302 		if (ret) {
303 			dev_err(card->dev, "can't alloc playback dma buffer\n");
304 			return ret;
305 		}
306 	}
307 
308 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
309 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
310 			fsl_dma_hardware.buffer_bytes_max,
311 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
312 		if (ret) {
313 			dev_err(card->dev, "can't alloc capture dma buffer\n");
314 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
315 			return ret;
316 		}
317 	}
318 
319 	return 0;
320 }
321 
322 /**
323  * fsl_dma_open: open a new substream.
324  *
325  * Each substream has its own DMA buffer.
326  *
327  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
328  * descriptors that ping-pong from one period to the next.  For example, if
329  * there are six periods and two link descriptors, this is how they look
330  * before playback starts:
331  *
332  *      	   The last link descriptor
333  *   ____________  points back to the first
334  *  |   	 |
335  *  V   	 |
336  *  ___    ___   |
337  * |   |->|   |->|
338  * |___|  |___|
339  *   |      |
340  *   |      |
341  *   V      V
342  *  _________________________________________
343  * |      |      |      |      |      |      |  The DMA buffer is
344  * |      |      |      |      |      |      |    divided into 6 parts
345  * |______|______|______|______|______|______|
346  *
347  * and here's how they look after the first period is finished playing:
348  *
349  *   ____________
350  *  |   	 |
351  *  V   	 |
352  *  ___    ___   |
353  * |   |->|   |->|
354  * |___|  |___|
355  *   |      |
356  *   |______________
357  *          |       |
358  *          V       V
359  *  _________________________________________
360  * |      |      |      |      |      |      |
361  * |      |      |      |      |      |      |
362  * |______|______|______|______|______|______|
363  *
364  * The first link descriptor now points to the third period.  The DMA
365  * controller is currently playing the second period.  When it finishes, it
366  * will jump back to the first descriptor and play the third period.
367  *
368  * There are four reasons we do this:
369  *
370  * 1. The only way to get the DMA controller to automatically restart the
371  *    transfer when it gets to the end of the buffer is to use chaining
372  *    mode.  Basic direct mode doesn't offer that feature.
373  * 2. We need to receive an interrupt at the end of every period.  The DMA
374  *    controller can generate an interrupt at the end of every link transfer
375  *    (aka segment).  Making each period into a DMA segment will give us the
376  *    interrupts we need.
377  * 3. By creating only two link descriptors, regardless of the number of
378  *    periods, we do not need to reallocate the link descriptors if the
379  *    number of periods changes.
380  * 4. All of the audio data is still stored in a single, contiguous DMA
381  *    buffer, which is what ALSA expects.  We're just dividing it into
382  *    contiguous parts, and creating a link descriptor for each one.
383  */
384 static int fsl_dma_open(struct snd_pcm_substream *substream)
385 {
386 	struct snd_pcm_runtime *runtime = substream->runtime;
387 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
388 	struct device *dev = rtd->platform->dev;
389 	struct dma_object *dma =
390 		container_of(rtd->platform->driver, struct dma_object, dai);
391 	struct fsl_dma_private *dma_private;
392 	struct ccsr_dma_channel __iomem *dma_channel;
393 	dma_addr_t ld_buf_phys;
394 	u64 temp_link;  	/* Pointer to next link descriptor */
395 	u32 mr;
396 	unsigned int channel;
397 	int ret = 0;
398 	unsigned int i;
399 
400 	/*
401 	 * Reject any DMA buffer whose size is not a multiple of the period
402 	 * size.  We need to make sure that the DMA buffer can be evenly divided
403 	 * into periods.
