xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 4052ce4c)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/driver.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 
29 #include <asm/io.h>
30 
31 #include "fsl_dma.h"
32 
33 /*
34  * The formats that the DMA controller supports, which is anything
35  * that is 8, 16, or 32 bits.
36  */
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
38 			    SNDRV_PCM_FMTBIT_U8 	| \
39 			    SNDRV_PCM_FMTBIT_S16_LE     | \
40 			    SNDRV_PCM_FMTBIT_S16_BE     | \
41 			    SNDRV_PCM_FMTBIT_U16_LE     | \
42 			    SNDRV_PCM_FMTBIT_U16_BE     | \
43 			    SNDRV_PCM_FMTBIT_S24_LE     | \
44 			    SNDRV_PCM_FMTBIT_S24_BE     | \
45 			    SNDRV_PCM_FMTBIT_U24_LE     | \
46 			    SNDRV_PCM_FMTBIT_U24_BE     | \
47 			    SNDRV_PCM_FMTBIT_S32_LE     | \
48 			    SNDRV_PCM_FMTBIT_S32_BE     | \
49 			    SNDRV_PCM_FMTBIT_U32_LE     | \
50 			    SNDRV_PCM_FMTBIT_U32_BE)
51 
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53 			  SNDRV_PCM_RATE_CONTINUOUS)
54 
55 /* DMA global data.  This structure is used by fsl_dma_open() to determine
56  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
57  * not allow the machine driver to provide this information to the PCM
58  * driver in advance, and there's no way to differentiate between the two
59  * DMA controllers.  So for now, this driver only supports one SSI device
60  * using two DMA channels.  We cannot support multiple DMA devices.
61  *
62  * ssi_stx_phys: bus address of SSI STX register
63  * ssi_srx_phys: bus address of SSI SRX register
64  * dma_channel: pointer to the DMA channel's registers
65  * irq: IRQ for this DMA channel
66  * assigned: set to 1 if that DMA channel is assigned to a substream
67  */
68 static struct {
69 	dma_addr_t ssi_stx_phys;
70 	dma_addr_t ssi_srx_phys;
71 	struct ccsr_dma_channel __iomem *dma_channel[2];
72 	unsigned int irq[2];
73 	unsigned int assigned[2];
74 } dma_global_data;
75 
76 /*
77  * The number of DMA links to use.  Two is the bare minimum, but if you
78  * have really small links you might need more.
79  */
80 #define NUM_DMA_LINKS   2
81 
82 /** fsl_dma_private: p-substream DMA data
83  *
84  * Each substream has a 1-to-1 association with a DMA channel.
85  *
86  * The link[] array is first because it needs to be aligned on a 32-byte
87  * boundary, so putting it first will ensure alignment without padding the
88  * structure.
89  *
90  * @link[]: array of link descriptors
91  * @controller_id: which DMA controller (0, 1, ...)
92  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93  * @dma_channel: pointer to the DMA channel's registers
94  * @irq: IRQ for this DMA channel
95  * @substream: pointer to the substream object, needed by the ISR
96  * @ssi_sxx_phys: bus address of the STX or SRX register to use
97  * @ld_buf_phys: physical address of the LD buffer
98  * @current_link: index into link[] of the link currently being processed
99  * @dma_buf_phys: physical address of the DMA buffer
100  * @dma_buf_next: physical address of the next period to process
101  * @dma_buf_end: physical address of the byte after the end of the DMA
102  * @buffer period_size: the size of a single period
103  * @num_periods: the number of periods in the DMA buffer
104  */
105 struct fsl_dma_private {
106 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
107 	unsigned int controller_id;
108 	unsigned int channel_id;
109 	struct ccsr_dma_channel __iomem *dma_channel;
110 	unsigned int irq;
111 	struct snd_pcm_substream *substream;
112 	dma_addr_t ssi_sxx_phys;
113 	dma_addr_t ld_buf_phys;
114 	unsigned int current_link;
115 	dma_addr_t dma_buf_phys;
116 	dma_addr_t dma_buf_next;
117 	dma_addr_t dma_buf_end;
118 	size_t period_size;
119 	unsigned int num_periods;
120 };
121 
122 /**
123  * fsl_dma_hardare: define characteristics of the PCM hardware.
