xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 3a638ff2)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 
28 #include <asm/io.h>
29 
30 #include "fsl_dma.h"
31 
32 /*
33  * The formats that the DMA controller supports, which is anything
34  * that is 8, 16, or 32 bits.
35  */
36 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
37 			    SNDRV_PCM_FMTBIT_U8 	| \
38 			    SNDRV_PCM_FMTBIT_S16_LE     | \
39 			    SNDRV_PCM_FMTBIT_S16_BE     | \
40 			    SNDRV_PCM_FMTBIT_U16_LE     | \
41 			    SNDRV_PCM_FMTBIT_U16_BE     | \
42 			    SNDRV_PCM_FMTBIT_S24_LE     | \
43 			    SNDRV_PCM_FMTBIT_S24_BE     | \
44 			    SNDRV_PCM_FMTBIT_U24_LE     | \
45 			    SNDRV_PCM_FMTBIT_U24_BE     | \
46 			    SNDRV_PCM_FMTBIT_S32_LE     | \
47 			    SNDRV_PCM_FMTBIT_S32_BE     | \
48 			    SNDRV_PCM_FMTBIT_U32_LE     | \
49 			    SNDRV_PCM_FMTBIT_U32_BE)
50 
51 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 			  SNDRV_PCM_RATE_CONTINUOUS)
53 
54 /* DMA global data.  This structure is used by fsl_dma_open() to determine
55  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
56  * not allow the machine driver to provide this information to the PCM
57  * driver in advance, and there's no way to differentiate between the two
58  * DMA controllers.  So for now, this driver only supports one SSI device
59  * using two DMA channels.  We cannot support multiple DMA devices.
60  *
61  * ssi_stx_phys: bus address of SSI STX register
62  * ssi_srx_phys: bus address of SSI SRX register
63  * dma_channel: pointer to the DMA channel's registers
64  * irq: IRQ for this DMA channel
65  * assigned: set to 1 if that DMA channel is assigned to a substream
66  */
67 static struct {
68 	dma_addr_t ssi_stx_phys;
69 	dma_addr_t ssi_srx_phys;
70 	struct ccsr_dma_channel __iomem *dma_channel[2];
71 	unsigned int irq[2];
72 	unsigned int assigned[2];
73 } dma_global_data;
74 
75 /*
76  * The number of DMA links to use.  Two is the bare minimum, but if you
77  * have really small links you might need more.
78  */
79 #define NUM_DMA_LINKS   2
80 
81 /** fsl_dma_private: p-substream DMA data
82  *
83  * Each substream has a 1-to-1 association with a DMA channel.
84  *
85  * The link[] array is first because it needs to be aligned on a 32-byte
86  * boundary, so putting it first will ensure alignment without padding the
87  * structure.
88  *
89  * @link[]: array of link descriptors
90  * @controller_id: which DMA controller (0, 1, ...)
91  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92  * @dma_channel: pointer to the DMA channel's registers
93  * @irq: IRQ for this DMA channel
94  * @substream: pointer to the substream object, needed by the ISR
95  * @ssi_sxx_phys: bus address of the STX or SRX register to use
96  * @ld_buf_phys: physical address of the LD buffer
97  * @current_link: index into link[] of the link currently being processed
98  * @dma_buf_phys: physical address of the DMA buffer
99  * @dma_buf_next: physical address of the next period to process
100  * @dma_buf_end: physical address of the byte after the end of the DMA
101  * @buffer period_size: the size of a single period
102  * @num_periods: the number of periods in the DMA buffer
103  */
104 struct fsl_dma_private {
105 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 	unsigned int controller_id;
107 	unsigned int channel_id;
108 	struct ccsr_dma_channel __iomem *dma_channel;
109 	unsigned int irq;
110 	struct snd_pcm_substream *substream;
111 	dma_addr_t ssi_sxx_phys;
112 	dma_addr_t ld_buf_phys;
113 	unsigned int current_link;
114 	dma_addr_t dma_buf_phys;
115 	dma_addr_t dma_buf_next;
116 	dma_addr_t dma_buf_end;
117 	size_t period_size;
118 	unsigned int num_periods;
119 };
120 
121 /**
122  * fsl_dma_hardare: define characteristics of the PCM hardware.