404 	 */
405 	ret = snd_pcm_hw_constraint_integer(runtime,
406 		SNDRV_PCM_HW_PARAM_PERIODS);
407 	if (ret < 0) {
408 		dev_err(dev, "invalid buffer size\n");
409 		return ret;
410 	}
411 
412 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413 
414 	if (dma->assigned) {
415 		dev_err(dev, "dma channel already assigned\n");
416 		return -EBUSY;
417 	}
418 
419 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
420 					 &ld_buf_phys, GFP_KERNEL);
421 	if (!dma_private) {
422 		dev_err(dev, "can't allocate dma private data\n");
423 		return -ENOMEM;
424 	}
425 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
426 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
427 	else
428 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
429 
430 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
431 	dma_private->dma_channel = dma->channel;
432 	dma_private->irq = dma->irq;
433 	dma_private->substream = substream;
434 	dma_private->ld_buf_phys = ld_buf_phys;
435 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
436 
437 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
438 			  dma_private);
439 	if (ret) {
440 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
441 			dma_private->irq, ret);
442 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
443 			dma_private, dma_private->ld_buf_phys);
444 		return ret;
445 	}
446 
447 	dma->assigned = true;
448 
449 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
450 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
451 	runtime->private_data = dma_private;
452 
453 	/* Program the fixed DMA controller parameters */
454 
455 	dma_channel = dma_private->dma_channel;
456 
457 	temp_link = dma_private->ld_buf_phys +
458 		sizeof(struct fsl_dma_link_descriptor);
459 
460 	for (i = 0; i < NUM_DMA_LINKS; i++) {
461 		dma_private->link[i].next = cpu_to_be64(temp_link);
462 
463 		temp_link += sizeof(struct fsl_dma_link_descriptor);
464 	}
465 	/* The last link descriptor points to the first */
466 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
467 
468 	/* Tell the DMA controller where the first link descriptor is */
469 	out_be32(&dma_channel->clndar,
470 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
471 	out_be32(&dma_channel->eclndar,
472 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
473 
474 	/* The manual says the BCR must be clear before enabling EMP */
475 	out_be32(&dma_channel->bcr, 0);
476 
477 	/*
478 	 * Program the mode register for interrupts, external master control,
479 	 * and source/destination hold.  Also clear the Channel Abort bit.
480 	 */
481 	mr = in_be32(&dma_channel->mr) &
482 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
483 
484 	/*
485 	 * We want External Master Start and External Master Pause enabled,
486 	 * because the SSI is controlling the DMA controller.  We want the DMA
487 	 * controller to be set up in advance, and then we signal only the SSI
488 	 * to start transferring.
489 	 *
490 	 * We want End-Of-Segment Interrupts enabled, because this will generate
491 	 * an interrupt at the end of each segment (each link descriptor
492 	 * represents one segment).  Each DMA segment is the same thing as an
493 	 * ALSA period, so this is how we get an interrupt at the end of every
494 	 * period.
495 	 *
496 	 * We want Error Interrupt enabled, so that we can get an error if
497 	 * the DMA controller is mis-programmed somehow.
498 	 */
499 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
500 		CCSR_DMA_MR_EMS_EN;
501 
502 	/* For playback, we want the destination address to be held.  For
503 	   capture, set the source address to be held. */
504 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
505 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
506 
507 	out_be32(&dma_channel->mr, mr);
508 
509 	return 0;
510 }
511 
512 /**
513  * fsl_dma_hw_params: continue initializing the DMA links
514  *
515  * This function obtains hardware parameters about the opened stream and
516  * programs the DMA controller accordingly.
517  *
518  * One drawback of big-endian is that when copying integers of different
519  * sizes to a fixed-sized register, the address to which the integer must be
520  * copied is dependent on the size of the integer.
521  *
522  * For example, if P is the address of a 32-bit register, and X is a 32-bit
523  * integer, then X should be copied to address P.  However, if X is a 16-bit
524  * integer, then it should be copied to P+2.  If X is an 8-bit register,
525  * then it should be copied to P+3.
526  *
527  * So for playback of 8-bit samples, the DMA controller must transfer single
528  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
530  *
531  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
532  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
534  * 24-bit data must be padded to 32 bits.
535  */
536 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
537 	struct snd_pcm_hw_params *hw_params)
538 {
539 	struct snd_pcm_runtime *runtime = substream->runtime;
540 	struct fsl_dma_private *dma_private = runtime->private_data;
541 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
542 	struct device *dev = rtd->platform->dev;
543 
544 	/* Number of bits per sample */
545 	unsigned int sample_bits =
546 		snd_pcm_format_physical_width(params_format(hw_params));
547 
548 	/* Number of bytes per frame */
549 	unsigned int sample_bytes = sample_bits / 8;
550 
551 	/* Bus address of SSI STX register */
552 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
553 
554 	/* Size of the DMA buffer, in bytes */
555 	size_t buffer_size = params_buffer_bytes(hw_params);
556 
557 	/* Number of bytes per period */
558 	size_t period_size = params_period_bytes(hw_params);
559 
560 	/* Pointer to next period */
561 	dma_addr_t temp_addr = substream->dma_buffer.addr;
562 
563 	/* Pointer to DMA controller */
564 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
565 
566 	u32 mr; /* DMA Mode Register */
567 
568 	unsigned int i;
569 
570 	/* Initialize our DMA tracking variables */
571 	dma_private->period_size = period_size;
572 	dma_private->num_periods = params_periods(hw_params);
573 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
574 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
575 		(NUM_DMA_LINKS * period_size);
576 
577 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
578 		/* This happens if the number of periods == NUM_DMA_LINKS */
579 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
580 
581 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
582 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
583 
584 	/* Due to a quirk of the SSI's STX register, the target address
585 	 * for the DMA operations depends on the sample size.  So we calculate
586 	 * that offset here.  While we're at it, also tell the DMA controller
587 	 * how much data to transfer per sample.