124  *
125  * The PCM hardware is the Freescale DMA controller.  This structure defines
126  * the capabilities of that hardware.
127  *
128  * Since the sampling rate and data format are not controlled by the DMA
129  * controller, we specify no limits for those values.  The only exception is
130  * period_bytes_min, which is set to a reasonably low value to prevent the
131  * DMA controller from generating too many interrupts per second.
132  *
133  * Since each link descriptor has a 32-bit byte count field, we set
134  * period_bytes_max to the largest 32-bit number.  We also have no maximum
135  * number of periods.
136  */
137 static const struct snd_pcm_hardware fsl_dma_hardware = {
138 
139 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
140 				  SNDRV_PCM_INFO_MMAP |
141 				  SNDRV_PCM_INFO_MMAP_VALID,
142 	.formats		= FSLDMA_PCM_FORMATS,
143 	.rates  		= FSLDMA_PCM_RATES,
144 	.rate_min       	= 5512,
145 	.rate_max       	= 192000,
146 	.period_bytes_min       = 512,  	/* A reasonable limit */
147 	.period_bytes_max       = (u32) -1,
148 	.periods_min    	= NUM_DMA_LINKS,
149 	.periods_max    	= (unsigned int) -1,
150 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
151 };
152 
153 /**
154  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
155  *
156  * This function should be called by the ISR whenever the DMA controller
157  * halts data transfer.
158  */
159 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
160 {
161 	unsigned long flags;
162 
163 	snd_pcm_stream_lock_irqsave(substream, flags);
164 
165 	if (snd_pcm_running(substream))
166 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167 
168 	snd_pcm_stream_unlock_irqrestore(substream, flags);
169 }
170 
171 /**
172  * fsl_dma_update_pointers - update LD pointers to point to the next period
173  *
174  * As each period is completed, this function changes the the link
175  * descriptor pointers for that period to point to the next period.
176  */
177 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
178 {
179 	struct fsl_dma_link_descriptor *link =
180 		&dma_private->link[dma_private->current_link];
181 
182 	/* Update our link descriptors to point to the next period */
183 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
184 		link->source_addr =
185 			cpu_to_be32(dma_private->dma_buf_next);
186 	else
187 		link->dest_addr =
188 			cpu_to_be32(dma_private->dma_buf_next);
189 
190 	/* Update our variables for next time */
191 	dma_private->dma_buf_next += dma_private->period_size;
192 
193 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
194 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
195 
196 	if (++dma_private->current_link >= NUM_DMA_LINKS)
197 		dma_private->current_link = 0;
198 }
199 
200 /**
201  * fsl_dma_isr: interrupt handler for the DMA controller
202  *
203  * @irq: IRQ of the DMA channel
204  * @dev_id: pointer to the dma_private structure for this DMA channel
205  */
206 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
207 {
208 	struct fsl_dma_private *dma_private = dev_id;
209 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
210 	irqreturn_t ret = IRQ_NONE;
211 	u32 sr, sr2 = 0;
212 
213 	/* We got an interrupt, so read the status register to see what we
214 	   were interrupted for.