123  *
124  * The PCM hardware is the Freescale DMA controller.  This structure defines
125  * the capabilities of that hardware.
126  *
127  * Since the sampling rate and data format are not controlled by the DMA
128  * controller, we specify no limits for those values.  The only exception is
129  * period_bytes_min, which is set to a reasonably low value to prevent the
130  * DMA controller from generating too many interrupts per second.
131  *
132  * Since each link descriptor has a 32-bit byte count field, we set
133  * period_bytes_max to the largest 32-bit number.  We also have no maximum
134  * number of periods.
135  *
136  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137  * limitation in the SSI driver requires the sample rates for playback and
138  * capture to be the same.
139  */
140 static const struct snd_pcm_hardware fsl_dma_hardware = {
141 
142 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
143 				  SNDRV_PCM_INFO_MMAP |
144 				  SNDRV_PCM_INFO_MMAP_VALID |
145 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
146 				  SNDRV_PCM_INFO_PAUSE,
147 	.formats		= FSLDMA_PCM_FORMATS,
148 	.rates  		= FSLDMA_PCM_RATES,
149 	.rate_min       	= 5512,
150 	.rate_max       	= 192000,
151 	.period_bytes_min       = 512,  	/* A reasonable limit */
152 	.period_bytes_max       = (u32) -1,
153 	.periods_min    	= NUM_DMA_LINKS,
154 	.periods_max    	= (unsigned int) -1,
155 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
156 };
157 
158 /**
159  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
160  *
161  * This function should be called by the ISR whenever the DMA controller
162  * halts data transfer.
163  */
164 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
165 {
166 	unsigned long flags;
167 
168 	snd_pcm_stream_lock_irqsave(substream, flags);
169 
170 	if (snd_pcm_running(substream))
171 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
172 
173 	snd_pcm_stream_unlock_irqrestore(substream, flags);
174 }
175 
176 /**
177  * fsl_dma_update_pointers - update LD pointers to point to the next period
178  *
179  * As each period is completed, this function changes the the link
180  * descriptor pointers for that period to point to the next period.
181  */
182 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
183 {
184 	struct fsl_dma_link_descriptor *link =
185 		&dma_private->link[dma_private->current_link];
186 
187 	/* Update our link descriptors to point to the next period */
188 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
189 		link->source_addr =
190 			cpu_to_be32(dma_private->dma_buf_next);
191 	else
192 		link->dest_addr =
193 			cpu_to_be32(dma_private->dma_buf_next);
194 
195 	/* Update our variables for next time */
196 	dma_private->dma_buf_next += dma_private->period_size;
197 
198 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
199 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
200 
201 	if (++dma_private->current_link >= NUM_DMA_LINKS)
202 		dma_private->current_link = 0;
203 }
204 
205 /**
206  * fsl_dma_isr: interrupt handler for the DMA controller
207  *
208  * @irq: IRQ of the DMA channel
209  * @dev_id: pointer to the dma_private structure for this DMA channel
210  */
211 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
212 {
213 	struct fsl_dma_private *dma_private = dev_id;
214 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
215 	irqreturn_t ret = IRQ_NONE;
216 	u32 sr, sr2 = 0;
217 
218 	/* We got an interrupt, so read the status register to see what we
219 	   were interrupted for.
