xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 17467f23)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/driver.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 
29 #include <asm/io.h>
30 
31 #include "fsl_dma.h"
32 
33 /*
34  * The formats that the DMA controller supports, which is anything
35  * that is 8, 16, or 32 bits.
36  */
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
38 			    SNDRV_PCM_FMTBIT_U8 	| \
39 			    SNDRV_PCM_FMTBIT_S16_LE     | \
40 			    SNDRV_PCM_FMTBIT_S16_BE     | \
41 			    SNDRV_PCM_FMTBIT_U16_LE     | \
42 			    SNDRV_PCM_FMTBIT_U16_BE     | \
43 			    SNDRV_PCM_FMTBIT_S24_LE     | \
44 			    SNDRV_PCM_FMTBIT_S24_BE     | \
45 			    SNDRV_PCM_FMTBIT_U24_LE     | \
46 			    SNDRV_PCM_FMTBIT_U24_BE     | \
47 			    SNDRV_PCM_FMTBIT_S32_LE     | \
48 			    SNDRV_PCM_FMTBIT_S32_BE     | \
49 			    SNDRV_PCM_FMTBIT_U32_LE     | \
50 			    SNDRV_PCM_FMTBIT_U32_BE)
51 
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53 			  SNDRV_PCM_RATE_CONTINUOUS)
54 
55 /* DMA global data.  This structure is used by fsl_dma_open() to determine
56  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
57  * not allow the machine driver to provide this information to the PCM
58  * driver in advance, and there's no way to differentiate between the two
59  * DMA controllers.  So for now, this driver only supports one SSI device
60  * using two DMA channels.  We cannot support multiple DMA devices.
61  *
62  * ssi_stx_phys: bus address of SSI STX register
63  * ssi_srx_phys: bus address of SSI SRX register
64  * dma_channel: pointer to the DMA channel's registers
65  * irq: IRQ for this DMA channel
66  * assigned: set to 1 if that DMA channel is assigned to a substream
67  */
68 static struct {
69 	dma_addr_t ssi_stx_phys;
70 	dma_addr_t ssi_srx_phys;
71 	struct ccsr_dma_channel __iomem *dma_channel[2];
72 	unsigned int irq[2];
73 	unsigned int assigned[2];
74 } dma_global_data;
75 
76 /*
77  * The number of DMA links to use.  Two is the bare minimum, but if you
78  * have really small links you might need more.
79  */
80 #define NUM_DMA_LINKS   2
81 
82 /** fsl_dma_private: p-substream DMA data
83  *
84  * Each substream has a 1-to-1 association with a DMA channel.
85  *
86  * The link[] array is first because it needs to be aligned on a 32-byte
87  * boundary, so putting it first will ensure alignment without padding the
88  * structure.
89  *
90  * @link[]: array of link descriptors
91  * @controller_id: which DMA controller (0, 1, ...)
92  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93  * @dma_channel: pointer to the DMA channel's registers
94  * @irq: IRQ for this DMA channel
95  * @substream: pointer to the substream object, needed by the ISR
96  * @ssi_sxx_phys: bus address of the STX or SRX register to use
97  * @ld_buf_phys: physical address of the LD buffer
98  * @current_link: index into link[] of the link currently being processed
99  * @dma_buf_phys: physical address of the DMA buffer
100  * @dma_buf_next: physical address of the next period to process
101  * @dma_buf_end: physical address of the byte after the end of the DMA
102  * @buffer period_size: the size of a single period
103  * @num_periods: the number of periods in the DMA buffer
104  */
105 struct fsl_dma_private {
106 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
107 	unsigned int controller_id;
108 	unsigned int channel_id;
109 	struct ccsr_dma_channel __iomem *dma_channel;
110 	unsigned int irq;
111 	struct snd_pcm_substream *substream;
112 	dma_addr_t ssi_sxx_phys;
113 	dma_addr_t ld_buf_phys;
114 	unsigned int current_link;
115 	dma_addr_t dma_buf_phys;
116 	dma_addr_t dma_buf_next;
117 	dma_addr_t dma_buf_end;
118 	size_t period_size;
119 	unsigned int num_periods;
120 };
121 
122 /**
123  * fsl_dma_hardare: define characteristics of the PCM hardware.