215 	 */
216 	sr = in_be32(&dma_channel->sr);
217 
218 	if (sr & CCSR_DMA_SR_TE) {
219 		dev_err(dma_private->substream->pcm->card->dev,
220 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
221 			dma_private->controller_id,
222 			dma_private->channel_id, irq);
223 		fsl_dma_abort_stream(dma_private->substream);
224 		sr2 |= CCSR_DMA_SR_TE;
225 		ret = IRQ_HANDLED;
226 	}
227 
228 	if (sr & CCSR_DMA_SR_CH)
229 		ret = IRQ_HANDLED;
230 
231 	if (sr & CCSR_DMA_SR_PE) {
232 		dev_err(dma_private->substream->pcm->card->dev,
233 			"DMA%u programming error (channel=%u irq=%u)\n",
234 			dma_private->controller_id,
235 			dma_private->channel_id, irq);
236 		fsl_dma_abort_stream(dma_private->substream);
237 		sr2 |= CCSR_DMA_SR_PE;
238 		ret = IRQ_HANDLED;
239 	}
240 
241 	if (sr & CCSR_DMA_SR_EOLNI) {
242 		sr2 |= CCSR_DMA_SR_EOLNI;
243 		ret = IRQ_HANDLED;
244 	}
245 
246 	if (sr & CCSR_DMA_SR_CB)
247 		ret = IRQ_HANDLED;
248 
249 	if (sr & CCSR_DMA_SR_EOSI) {
250 		struct snd_pcm_substream *substream = dma_private->substream;
251 
252 		/* Tell ALSA we completed a period. */
253 		snd_pcm_period_elapsed(substream);
254 
255 		/*
256 		 * Update our link descriptors to point to the next period. We
257 		 * only need to do this if the number of periods is not equal to
258 		 * the number of links.
259 		 */
260 		if (dma_private->num_periods != NUM_DMA_LINKS)
261 			fsl_dma_update_pointers(dma_private);
262 
263 		sr2 |= CCSR_DMA_SR_EOSI;
264 		ret = IRQ_HANDLED;
265 	}
266 
267 	if (sr & CCSR_DMA_SR_EOLSI) {
268 		sr2 |= CCSR_DMA_SR_EOLSI;
269 		ret = IRQ_HANDLED;
270 	}
271 
272 	/* Clear the bits that we set */
273 	if (sr2)
274 		out_be32(&dma_channel->sr, sr2);
275 
276 	return ret;
277 }
278 
279 /**
280  * fsl_dma_new: initialize this PCM driver.
281  *
282  * This function is called when the codec driver calls snd_soc_new_pcms(),
283  * once for each .dai_link in the machine driver's snd_soc_machine
284  * structure.
285  */
286 static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
287 	struct snd_pcm *pcm)
288 {
289 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
290 	int ret;
291 
292 	if (!card->dev->dma_mask)
293 		card->dev->dma_mask = &fsl_dma_dmamask;
294 
295 	if (!card->dev->coherent_dma_mask)
296 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
297 
298 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
299 		fsl_dma_hardware.buffer_bytes_max,
300 		&pcm->streams[0].substream->dma_buffer);
301 	if (ret) {
302 		dev_err(card->dev,
303 			"Can't allocate playback DMA buffer (size=%u)\n",
304 			fsl_dma_hardware.buffer_bytes_max);
305 		return -ENOMEM;
306 	}
307 
308 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
309 		fsl_dma_hardware.buffer_bytes_max,
310 		&pcm->streams[1].substream->dma_buffer);
311 	if (ret) {
312 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
313 		dev_err(card->dev,
314 			"Can't allocate capture DMA buffer (size=%u)\n",
315 			fsl_dma_hardware.buffer_bytes_max);
316 		return -ENOMEM;
317 	}
318 
319 	return 0;
320 }
321 
322 /**
323  * fsl_dma_open: open a new substream.
324  *
325  * Each substream has its own DMA buffer.
326  */
327 static int fsl_dma_open(struct snd_pcm_substream *substream)
328 {
329 	struct snd_pcm_runtime *runtime = substream->runtime;
330 	struct fsl_dma_private *dma_private;
331 	dma_addr_t ld_buf_phys;
332 	unsigned int channel;
333 	int ret = 0;
334 
335 	/*
336 	 * Reject any DMA buffer whose size is not a multiple of the period
337 	 * size.  We need to make sure that the DMA buffer can be evenly divided
338 	 * into periods.