220 	 */
221 	sr = in_be32(&dma_channel->sr);
222 
223 	if (sr & CCSR_DMA_SR_TE) {
224 		dev_err(dma_private->substream->pcm->card->dev,
225 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
226 			dma_private->controller_id,
227 			dma_private->channel_id, irq);
228 		fsl_dma_abort_stream(dma_private->substream);
229 		sr2 |= CCSR_DMA_SR_TE;
230 		ret = IRQ_HANDLED;
231 	}
232 
233 	if (sr & CCSR_DMA_SR_CH)
234 		ret = IRQ_HANDLED;
235 
236 	if (sr & CCSR_DMA_SR_PE) {
237 		dev_err(dma_private->substream->pcm->card->dev,
238 			"DMA%u programming error (channel=%u irq=%u)\n",
239 			dma_private->controller_id,
240 			dma_private->channel_id, irq);
241 		fsl_dma_abort_stream(dma_private->substream);
242 		sr2 |= CCSR_DMA_SR_PE;
243 		ret = IRQ_HANDLED;
244 	}
245 
246 	if (sr & CCSR_DMA_SR_EOLNI) {
247 		sr2 |= CCSR_DMA_SR_EOLNI;
248 		ret = IRQ_HANDLED;
249 	}
250 
251 	if (sr & CCSR_DMA_SR_CB)
252 		ret = IRQ_HANDLED;
253 
254 	if (sr & CCSR_DMA_SR_EOSI) {
255 		struct snd_pcm_substream *substream = dma_private->substream;
256 
257 		/* Tell ALSA we completed a period. */
258 		snd_pcm_period_elapsed(substream);
259 
260 		/*
261 		 * Update our link descriptors to point to the next period. We
262 		 * only need to do this if the number of periods is not equal to
263 		 * the number of links.
264 		 */
265 		if (dma_private->num_periods != NUM_DMA_LINKS)
266 			fsl_dma_update_pointers(dma_private);
267 
268 		sr2 |= CCSR_DMA_SR_EOSI;
269 		ret = IRQ_HANDLED;
270 	}
271 
272 	if (sr & CCSR_DMA_SR_EOLSI) {
273 		sr2 |= CCSR_DMA_SR_EOLSI;
274 		ret = IRQ_HANDLED;
275 	}
276 
277 	/* Clear the bits that we set */
278 	if (sr2)
279 		out_be32(&dma_channel->sr, sr2);
280 
281 	return ret;
282 }
283 
284 /**
285  * fsl_dma_new: initialize this PCM driver.
286  *
287  * This function is called when the codec driver calls snd_soc_new_pcms(),
288  * once for each .dai_link in the machine driver's snd_soc_card
289  * structure.
290  */
291 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
292 	struct snd_pcm *pcm)
293 {
294 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
295 	int ret;
296 
297 	if (!card->dev->dma_mask)
298 		card->dev->dma_mask = &fsl_dma_dmamask;
299 
300 	if (!card->dev->coherent_dma_mask)
301 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
302 
303 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
304 		fsl_dma_hardware.buffer_bytes_max,
305 		&pcm->streams[0].substream->dma_buffer);
306 	if (ret) {
307 		dev_err(card->dev,
308 			"Can't allocate playback DMA buffer (size=%u)\n",
309 			fsl_dma_hardware.buffer_bytes_max);
310 		return -ENOMEM;
311 	}
312 
313 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
314 		fsl_dma_hardware.buffer_bytes_max,
315 		&pcm->streams[1].substream->dma_buffer);
316 	if (ret) {
317 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
318 		dev_err(card->dev,
319 			"Can't allocate capture DMA buffer (size=%u)\n",
320 			fsl_dma_hardware.buffer_bytes_max);
321 		return -ENOMEM;
322 	}
323 
324 	return 0;
325 }
326 
327 /**
328  * fsl_dma_open: open a new substream.
329  *
330  * Each substream has its own DMA buffer.
331  *
332  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
333  * descriptors that ping-pong from one period to the next.  For example, if
334  * there are six periods and two link descriptors, this is how they look
335  * before playback starts:
336  *
337  *      	   The last link descriptor
338  *   ____________  points back to the first
339  *  |   	 |
340  *  V   	 |
341  *  ___    ___   |
342  * |   |->|   |->|
343  * |___|  |___|
344  *   |      |
345  *   |      |
346  *   V      V
347  *  _________________________________________
348  * |      |      |      |      |      |      |  The DMA buffer is
349  * |      |      |      |      |      |      |    divided into 6 parts
350  * |______|______|______|______|______|______|
351  *
352  * and here's how they look after the first period is finished playing:
353  *
354  *   ____________
355  *  |   	 |
356  *  V   	 |
357  *  ___    ___   |
358  * |   |->|   |->|
359  * |___|  |___|
360  *   |      |
361  *   |______________
362  *          |       |
363  *          V       V
364  *  _________________________________________
365  * |      |      |      |      |      |      |
366  * |      |      |      |      |      |      |
367  * |______|______|______|______|______|______|
368  *
369  * The first link descriptor now points to the third period.  The DMA
370  * controller is currently playing the second period.  When it finishes, it
371  * will jump back to the first descriptor and play the third period.