124  *
125  * The PCM hardware is the Freescale DMA controller.  This structure defines
126  * the capabilities of that hardware.
127  *
128  * Since the sampling rate and data format are not controlled by the DMA
129  * controller, we specify no limits for those values.  The only exception is
130  * period_bytes_min, which is set to a reasonably low value to prevent the
131  * DMA controller from generating too many interrupts per second.
132  *
133  * Since each link descriptor has a 32-bit byte count field, we set
134  * period_bytes_max to the largest 32-bit number.  We also have no maximum
135  * number of periods.
136  */
137 static const struct snd_pcm_hardware fsl_dma_hardware = {
138 
139 	.info   		= SNDRV_PCM_INFO_INTERLEAVED,
140 	.formats		= FSLDMA_PCM_FORMATS,
141 	.rates  		= FSLDMA_PCM_RATES,
142 	.rate_min       	= 5512,
143 	.rate_max       	= 192000,
144 	.period_bytes_min       = 512,  	/* A reasonable limit */
145 	.period_bytes_max       = (u32) -1,
146 	.periods_min    	= NUM_DMA_LINKS,
147 	.periods_max    	= (unsigned int) -1,
148 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
149 };
150 
151 /**
152  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
153  *
154  * This function should be called by the ISR whenever the DMA controller
155  * halts data transfer.
156  */
157 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
158 {
159 	unsigned long flags;
160 
161 	snd_pcm_stream_lock_irqsave(substream, flags);
162 
163 	if (snd_pcm_running(substream))
164 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165 
166 	snd_pcm_stream_unlock_irqrestore(substream, flags);
167 }
168 
169 /**
170  * fsl_dma_update_pointers - update LD pointers to point to the next period
171  *
172  * As each period is completed, this function changes the the link
173  * descriptor pointers for that period to point to the next period.
174  */
175 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
176 {
177 	struct fsl_dma_link_descriptor *link =
178 		&dma_private->link[dma_private->current_link];
179 
180 	/* Update our link descriptors to point to the next period */
181 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
182 		link->source_addr =
183 			cpu_to_be32(dma_private->dma_buf_next);
184 	else
185 		link->dest_addr =
186 			cpu_to_be32(dma_private->dma_buf_next);
187 
188 	/* Update our variables for next time */
189 	dma_private->dma_buf_next += dma_private->period_size;
190 
191 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
192 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
193 
194 	if (++dma_private->current_link >= NUM_DMA_LINKS)
195 		dma_private->current_link = 0;
196 }
197 
198 /**
199  * fsl_dma_isr: interrupt handler for the DMA controller
200  *
201  * @irq: IRQ of the DMA channel
202  * @dev_id: pointer to the dma_private structure for this DMA channel
203  */
204 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
205 {
206 	struct fsl_dma_private *dma_private = dev_id;
207 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
208 	irqreturn_t ret = IRQ_NONE;
209 	u32 sr, sr2 = 0;
210 
211 	/* We got an interrupt, so read the status register to see what we
212 	   were interrupted for.
213 	 */
214 	sr = in_be32(&dma_channel->sr);
215 
216 	if (sr & CCSR_DMA_SR_TE) {
217 		dev_err(dma_private->substream->pcm->card->dev,
218 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
219 			dma_private->controller_id,
220 			dma_private->channel_id, irq);
221 		fsl_dma_abort_stream(dma_private->substream);
222 		sr2 |= CCSR_DMA_SR_TE;
223 		ret = IRQ_HANDLED;
224 	}
225 
226 	if (sr & CCSR_DMA_SR_CH)
227 		ret = IRQ_HANDLED;
228 
229 	if (sr & CCSR_DMA_SR_PE) {
230 		dev_err(dma_private->substream->pcm->card->dev,
231 			"DMA%u programming error (channel=%u irq=%u)\n",
232 			dma_private->controller_id,
233 			dma_private->channel_id, irq);
234 		fsl_dma_abort_stream(dma_private->substream);
235 		sr2 |= CCSR_DMA_SR_PE;
236 		ret = IRQ_HANDLED;
237 	}
238 
239 	if (sr & CCSR_DMA_SR_EOLNI) {
240 		sr2 |= CCSR_DMA_SR_EOLNI;
241 		ret = IRQ_HANDLED;
242 	}
243 
244 	if (sr & CCSR_DMA_SR_CB)
245 		ret = IRQ_HANDLED;
246 
247 	if (sr & CCSR_DMA_SR_EOSI) {
248 		struct snd_pcm_substream *substream = dma_private->substream;
249 
250 		/* Tell ALSA we completed a period. */
251 		snd_pcm_period_elapsed(substream);
252 
253 		/*
254 		 * Update our link descriptors to point to the next period. We
255 		 * only need to do this if the number of periods is not equal to
256 		 * the number of links.