339 	 */
340 	ret = snd_pcm_hw_constraint_integer(runtime,
341 		SNDRV_PCM_HW_PARAM_PERIODS);
342 	if (ret < 0) {
343 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
344 		return ret;
345 	}
346 
347 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
348 
349 	if (dma_global_data.assigned[channel]) {
350 		dev_err(substream->pcm->card->dev,
351 			"DMA channel already assigned\n");
352 		return -EBUSY;
353 	}
354 
355 	dma_private = dma_alloc_coherent(substream->pcm->dev,
356 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
357 	if (!dma_private) {
358 		dev_err(substream->pcm->card->dev,
359 			"can't allocate DMA private data\n");
360 		return -ENOMEM;
361 	}
362 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
363 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
364 	else
365 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
366 
367 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
368 	dma_private->irq = dma_global_data.irq[channel];
369 	dma_private->substream = substream;
370 	dma_private->ld_buf_phys = ld_buf_phys;
371 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
372 
373 	/* We only support one DMA controller for now */
374 	dma_private->controller_id = 0;
375 	dma_private->channel_id = channel;
376 
377 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
378 	if (ret) {
379 		dev_err(substream->pcm->card->dev,
380 			"can't register ISR for IRQ %u (ret=%i)\n",
381 			dma_private->irq, ret);
382 		dma_free_coherent(substream->pcm->dev,
383 			sizeof(struct fsl_dma_private),
384 			dma_private, dma_private->ld_buf_phys);
385 		return ret;
386 	}
387 
388 	dma_global_data.assigned[channel] = 1;
389 
390 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
391 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
392 	runtime->private_data = dma_private;
393 
394 	return 0;
395 }
396 
397 /**
398  * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
399  *
400  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
401  * descriptors that ping-pong from one period to the next.  For example, if
402  * there are six periods and two link descriptors, this is how they look
403  * before playback starts:
404  *
405  *      	   The last link descriptor
406  *   ____________  points back to the first
407  *  |   	 |
408  *  V   	 |
409  *  ___    ___   |
410  * |   |->|   |->|
411  * |___|  |___|
412  *   |      |
413  *   |      |
414  *   V      V
415  *  _________________________________________
416  * |      |      |      |      |      |      |  The DMA buffer is
417  * |      |      |      |      |      |      |    divided into 6 parts
418  * |______|______|______|______|______|______|
419  *
420  * and here's how they look after the first period is finished playing:
421  *
422  *   ____________
423  *  |   	 |
424  *  V   	 |
425  *  ___    ___   |
426  * |   |->|   |->|
427  * |___|  |___|
428  *   |      |
429  *   |______________
430  *          |       |
431  *          V       V
432  *  _________________________________________
433  * |      |      |      |      |      |      |
434  * |      |      |      |      |      |      |
435  * |______|______|______|______|______|______|
436  *
437  * The first link descriptor now points to the third period.  The DMA
438  * controller is currently playing the second period.  When it finishes, it
439  * will jump back to the first descriptor and play the third period.
440  *
441  * There are four reasons we do this:
442  *
443  * 1. The only way to get the DMA controller to automatically restart the
444  *    transfer when it gets to the end of the buffer is to use chaining
445  *    mode.  Basic direct mode doesn't offer that feature.
446  * 2. We need to receive an interrupt at the end of every period.  The DMA
447  *    controller can generate an interrupt at the end of every link transfer
448  *    (aka segment).  Making each period into a DMA segment will give us the
449  *    interrupts we need.
450  * 3. By creating only two link descriptors, regardless of the number of
451  *    periods, we do not need to reallocate the link descriptors if the
452  *    number of periods changes.
453  * 4. All of the audio data is still stored in a single, contiguous DMA
454  *    buffer, which is what ALSA expects.  We're just dividing it into
455  *    contiguous parts, and creating a link descriptor for each one.
456  *
457  * Note that due to a quirk of the SSI's STX register, the target address
458  * for the DMA operations depends on the sample size.  So we don't program
459  * the dest_addr (for playback -- source_addr for capture) fields in the
460  * link descriptors here.  We do that in fsl_dma_prepare()
461  */
462 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
463 	struct snd_pcm_hw_params *hw_params)
464 {
465 	struct snd_pcm_runtime *runtime = substream->runtime;
466 	struct fsl_dma_private *dma_private = runtime->private_data;
467 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
468 
469 	dma_addr_t temp_addr;   /* Pointer to next period */
470 	u64 temp_link;  	/* Pointer to next link descriptor */
471 	u32 mr; 		/* Temporary variable for MR register */
472 
473 	unsigned int i;
474 
475 	/* Get all the parameters we need */
476 	size_t buffer_size = params_buffer_bytes(hw_params);
477 	size_t period_size = params_period_bytes(hw_params);
478 
479 	/* Initialize our DMA tracking variables */
480 	dma_private->period_size = period_size;
481 	dma_private->num_periods = params_periods(hw_params);
482 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
483 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
484 		(NUM_DMA_LINKS * period_size);
485 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
486 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
487 
488 	/*
489 	 * Initialize each link descriptor.