372  *
373  * There are four reasons we do this:
374  *
375  * 1. The only way to get the DMA controller to automatically restart the
376  *    transfer when it gets to the end of the buffer is to use chaining
377  *    mode.  Basic direct mode doesn't offer that feature.
378  * 2. We need to receive an interrupt at the end of every period.  The DMA
379  *    controller can generate an interrupt at the end of every link transfer
380  *    (aka segment).  Making each period into a DMA segment will give us the
381  *    interrupts we need.
382  * 3. By creating only two link descriptors, regardless of the number of
383  *    periods, we do not need to reallocate the link descriptors if the
384  *    number of periods changes.
385  * 4. All of the audio data is still stored in a single, contiguous DMA
386  *    buffer, which is what ALSA expects.  We're just dividing it into
387  *    contiguous parts, and creating a link descriptor for each one.
388  */
389 static int fsl_dma_open(struct snd_pcm_substream *substream)
390 {
391 	struct snd_pcm_runtime *runtime = substream->runtime;
392 	struct fsl_dma_private *dma_private;
393 	struct ccsr_dma_channel __iomem *dma_channel;
394 	dma_addr_t ld_buf_phys;
395 	u64 temp_link;  	/* Pointer to next link descriptor */
396 	u32 mr;
397 	unsigned int channel;
398 	int ret = 0;
399 	unsigned int i;
400 
401 	/*
402 	 * Reject any DMA buffer whose size is not a multiple of the period
403 	 * size.  We need to make sure that the DMA buffer can be evenly divided
404 	 * into periods.
405 	 */
406 	ret = snd_pcm_hw_constraint_integer(runtime,
407 		SNDRV_PCM_HW_PARAM_PERIODS);
408 	if (ret < 0) {
409 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
410 		return ret;
411 	}
412 
413 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
414 
415 	if (dma_global_data.assigned[channel]) {
416 		dev_err(substream->pcm->card->dev,
417 			"DMA channel already assigned\n");
418 		return -EBUSY;
419 	}
420 
421 	dma_private = dma_alloc_coherent(substream->pcm->dev,
422 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
423 	if (!dma_private) {
424 		dev_err(substream->pcm->card->dev,
425 			"can't allocate DMA private data\n");
426 		return -ENOMEM;
427 	}
428 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
429 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
430 	else
431 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
432 
433 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
434 	dma_private->irq = dma_global_data.irq[channel];
435 	dma_private->substream = substream;
436 	dma_private->ld_buf_phys = ld_buf_phys;
437 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
438 
439 	/* We only support one DMA controller for now */
440 	dma_private->controller_id = 0;
441 	dma_private->channel_id = channel;
442 
443 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
444 	if (ret) {
445 		dev_err(substream->pcm->card->dev,
446 			"can't register ISR for IRQ %u (ret=%i)\n",
447 			dma_private->irq, ret);
448 		dma_free_coherent(substream->pcm->dev,
449 			sizeof(struct fsl_dma_private),
450 			dma_private, dma_private->ld_buf_phys);
451 		return ret;
452 	}
453 
454 	dma_global_data.assigned[channel] = 1;
455 
456 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
457 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
458 	runtime->private_data = dma_private;
459 
460 	/* Program the fixed DMA controller parameters */
461 
462 	dma_channel = dma_private->dma_channel;
463 
464 	temp_link = dma_private->ld_buf_phys +
465 		sizeof(struct fsl_dma_link_descriptor);
466 
467 	for (i = 0; i < NUM_DMA_LINKS; i++) {
468 		dma_private->link[i].next = cpu_to_be64(temp_link);
469 
470 		temp_link += sizeof(struct fsl_dma_link_descriptor);
471 	}
472 	/* The last link descriptor points to the first */
473 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
474 
475 	/* Tell the DMA controller where the first link descriptor is */
476 	out_be32(&dma_channel->clndar,
477 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
478 	out_be32(&dma_channel->eclndar,
479 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
480 
481 	/* The manual says the BCR must be clear before enabling EMP */
482 	out_be32(&dma_channel->bcr, 0);
483 
484 	/*
485 	 * Program the mode register for interrupts, external master control,
486 	 * and source/destination hold.  Also clear the Channel Abort bit.