257 		 */
258 		if (dma_private->num_periods != NUM_DMA_LINKS)
259 			fsl_dma_update_pointers(dma_private);
260 
261 		sr2 |= CCSR_DMA_SR_EOSI;
262 		ret = IRQ_HANDLED;
263 	}
264 
265 	if (sr & CCSR_DMA_SR_EOLSI) {
266 		sr2 |= CCSR_DMA_SR_EOLSI;
267 		ret = IRQ_HANDLED;
268 	}
269 
270 	/* Clear the bits that we set */
271 	if (sr2)
272 		out_be32(&dma_channel->sr, sr2);
273 
274 	return ret;
275 }
276 
277 /**
278  * fsl_dma_new: initialize this PCM driver.
279  *
280  * This function is called when the codec driver calls snd_soc_new_pcms(),
281  * once for each .dai_link in the machine driver's snd_soc_machine
282  * structure.
283  */
284 static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
285 	struct snd_pcm *pcm)
286 {
287 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
288 	int ret;
289 
290 	if (!card->dev->dma_mask)
291 		card->dev->dma_mask = &fsl_dma_dmamask;
292 
293 	if (!card->dev->coherent_dma_mask)
294 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
295 
296 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
297 		fsl_dma_hardware.buffer_bytes_max,
298 		&pcm->streams[0].substream->dma_buffer);
299 	if (ret) {
300 		dev_err(card->dev,
301 			"Can't allocate playback DMA buffer (size=%u)\n",
302 			fsl_dma_hardware.buffer_bytes_max);
303 		return -ENOMEM;
304 	}
305 
306 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
307 		fsl_dma_hardware.buffer_bytes_max,
308 		&pcm->streams[1].substream->dma_buffer);
309 	if (ret) {
310 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
311 		dev_err(card->dev,
312 			"Can't allocate capture DMA buffer (size=%u)\n",
313 			fsl_dma_hardware.buffer_bytes_max);
314 		return -ENOMEM;
315 	}
316 
317 	return 0;
318 }
319 
320 /**
321  * fsl_dma_open: open a new substream.
322  *
323  * Each substream has its own DMA buffer.
324  */
325 static int fsl_dma_open(struct snd_pcm_substream *substream)
326 {
327 	struct snd_pcm_runtime *runtime = substream->runtime;
328 	struct fsl_dma_private *dma_private;
329 	dma_addr_t ld_buf_phys;
330 	unsigned int channel;
331 	int ret = 0;
332 
333 	/*
334 	 * Reject any DMA buffer whose size is not a multiple of the period
335 	 * size.  We need to make sure that the DMA buffer can be evenly divided
336 	 * into periods.