588 	 */
589 	switch (sample_bits) {
590 	case 8:
591 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
592 		ssi_sxx_phys += 3;
593 		break;
594 	case 16:
595 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
596 		ssi_sxx_phys += 2;
597 		break;
598 	case 32:
599 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
600 		break;
601 	default:
602 		/* We should never get here */
603 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
604 		return -EINVAL;
605 	}
606 
607 	/*
608 	 * BWC determines how many bytes are sent/received before the DMA
609 	 * controller checks the SSI to see if it needs to stop. BWC should
610 	 * always be a multiple of the frame size, so that we always transmit
611 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
612 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
613 	 * (MR[BWC] can only represent even powers of two).
614 	 *
615 	 * To simplify the process, we set BWC to the largest value that is
616 	 * less than or equal to the FIFO watermark.  For playback, this ensures
617 	 * that we transfer the maximum amount without overrunning the FIFO.
618 	 * For capture, this ensures that we transfer the maximum amount without
619 	 * underrunning the FIFO.
620 	 *
621 	 * f = SSI FIFO depth
622 	 * w = SSI watermark value (which equals f - 2)
623 	 * b = DMA bandwidth count (in bytes)
624 	 * s = sample size (in bytes, which equals frame_size * 2)
625 	 *
626 	 * For playback, we never transmit more than the transmit FIFO
627 	 * watermark, otherwise we might write more data than the FIFO can hold.
628 	 * The watermark is equal to the FIFO depth minus two.
629 	 *
630 	 * For capture, two equations must hold:
631 	 *	w > f - (b / s)
632 	 *	w >= b / s
633 	 *
634 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
635 	 * b = s * w, which is equal to
636 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
637 	 */
638 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
639 
640 	out_be32(&dma_channel->mr, mr);
641 
642 	for (i = 0; i < NUM_DMA_LINKS; i++) {
643 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
644 
645 		link->count = cpu_to_be32(period_size);
646 
647 		/* The snoop bit tells the DMA controller whether it should tell
648 		 * the ECM to snoop during a read or write to an address. For
649 		 * audio, we use DMA to transfer data between memory and an I/O
650 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
651 		 * needed if there is a cache, so we need to snoop memory
652 		 * addresses only.  For playback, that means we snoop the source
653 		 * but not the destination.  For capture, we snoop the
654 		 * destination but not the source.
655 		 *
656 		 * Note that failing to snoop properly is unlikely to cause
657 		 * cache incoherency if the period size is larger than the
658 		 * size of L1 cache.  This is because filling in one period will
659 		 * flush out the data for the previous period.  So if you
660 		 * increased period_bytes_min to a large enough size, you might
661 		 * get more performance by not snooping, and you'll still be
662 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
663 		 */
664 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
665 			link->source_addr = cpu_to_be32(temp_addr);
666 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
667 				upper_32_bits(temp_addr));
668 
669 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
670 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
671 				upper_32_bits(ssi_sxx_phys));
672 		} else {
673 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
674 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
675 				upper_32_bits(ssi_sxx_phys));
676 
677 			link->dest_addr = cpu_to_be32(temp_addr);
678 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
679 				upper_32_bits(temp_addr));
680 		}
681 
682 		temp_addr += period_size;
683 	}
684 
685 	return 0;
686 }
687 
688 /**
689  * fsl_dma_pointer: determine the current position of the DMA transfer
690  *
691  * This function is called by ALSA when ALSA wants to know where in the
692  * stream buffer the hardware currently is.