490 	 *
491 	 * The actual address in STX0 (destination for playback, source for
492 	 * capture) is based on the sample size, but we don't know the sample
493 	 * size in this function, so we'll have to adjust that later.  See
494 	 * comments in fsl_dma_prepare().
495 	 *
496 	 * The DMA controller does not have a cache, so the CPU does not
497 	 * need to tell it to flush its cache.  However, the DMA
498 	 * controller does need to tell the CPU to flush its cache.
499 	 * That's what the SNOOP bit does.
500 	 *
501 	 * Also, even though the DMA controller supports 36-bit addressing, for
502 	 * simplicity we currently support only 32-bit addresses for the audio
503 	 * buffer itself.
504 	 */
505 	temp_addr = substream->dma_buffer.addr;
506 	temp_link = dma_private->ld_buf_phys +
507 		sizeof(struct fsl_dma_link_descriptor);
508 
509 	for (i = 0; i < NUM_DMA_LINKS; i++) {
510 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
511 
512 		link->count = cpu_to_be32(period_size);
513 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
514 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
515 		link->next = cpu_to_be64(temp_link);
516 
517 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
518 			link->source_addr = cpu_to_be32(temp_addr);
519 		else
520 			link->dest_addr = cpu_to_be32(temp_addr);
521 
522 		temp_addr += period_size;
523 		temp_link += sizeof(struct fsl_dma_link_descriptor);
524 	}
525 	/* The last link descriptor points to the first */
526 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
527 
528 	/* Tell the DMA controller where the first link descriptor is */
529 	out_be32(&dma_channel->clndar,
530 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
531 	out_be32(&dma_channel->eclndar,
532 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
533 
534 	/* The manual says the BCR must be clear before enabling EMP */
535 	out_be32(&dma_channel->bcr, 0);
536 
537 	/*
538 	 * Program the mode register for interrupts, external master control,
539 	 * and source/destination hold.  Also clear the Channel Abort bit.
540 	 */
541 	mr = in_be32(&dma_channel->mr) &
542 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
543 
544 	/*
545 	 * We want External Master Start and External Master Pause enabled,
546 	 * because the SSI is controlling the DMA controller.  We want the DMA
547 	 * controller to be set up in advance, and then we signal only the SSI
548 	 * to start transfering.
549 	 *
550 	 * We want End-Of-Segment Interrupts enabled, because this will generate
551 	 * an interrupt at the end of each segment (each link descriptor
552 	 * represents one segment).  Each DMA segment is the same thing as an
553 	 * ALSA period, so this is how we get an interrupt at the end of every
554 	 * period.
555 	 *
556 	 * We want Error Interrupt enabled, so that we can get an error if
557 	 * the DMA controller is mis-programmed somehow.
558 	 */
559 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
560 		CCSR_DMA_MR_EMS_EN;
561 
562 	/* For playback, we want the destination address to be held.  For
563 	   capture, set the source address to be held. */
564 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
565 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
566 
567 	out_be32(&dma_channel->mr, mr);
568 
569 	return 0;
570 }
571 
572 /**
573  * fsl_dma_prepare - prepare the DMA registers for playback.
574  *
575  * This function is called after the specifics of the audio data are known,
576  * i.e. snd_pcm_runtime is initialized.
577  *
578  * In this function, we finish programming the registers of the DMA
579  * controller that are dependent on the sample size.
580  *
581  * One of the drawbacks with big-endian is that when copying integers of
582  * different sizes to a fixed-sized register, the address to which the
583  * integer must be copied is dependent on the size of the integer.