337 	 */
338 	ret = snd_pcm_hw_constraint_integer(runtime,
339 		SNDRV_PCM_HW_PARAM_PERIODS);
340 	if (ret < 0) {
341 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
342 		return ret;
343 	}
344 
345 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
346 
347 	if (dma_global_data.assigned[channel]) {
348 		dev_err(substream->pcm->card->dev,
349 			"DMA channel already assigned\n");
350 		return -EBUSY;
351 	}
352 
353 	dma_private = dma_alloc_coherent(substream->pcm->dev,
354 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
355 	if (!dma_private) {
356 		dev_err(substream->pcm->card->dev,
357 			"can't allocate DMA private data\n");
358 		return -ENOMEM;
359 	}
360 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
361 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
362 	else
363 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
364 
365 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
366 	dma_private->irq = dma_global_data.irq[channel];
367 	dma_private->substream = substream;
368 	dma_private->ld_buf_phys = ld_buf_phys;
369 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
370 
371 	/* We only support one DMA controller for now */
372 	dma_private->controller_id = 0;
373 	dma_private->channel_id = channel;
374 
375 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
376 	if (ret) {
377 		dev_err(substream->pcm->card->dev,
378 			"can't register ISR for IRQ %u (ret=%i)\n",
379 			dma_private->irq, ret);
380 		dma_free_coherent(substream->pcm->dev,
381 			sizeof(struct fsl_dma_private),
382 			dma_private, dma_private->ld_buf_phys);
383 		return ret;
384 	}
385 
386 	dma_global_data.assigned[channel] = 1;
387 
388 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
389 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
390 	runtime->private_data = dma_private;
391 
392 	return 0;
393 }
394 
395 /**
396  * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
397  *
398  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
399  * descriptors that ping-pong from one period to the next.  For example, if
400  * there are six periods and two link descriptors, this is how they look
401  * before playback starts:
402  *
403  *      	   The last link descriptor
404  *   ____________  points back to the first
405  *  |   	 |
406  *  V   	 |
407  *  ___    ___   |
408  * |   |->|   |->|
409  * |___|  |___|
410  *   |      |
411  *   |      |
412  *   V      V
413  *  _________________________________________
414  * |      |      |      |      |      |      |  The DMA buffer is
415  * |      |      |      |      |      |      |    divided into 6 parts
416  * |______|______|______|______|______|______|
417  *
418  * and here's how they look after the first period is finished playing:
419  *
420  *   ____________
421  *  |   	 |
422  *  V   	 |
423  *  ___    ___   |
424  * |   |->|   |->|
425  * |___|  |___|
426  *   |      |
427  *   |______________
428  *          |       |
429  *          V       V
430  *  _________________________________________
431  * |      |      |      |      |      |      |
432  * |      |      |      |      |      |      |
433  * |______|______|______|______|______|______|
434  *
435  * The first link descriptor now points to the third period.  The DMA
436  * controller is currently playing the second period.  When it finishes, it
437  * will jump back to the first descriptor and play the third period.
438  *
439  * There are four reasons we do this:
440  *
441  * 1. The only way to get the DMA controller to automatically restart the
442  *    transfer when it gets to the end of the buffer is to use chaining
443  *    mode.  Basic direct mode doesn't offer that feature.
444  * 2. We need to receive an interrupt at the end of every period.  The DMA
445  *    controller can generate an interrupt at the end of every link transfer
446  *    (aka segment).  Making each period into a DMA segment will give us the
447  *    interrupts we need.
448  * 3. By creating only two link descriptors, regardless of the number of
449  *    periods, we do not need to reallocate the link descriptors if the
450  *    number of periods changes.
451  * 4. All of the audio data is still stored in a single, contiguous DMA
452  *    buffer, which is what ALSA expects.  We're just dividing it into
453  *    contiguous parts, and creating a link descriptor for each one.
454  *
455  * Note that due to a quirk of the SSI's STX register, the target address
456  * for the DMA operations depends on the sample size.  So we don't program
457  * the dest_addr (for playback -- source_addr for capture) fields in the
458  * link descriptors here.  We do that in fsl_dma_prepare()
459  */
460 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
461 	struct snd_pcm_hw_params *hw_params)
462 {
463 	struct snd_pcm_runtime *runtime = substream->runtime;
464 	struct fsl_dma_private *dma_private = runtime->private_data;
465 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
466 
467 	dma_addr_t temp_addr;   /* Pointer to next period */
468 	u64 temp_link;  	/* Pointer to next link descriptor */
469 	u32 mr; 		/* Temporary variable for MR register */
470 
471 	unsigned int i;
472 
473 	/* Get all the parameters we need */
474 	size_t buffer_size = params_buffer_bytes(hw_params);
475 	size_t period_size = params_period_bytes(hw_params);
476 
477 	/* Initialize our DMA tracking variables */
478 	dma_private->period_size = period_size;
479 	dma_private->num_periods = params_periods(hw_params);
480 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
481 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
482 		(NUM_DMA_LINKS * period_size);
483 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
484 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
485 
486 	/*
487 	 * Initialize each link descriptor.
488 	 *
489 	 * The actual address in STX0 (destination for playback, source for
490 	 * capture) is based on the sample size, but we don't know the sample
491 	 * size in this function, so we'll have to adjust that later.  See
492 	 * comments in fsl_dma_prepare().