693  *
694  * For playback, the SAR register contains the physical address of the most
695  * recent DMA transfer.  For capture, the value is in the DAR register.
696  *
697  * The base address of the buffer is stored in the source_addr field of the
698  * first link descriptor.
699  */
700 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
701 {
702 	struct snd_pcm_runtime *runtime = substream->runtime;
703 	struct fsl_dma_private *dma_private = runtime->private_data;
704 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
705 	struct device *dev = rtd->platform->dev;
706 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
707 	dma_addr_t position;
708 	snd_pcm_uframes_t frames;
709 
710 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
711 	 * only have 32-bit DMA addresses.  This function is typically called
712 	 * in interrupt context, so we need to optimize it.
713 	 */
714 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
715 		position = in_be32(&dma_channel->sar);
716 #ifdef CONFIG_PHYS_64BIT
717 		position |= (u64)(in_be32(&dma_channel->satr) &
718 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
719 #endif
720 	} else {
721 		position = in_be32(&dma_channel->dar);
722 #ifdef CONFIG_PHYS_64BIT
723 		position |= (u64)(in_be32(&dma_channel->datr) &
724 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
725 #endif
726 	}
727 
728 	/*
729 	 * When capture is started, the SSI immediately starts to fill its FIFO.
730 	 * This means that the DMA controller is not started until the FIFO is
731 	 * full.  However, ALSA calls this function before that happens, when
732 	 * MR.DAR is still zero.  In this case, just return zero to indicate
733 	 * that nothing has been received yet.
734 	 */
735 	if (!position)
736 		return 0;
737 
738 	if ((position < dma_private->dma_buf_phys) ||
739 	    (position > dma_private->dma_buf_end)) {
740 		dev_err(dev, "dma pointer is out of range, halting stream\n");
741 		return SNDRV_PCM_POS_XRUN;
742 	}
743 
744 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
745 
746 	/*
747 	 * If the current address is just past the end of the buffer, wrap it
748 	 * around.
749 	 */
750 	if (frames == runtime->buffer_size)
751 		frames = 0;
752 
753 	return frames;
754 }
755 
756 /**
757  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
758  *
759  * Release the resources allocated in fsl_dma_hw_params() and de-program the
760  * registers.
761  *
762  * This function can be called multiple times.
763  */
764 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
765 {
766 	struct snd_pcm_runtime *runtime = substream->runtime;
767 	struct fsl_dma_private *dma_private = runtime->private_data;
768 
769 	if (dma_private) {
770 		struct ccsr_dma_channel __iomem *dma_channel;
771 
772 		dma_channel = dma_private->dma_channel;
773 
774 		/* Stop the DMA */
775 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
776 		out_be32(&dma_channel->mr, 0);
777 
778 		/* Reset all the other registers */
779 		out_be32(&dma_channel->sr, -1);
780 		out_be32(&dma_channel->clndar, 0);
781 		out_be32(&dma_channel->eclndar, 0);
782 		out_be32(&dma_channel->satr, 0);
783 		out_be32(&dma_channel->sar, 0);
784 		out_be32(&dma_channel->datr, 0);
785 		out_be32(&dma_channel->dar, 0);
786 		out_be32(&dma_channel->bcr, 0);
787 		out_be32(&dma_channel->nlndar, 0);
788 		out_be32(&dma_channel->enlndar, 0);
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * fsl_dma_close: close the stream.
796  */
797 static int fsl_dma_close(struct snd_pcm_substream *substream)
798 {
799 	struct snd_pcm_runtime *runtime = substream->runtime;
800 	struct fsl_dma_private *dma_private = runtime->private_data;
801 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
802 	struct device *dev = rtd->platform->dev;
803 	struct dma_object *dma =
804 		container_of(rtd->platform->driver, struct dma_object, dai);
805 
806 	if (dma_private) {
807 		if (dma_private->irq)
808 			free_irq(dma_private->irq, dma_private);
809 
810 		/* Deallocate the fsl_dma_private structure */
811 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
812 				  dma_private, dma_private->ld_buf_phys);
813 		substream->runtime->private_data = NULL;
814 	}
815 
816 	dma->assigned = false;
817 
818 	return 0;
819 }
820 
821 /*
822  * Remove this PCM driver.