487 	 */
488 	mr = in_be32(&dma_channel->mr) &
489 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
490 
491 	/*
492 	 * We want External Master Start and External Master Pause enabled,
493 	 * because the SSI is controlling the DMA controller.  We want the DMA
494 	 * controller to be set up in advance, and then we signal only the SSI
495 	 * to start transferring.
496 	 *
497 	 * We want End-Of-Segment Interrupts enabled, because this will generate
498 	 * an interrupt at the end of each segment (each link descriptor
499 	 * represents one segment).  Each DMA segment is the same thing as an
500 	 * ALSA period, so this is how we get an interrupt at the end of every
501 	 * period.
502 	 *
503 	 * We want Error Interrupt enabled, so that we can get an error if
504 	 * the DMA controller is mis-programmed somehow.
505 	 */
506 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
507 		CCSR_DMA_MR_EMS_EN;
508 
509 	/* For playback, we want the destination address to be held.  For
510 	   capture, set the source address to be held. */
511 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
512 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
513 
514 	out_be32(&dma_channel->mr, mr);
515 
516 	return 0;
517 }
518 
519 /**
520  * fsl_dma_hw_params: continue initializing the DMA links
521  *
522  * This function obtains hardware parameters about the opened stream and
523  * programs the DMA controller accordingly.
524  *
525  * One drawback of big-endian is that when copying integers of different
526  * sizes to a fixed-sized register, the address to which the integer must be
527  * copied is dependent on the size of the integer.
528  *
529  * For example, if P is the address of a 32-bit register, and X is a 32-bit
530  * integer, then X should be copied to address P.  However, if X is a 16-bit
531  * integer, then it should be copied to P+2.  If X is an 8-bit register,
532  * then it should be copied to P+3.
533  *
534  * So for playback of 8-bit samples, the DMA controller must transfer single
535  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
536  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
537  *
538  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
539  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
540  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
541  * 24-bit data must be padded to 32 bits.
542  */
543 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
544 	struct snd_pcm_hw_params *hw_params)
545 {
546 	struct snd_pcm_runtime *runtime = substream->runtime;
547 	struct fsl_dma_private *dma_private = runtime->private_data;
548 
549 	/* Number of bits per sample */
550 	unsigned int sample_size =
551 		snd_pcm_format_physical_width(params_format(hw_params));
552 
553 	/* Number of bytes per frame */
554 	unsigned int frame_size = 2 * (sample_size / 8);
555 
556 	/* Bus address of SSI STX register */
557 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
558 
559 	/* Size of the DMA buffer, in bytes */
560 	size_t buffer_size = params_buffer_bytes(hw_params);
561 
562 	/* Number of bytes per period */
563 	size_t period_size = params_period_bytes(hw_params);
564 
565 	/* Pointer to next period */
566 	dma_addr_t temp_addr = substream->dma_buffer.addr;
567 
568 	/* Pointer to DMA controller */
569 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
570 
571 	u32 mr; /* DMA Mode Register */
572 
573 	unsigned int i;
574 
575 	/* Initialize our DMA tracking variables */
576 	dma_private->period_size = period_size;
577 	dma_private->num_periods = params_periods(hw_params);
578 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
579 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
580 		(NUM_DMA_LINKS * period_size);
581 
582 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
583 		/* This happens if the number of periods == NUM_DMA_LINKS */
584 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
585 
586 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
587 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
588 
589 	/* Due to a quirk of the SSI's STX register, the target address
590 	 * for the DMA operations depends on the sample size.  So we calculate
591 	 * that offset here.  While we're at it, also tell the DMA controller
592 	 * how much data to transfer per sample.
593 	 */
594 	switch (sample_size) {
595 	case 8:
596 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
597 		ssi_sxx_phys += 3;
598 		break;
599 	case 16:
600 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
601 		ssi_sxx_phys += 2;
602 		break;
603 	case 32:
604 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
605 		break;
606 	default:
607 		/* We should never get here */
608 		dev_err(substream->pcm->card->dev,
609 			"unsupported sample size %u\n", sample_size);
610 		return -EINVAL;
611 	}
612 
613 	/*
614 	 * BWC should always be a multiple of the frame size.  BWC determines
615 	 * how many bytes are sent/received before the DMA controller checks the
616 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
617 	 * hold three frames, so we want to send two frames at a time. For
618 	 * capture, the receive FIFO is triggered when it contains one frame, so
619 	 * we want to receive one frame at a time.