493 	 *
494 	 * The DMA controller does not have a cache, so the CPU does not
495 	 * need to tell it to flush its cache.  However, the DMA
496 	 * controller does need to tell the CPU to flush its cache.
497 	 * That's what the SNOOP bit does.
498 	 *
499 	 * Also, even though the DMA controller supports 36-bit addressing, for
500 	 * simplicity we currently support only 32-bit addresses for the audio
501 	 * buffer itself.
502 	 */
503 	temp_addr = substream->dma_buffer.addr;
504 	temp_link = dma_private->ld_buf_phys +
505 		sizeof(struct fsl_dma_link_descriptor);
506 
507 	for (i = 0; i < NUM_DMA_LINKS; i++) {
508 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
509 
510 		link->count = cpu_to_be32(period_size);
511 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
512 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
513 		link->next = cpu_to_be64(temp_link);
514 
515 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
516 			link->source_addr = cpu_to_be32(temp_addr);
517 		else
518 			link->dest_addr = cpu_to_be32(temp_addr);
519 
520 		temp_addr += period_size;
521 		temp_link += sizeof(struct fsl_dma_link_descriptor);
522 	}
523 	/* The last link descriptor points to the first */
524 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
525 
526 	/* Tell the DMA controller where the first link descriptor is */
527 	out_be32(&dma_channel->clndar,
528 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
529 	out_be32(&dma_channel->eclndar,
530 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
531 
532 	/* The manual says the BCR must be clear before enabling EMP */
533 	out_be32(&dma_channel->bcr, 0);
534 
535 	/*
536 	 * Program the mode register for interrupts, external master control,
537 	 * and source/destination hold.  Also clear the Channel Abort bit.
538 	 */
539 	mr = in_be32(&dma_channel->mr) &
540 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
541 
542 	/*
543 	 * We want External Master Start and External Master Pause enabled,
544 	 * because the SSI is controlling the DMA controller.  We want the DMA
545 	 * controller to be set up in advance, and then we signal only the SSI
546 	 * to start transfering.
547 	 *
548 	 * We want End-Of-Segment Interrupts enabled, because this will generate
549 	 * an interrupt at the end of each segment (each link descriptor
550 	 * represents one segment).  Each DMA segment is the same thing as an
551 	 * ALSA period, so this is how we get an interrupt at the end of every
552 	 * period.
553 	 *
554 	 * We want Error Interrupt enabled, so that we can get an error if
555 	 * the DMA controller is mis-programmed somehow.
556 	 */
557 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
558 		CCSR_DMA_MR_EMS_EN;
559 
560 	/* For playback, we want the destination address to be held.  For
561 	   capture, set the source address to be held. */
562 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
563 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
564 
565 	out_be32(&dma_channel->mr, mr);
566 
567 	return 0;
568 }
569 
570 /**
571  * fsl_dma_prepare - prepare the DMA registers for playback.
572  *
573  * This function is called after the specifics of the audio data are known,
574  * i.e. snd_pcm_runtime is initialized.
575  *
576  * In this function, we finish programming the registers of the DMA
577  * controller that are dependent on the sample size.
578  *
579  * One of the drawbacks with big-endian is that when copying integers of
580  * different sizes to a fixed-sized register, the address to which the
581  * integer must be copied is dependent on the size of the integer.
582  *
583  * For example, if P is the address of a 32-bit register, and X is a 32-bit
584  * integer, then X should be copied to address P.  However, if X is a 16-bit
585  * integer, then it should be copied to P+2.  If X is an 8-bit register,
586  * then it should be copied to P+3.
587  *
588  * So for playback of 8-bit samples, the DMA controller must transfer single
589  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
590  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
591  *
592  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
593  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
594  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
595  * 24-bit data must be padded to 32 bits.