584  *
585  * For example, if P is the address of a 32-bit register, and X is a 32-bit
586  * integer, then X should be copied to address P.  However, if X is a 16-bit
587  * integer, then it should be copied to P+2.  If X is an 8-bit register,
588  * then it should be copied to P+3.
589  *
590  * So for playback of 8-bit samples, the DMA controller must transfer single
591  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
592  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
593  *
594  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
595  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
596  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
597  * 24-bit data must be padded to 32 bits.
598  */
599 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
600 {
601 	struct snd_pcm_runtime *runtime = substream->runtime;
602 	struct fsl_dma_private *dma_private = runtime->private_data;
603 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
604 	u32 mr;
605 	unsigned int i;
606 	dma_addr_t ssi_sxx_phys;	/* Bus address of SSI STX register */
607 	unsigned int frame_size;	/* Number of bytes per frame */
608 
609 	ssi_sxx_phys = dma_private->ssi_sxx_phys;
610 
611 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
612 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
613 
614 	switch (runtime->sample_bits) {
615 	case 8:
616 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
617 		ssi_sxx_phys += 3;
618 		break;
619 	case 16:
620 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
621 		ssi_sxx_phys += 2;
622 		break;
623 	case 32:
624 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
625 		break;
626 	default:
627 		dev_err(substream->pcm->card->dev,
628 			"unsupported sample size %u\n", runtime->sample_bits);
629 		return -EINVAL;
630 	}
631 
632 	frame_size = runtime->frame_bits / 8;
633 	/*
634 	 * BWC should always be a multiple of the frame size.  BWC determines
635 	 * how many bytes are sent/received before the DMA controller checks the
636 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
637 	 * hold three frames, so we want to send two frames at a time. For
638 	 * capture, the receive FIFO is triggered when it contains one frame, so
639 	 * we want to receive one frame at a time.
640 	 */
641 
642 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
643 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
644 	else
645 		mr |= CCSR_DMA_MR_BWC(frame_size);
646 
647 	out_be32(&dma_channel->mr, mr);
648 
649 	/*
650 	 * Program the address of the DMA transfer to/from the SSI.
651 	 */
652 	for (i = 0; i < NUM_DMA_LINKS; i++) {
653 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
654 
655 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
656 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
657 		else
658 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * fsl_dma_pointer: determine the current position of the DMA transfer
666  *
667  * This function is called by ALSA when ALSA wants to know where in the
668  * stream buffer the hardware currently is.
669  *
670  * For playback, the SAR register contains the physical address of the most
671  * recent DMA transfer.  For capture, the value is in the DAR register.
672  *
673  * The base address of the buffer is stored in the source_addr field of the
674  * first link descriptor.
675  */
676 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
677 {
678 	struct snd_pcm_runtime *runtime = substream->runtime;
679 	struct fsl_dma_private *dma_private = runtime->private_data;
680 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
681 	dma_addr_t position;
682 	snd_pcm_uframes_t frames;
683 
684 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
685 		position = in_be32(&dma_channel->sar);
686 	else
687 		position = in_be32(&dma_channel->dar);
688 
689 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
690 
691 	/*
692 	 * If the current address is just past the end of the buffer, wrap it
693 	 * around.
694 	 */
695 	if (frames == runtime->buffer_size)
696 		frames = 0;
697 
698 	return frames;
699 }
700 
701 /**
702  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
703  *
704  * Release the resources allocated in fsl_dma_hw_params() and de-program the
705  * registers.
706  *
707  * This function can be called multiple times.