620 	 */
621 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
622 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
623 	else
624 		mr |= CCSR_DMA_MR_BWC(frame_size);
625 
626 	out_be32(&dma_channel->mr, mr);
627 
628 	for (i = 0; i < NUM_DMA_LINKS; i++) {
629 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
630 
631 		link->count = cpu_to_be32(period_size);
632 
633 		/* Even though the DMA controller supports 36-bit addressing,
634 		 * for simplicity we allow only 32-bit addresses for the audio
635 		 * buffer itself.  This was enforced in fsl_dma_new() with the
636 		 * DMA mask.
637 		 *
638 		 * The snoop bit tells the DMA controller whether it should tell
639 		 * the ECM to snoop during a read or write to an address. For
640 		 * audio, we use DMA to transfer data between memory and an I/O
641 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
642 		 * needed if there is a cache, so we need to snoop memory
643 		 * addresses only.  For playback, that means we snoop the source
644 		 * but not the destination.  For capture, we snoop the
645 		 * destination but not the source.
646 		 *
647 		 * Note that failing to snoop properly is unlikely to cause
648 		 * cache incoherency if the period size is larger than the
649 		 * size of L1 cache.  This is because filling in one period will
650 		 * flush out the data for the previous period.  So if you
651 		 * increased period_bytes_min to a large enough size, you might
652 		 * get more performance by not snooping, and you'll still be
653 		 * okay.
654 		 */
655 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
656 			link->source_addr = cpu_to_be32(temp_addr);
657 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
658 
659 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
660 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
661 		} else {
662 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
663 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
664 
665 			link->dest_addr = cpu_to_be32(temp_addr);
666 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
667 		}
668 
669 		temp_addr += period_size;
670 	}
671 
672 	return 0;
673 }
674 
675 /**
676  * fsl_dma_pointer: determine the current position of the DMA transfer
677  *
678  * This function is called by ALSA when ALSA wants to know where in the
679  * stream buffer the hardware currently is.
680  *
681  * For playback, the SAR register contains the physical address of the most
682  * recent DMA transfer.  For capture, the value is in the DAR register.
683  *
684  * The base address of the buffer is stored in the source_addr field of the
685  * first link descriptor.
686  */
687 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
688 {
689 	struct snd_pcm_runtime *runtime = substream->runtime;
690 	struct fsl_dma_private *dma_private = runtime->private_data;
691 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
692 	dma_addr_t position;
693 	snd_pcm_uframes_t frames;
694 
695 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
696 		position = in_be32(&dma_channel->sar);
697 	else
698 		position = in_be32(&dma_channel->dar);
699 
700 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
701 
702 	/*
703 	 * If the current address is just past the end of the buffer, wrap it
704 	 * around.
705 	 */
706 	if (frames == runtime->buffer_size)
707 		frames = 0;
708 
709 	return frames;
710 }
711 
712 /**
713  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
714  *
715  * Release the resources allocated in fsl_dma_hw_params() and de-program the
716  * registers.
717  *
718  * This function can be called multiple times.
719  */
720 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
721 {
722 	struct snd_pcm_runtime *runtime = substream->runtime;
723 	struct fsl_dma_private *dma_private = runtime->private_data;
724 
725 	if (dma_private) {
726 		struct ccsr_dma_channel __iomem *dma_channel;
727 
728 		dma_channel = dma_private->dma_channel;
729 
730 		/* Stop the DMA */
731 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
732 		out_be32(&dma_channel->mr, 0);
733 
734 		/* Reset all the other registers */
735 		out_be32(&dma_channel->sr, -1);
736 		out_be32(&dma_channel->clndar, 0);
737 		out_be32(&dma_channel->eclndar, 0);
738 		out_be32(&dma_channel->satr, 0);
739 		out_be32(&dma_channel->sar, 0);
740 		out_be32(&dma_channel->datr, 0);
741 		out_be32(&dma_channel->dar, 0);
742 		out_be32(&dma_channel->bcr, 0);
743 		out_be32(&dma_channel->nlndar, 0);
744 		out_be32(&dma_channel->enlndar, 0);
745 	}
746 
747 	return 0;
748 }
749 
750 /**
751  * fsl_dma_close: close the stream.