823  */
824 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
825 {
826 	struct snd_pcm_substream *substream;
827 	unsigned int i;
828 
829 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
830 		substream = pcm->streams[i].substream;
831 		if (substream) {
832 			snd_dma_free_pages(&substream->dma_buffer);
833 			substream->dma_buffer.area = NULL;
834 			substream->dma_buffer.addr = 0;
835 		}
836 	}
837 }
838 
839 /**
840  * find_ssi_node -- returns the SSI node that points to its DMA channel node
841  *
842  * Although this DMA driver attempts to operate independently of the other
843  * devices, it still needs to determine some information about the SSI device
844  * that it's working with.  Unfortunately, the device tree does not contain
845  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
846  * other way.  So we need to scan the device tree for SSI nodes until we find
847  * the one that points to the given DMA channel node.  It's ugly, but at least
848  * it's contained in this one function.
849  */
850 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
851 {
852 	struct device_node *ssi_np, *np;
853 
854 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
855 		/* Check each DMA phandle to see if it points to us.  We
856 		 * assume that device_node pointers are a valid comparison.
857 		 */
858 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
859 		of_node_put(np);
860 		if (np == dma_channel_np)
861 			return ssi_np;
862 
863 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
864 		of_node_put(np);
865 		if (np == dma_channel_np)
866 			return ssi_np;
867 	}
868 
869 	return NULL;
870 }
871 
872 static const struct snd_pcm_ops fsl_dma_ops = {
873 	.open   	= fsl_dma_open,
874 	.close  	= fsl_dma_close,
875 	.ioctl  	= snd_pcm_lib_ioctl,
876 	.hw_params      = fsl_dma_hw_params,
877 	.hw_free	= fsl_dma_hw_free,
878 	.pointer	= fsl_dma_pointer,
879 };
880 
881 static int fsl_soc_dma_probe(struct platform_device *pdev)
882  {
883 	struct dma_object *dma;
884 	struct device_node *np = pdev->dev.of_node;
885 	struct device_node *ssi_np;
886 	struct resource res;
887 	const uint32_t *iprop;
888 	int ret;
889 
890 	/* Find the SSI node that points to us. */
891 	ssi_np = find_ssi_node(np);
892 	if (!ssi_np) {
893 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
894 		return -ENODEV;
895 	}
896 
897 	ret = of_address_to_resource(ssi_np, 0, &res);
898 	if (ret) {
899 		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
900 			ssi_np);
901 		of_node_put(ssi_np);
902 		return ret;
903 	}
904 
905 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
906 	if (!dma) {
907 		of_node_put(ssi_np);
908 		return -ENOMEM;
909 	}
910 
911 	dma->dai.ops = &fsl_dma_ops;
912 	dma->dai.pcm_new = fsl_dma_new;
913 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
914 
915 	/* Store the SSI-specific information that we need */
916 	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
917 	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
918 
919 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
920 	if (iprop)
921 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
922 	else
923                 /* Older 8610 DTs didn't have the fifo-depth property */
924 		dma->ssi_fifo_depth = 8;
925 
926 	of_node_put(ssi_np);
927 
928 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
929 	if (ret) {
930 		dev_err(&pdev->dev, "could not register platform\n");
931 		kfree(dma);
932 		return ret;
933 	}
934 
935 	dma->channel = of_iomap(np, 0);
936 	dma->irq = irq_of_parse_and_map(np, 0);
937 
938 	dev_set_drvdata(&pdev->dev, dma);
939 
940 	return 0;
941 }
942 
943 static int fsl_soc_dma_remove(struct platform_device *pdev)
944 {
945 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
946 
947 	snd_soc_unregister_platform(&pdev->dev);
948 	iounmap(dma->channel);
949 	irq_dispose_mapping(dma->irq);
950 	kfree(dma);
951 
952 	return 0;
953 }
954 
955 static const struct of_device_id fsl_soc_dma_ids[] = {
956 	{ .compatible = "fsl,ssi-dma-channel", },
957 	{}
958 };
959 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
960 
961 static struct platform_driver fsl_soc_dma_driver = {
962 	.driver = {
963 		.name = "fsl-pcm-audio",
964 		.of_match_table = fsl_soc_dma_ids,
965 	},
966 	.probe = fsl_soc_dma_probe,
967 	.remove = fsl_soc_dma_remove,
968 };
969 
970 module_platform_driver(fsl_soc_dma_driver);
971 
972 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
973 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
974 MODULE_LICENSE("GPL v2");
975