708  */
709 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
710 {
711 	struct snd_pcm_runtime *runtime = substream->runtime;
712 	struct fsl_dma_private *dma_private = runtime->private_data;
713 
714 	if (dma_private) {
715 		struct ccsr_dma_channel __iomem *dma_channel;
716 
717 		dma_channel = dma_private->dma_channel;
718 
719 		/* Stop the DMA */
720 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
721 		out_be32(&dma_channel->mr, 0);
722 
723 		/* Reset all the other registers */
724 		out_be32(&dma_channel->sr, -1);
725 		out_be32(&dma_channel->clndar, 0);
726 		out_be32(&dma_channel->eclndar, 0);
727 		out_be32(&dma_channel->satr, 0);
728 		out_be32(&dma_channel->sar, 0);
729 		out_be32(&dma_channel->datr, 0);
730 		out_be32(&dma_channel->dar, 0);
731 		out_be32(&dma_channel->bcr, 0);
732 		out_be32(&dma_channel->nlndar, 0);
733 		out_be32(&dma_channel->enlndar, 0);
734 	}
735 
736 	return 0;
737 }
738 
739 /**
740  * fsl_dma_close: close the stream.
741  */
742 static int fsl_dma_close(struct snd_pcm_substream *substream)
743 {
744 	struct snd_pcm_runtime *runtime = substream->runtime;
745 	struct fsl_dma_private *dma_private = runtime->private_data;
746 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
747 
748 	if (dma_private) {
749 		if (dma_private->irq)
750 			free_irq(dma_private->irq, dma_private);
751 
752 		if (dma_private->ld_buf_phys) {
753 			dma_unmap_single(substream->pcm->dev,
754 				dma_private->ld_buf_phys,
755 				sizeof(dma_private->link), DMA_TO_DEVICE);
756 		}
757 
758 		/* Deallocate the fsl_dma_private structure */
759 		dma_free_coherent(substream->pcm->dev,
760 			sizeof(struct fsl_dma_private),
761 			dma_private, dma_private->ld_buf_phys);
762 		substream->runtime->private_data = NULL;
763 	}
764 
765 	dma_global_data.assigned[dir] = 0;
766 
767 	return 0;
768 }
769 
770 /*
771  * Remove this PCM driver.
772  */
773 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
774 {
775 	struct snd_pcm_substream *substream;
776 	unsigned int i;
777 
778 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
779 		substream = pcm->streams[i].substream;
780 		if (substream) {
781 			snd_dma_free_pages(&substream->dma_buffer);
782 			substream->dma_buffer.area = NULL;
783 			substream->dma_buffer.addr = 0;
784 		}
785 	}
786 }
787 
788 static struct snd_pcm_ops fsl_dma_ops = {
789 	.open   	= fsl_dma_open,
790 	.close  	= fsl_dma_close,
791 	.ioctl  	= snd_pcm_lib_ioctl,
792 	.hw_params      = fsl_dma_hw_params,
793 	.hw_free	= fsl_dma_hw_free,
794 	.prepare	= fsl_dma_prepare,
795 	.pointer	= fsl_dma_pointer,
796 };
797 
798 struct snd_soc_platform fsl_soc_platform = {
799 	.name   	= "fsl-dma",
800 	.pcm_ops	= &fsl_dma_ops,
801 	.pcm_new	= fsl_dma_new,
802 	.pcm_free       = fsl_dma_free_dma_buffers,
803 };
804 EXPORT_SYMBOL_GPL(fsl_soc_platform);
805 
806 /**
807  * fsl_dma_configure: store the DMA parameters from the fabric driver.
808  *
809  * This function is called by the ASoC fabric driver to give us the DMA and
810  * SSI channel information.
811  *
812  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
813  * data when a substream is created, so for now we need to store this data
814  * into a global variable.  This means that we can only support one DMA
815  * controller, and hence only one SSI.
816  */
817 int fsl_dma_configure(struct fsl_dma_info *dma_info)
818 {
819 	static int initialized;
820 
821 	/* We only support one DMA controller for now */
822 	if (initialized)
823 		return 0;
824 
825 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
826 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
827 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
828 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
829 	dma_global_data.irq[0] = dma_info->dma_irq[0];
830 	dma_global_data.irq[1] = dma_info->dma_irq[1];
831 	dma_global_data.assigned[0] = 0;
832 	dma_global_data.assigned[1] = 0;
833 
834 	initialized = 1;
835 	return 1;
836 }
837 EXPORT_SYMBOL_GPL(fsl_dma_configure);
838 
839 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
840 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
841 MODULE_LICENSE("GPL");
842