752  */
753 static int fsl_dma_close(struct snd_pcm_substream *substream)
754 {
755 	struct snd_pcm_runtime *runtime = substream->runtime;
756 	struct fsl_dma_private *dma_private = runtime->private_data;
757 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
758 
759 	if (dma_private) {
760 		if (dma_private->irq)
761 			free_irq(dma_private->irq, dma_private);
762 
763 		if (dma_private->ld_buf_phys) {
764 			dma_unmap_single(substream->pcm->dev,
765 				dma_private->ld_buf_phys,
766 				sizeof(dma_private->link), DMA_TO_DEVICE);
767 		}
768 
769 		/* Deallocate the fsl_dma_private structure */
770 		dma_free_coherent(substream->pcm->dev,
771 			sizeof(struct fsl_dma_private),
772 			dma_private, dma_private->ld_buf_phys);
773 		substream->runtime->private_data = NULL;
774 	}
775 
776 	dma_global_data.assigned[dir] = 0;
777 
778 	return 0;
779 }
780 
781 /*
782  * Remove this PCM driver.
783  */
784 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
785 {
786 	struct snd_pcm_substream *substream;
787 	unsigned int i;
788 
789 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
790 		substream = pcm->streams[i].substream;
791 		if (substream) {
792 			snd_dma_free_pages(&substream->dma_buffer);
793 			substream->dma_buffer.area = NULL;
794 			substream->dma_buffer.addr = 0;
795 		}
796 	}
797 }
798 
799 static struct snd_pcm_ops fsl_dma_ops = {
800 	.open   	= fsl_dma_open,
801 	.close  	= fsl_dma_close,
802 	.ioctl  	= snd_pcm_lib_ioctl,
803 	.hw_params      = fsl_dma_hw_params,
804 	.hw_free	= fsl_dma_hw_free,
805 	.pointer	= fsl_dma_pointer,
806 };
807 
808 struct snd_soc_platform fsl_soc_platform = {
809 	.name   	= "fsl-dma",
810 	.pcm_ops	= &fsl_dma_ops,
811 	.pcm_new	= fsl_dma_new,
812 	.pcm_free       = fsl_dma_free_dma_buffers,
813 };
814 EXPORT_SYMBOL_GPL(fsl_soc_platform);
815 
816 /**
817  * fsl_dma_configure: store the DMA parameters from the fabric driver.
818  *
819  * This function is called by the ASoC fabric driver to give us the DMA and
820  * SSI channel information.
821  *
822  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
823  * data when a substream is created, so for now we need to store this data
824  * into a global variable.  This means that we can only support one DMA
825  * controller, and hence only one SSI.
826  */
827 int fsl_dma_configure(struct fsl_dma_info *dma_info)
828 {
829 	static int initialized;
830 
831 	/* We only support one DMA controller for now */
832 	if (initialized)
833 		return 0;
834 
835 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
836 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
837 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
838 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
839 	dma_global_data.irq[0] = dma_info->dma_irq[0];
840 	dma_global_data.irq[1] = dma_info->dma_irq[1];
841 	dma_global_data.assigned[0] = 0;
842 	dma_global_data.assigned[1] = 0;
843 
844 	initialized = 1;
845 	return 1;
846 }
847 EXPORT_SYMBOL_GPL(fsl_dma_configure);
848 
849 static int __init fsl_soc_platform_init(void)
850 {
851 	return snd_soc_register_platform(&fsl_soc_platform);
852 }
853 module_init(fsl_soc_platform_init);
854 
855 static void __exit fsl_soc_platform_exit(void)
856 {
857 	snd_soc_unregister_platform(&fsl_soc_platform);
858 }
859 module_exit(fsl_soc_platform_exit);
860 
861 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
862 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
863 MODULE_LICENSE("GPL");
864