596  */
597 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
598 {
599 	struct snd_pcm_runtime *runtime = substream->runtime;
600 	struct fsl_dma_private *dma_private = runtime->private_data;
601 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
602 	u32 mr;
603 	unsigned int i;
604 	dma_addr_t ssi_sxx_phys;	/* Bus address of SSI STX register */
605 	unsigned int frame_size;	/* Number of bytes per frame */
606 
607 	ssi_sxx_phys = dma_private->ssi_sxx_phys;
608 
609 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
610 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
611 
612 	switch (runtime->sample_bits) {
613 	case 8:
614 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
615 		ssi_sxx_phys += 3;
616 		break;
617 	case 16:
618 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
619 		ssi_sxx_phys += 2;
620 		break;
621 	case 32:
622 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
623 		break;
624 	default:
625 		dev_err(substream->pcm->card->dev,
626 			"unsupported sample size %u\n", runtime->sample_bits);
627 		return -EINVAL;
628 	}
629 
630 	frame_size = runtime->frame_bits / 8;
631 	/*
632 	 * BWC should always be a multiple of the frame size.  BWC determines
633 	 * how many bytes are sent/received before the DMA controller checks the
634 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
635 	 * hold three frames, so we want to send two frames at a time. For
636 	 * capture, the receive FIFO is triggered when it contains one frame, so
637 	 * we want to receive one frame at a time.
638 	 */
639 
640 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
641 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
642 	else
643 		mr |= CCSR_DMA_MR_BWC(frame_size);
644 
645 	out_be32(&dma_channel->mr, mr);
646 
647 	/*
648 	 * Program the address of the DMA transfer to/from the SSI.
649 	 */
650 	for (i = 0; i < NUM_DMA_LINKS; i++) {
651 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
652 
653 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
654 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
655 		else
656 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
657 	}
658 
659 	return 0;
660 }
661 
662 /**
663  * fsl_dma_pointer: determine the current position of the DMA transfer
664  *
665  * This function is called by ALSA when ALSA wants to know where in the
666  * stream buffer the hardware currently is.
667  *
668  * For playback, the SAR register contains the physical address of the most
669  * recent DMA transfer.  For capture, the value is in the DAR register.
670  *
671  * The base address of the buffer is stored in the source_addr field of the
672  * first link descriptor.
673  */
674 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
675 {
676 	struct snd_pcm_runtime *runtime = substream->runtime;
677 	struct fsl_dma_private *dma_private = runtime->private_data;
678 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
679 	dma_addr_t position;
680 	snd_pcm_uframes_t frames;
681 
682 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
683 		position = in_be32(&dma_channel->sar);
684 	else
685 		position = in_be32(&dma_channel->dar);
686 
687 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
688 
689 	/*
690 	 * If the current address is just past the end of the buffer, wrap it
691 	 * around.
692 	 */
693 	if (frames == runtime->buffer_size)
694 		frames = 0;
695 
696 	return frames;
697 }
698 
699 /**
700  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
701  *
702  * Release the resources allocated in fsl_dma_hw_params() and de-program the
703  * registers.
704  *
705  * This function can be called multiple times.
706  */
707 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
708 {
709 	struct snd_pcm_runtime *runtime = substream->runtime;
710 	struct fsl_dma_private *dma_private = runtime->private_data;
711 
712 	if (dma_private) {
713 		struct ccsr_dma_channel __iomem *dma_channel;
714 
715 		dma_channel = dma_private->dma_channel;
716 
717 		/* Stop the DMA */
718 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
719 		out_be32(&dma_channel->mr, 0);
720 
721 		/* Reset all the other registers */
722 		out_be32(&dma_channel->sr, -1);
723 		out_be32(&dma_channel->clndar, 0);
724 		out_be32(&dma_channel->eclndar, 0);
725 		out_be32(&dma_channel->satr, 0);
726 		out_be32(&dma_channel->sar, 0);
727 		out_be32(&dma_channel->datr, 0);
728 		out_be32(&dma_channel->dar, 0);
729 		out_be32(&dma_channel->bcr, 0);
730 		out_be32(&dma_channel->nlndar, 0);
731 		out_be32(&dma_channel->enlndar, 0);
732 	}
733 
734 	return 0;
735 }
736 
737 /**
738  * fsl_dma_close: close the stream.
739  */
740 static int fsl_dma_close(struct snd_pcm_substream *substream)
741 {
742 	struct snd_pcm_runtime *runtime = substream->runtime;
743 	struct fsl_dma_private *dma_private = runtime->private_data;
744 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
745 
746 	if (dma_private) {
747 		if (dma_private->irq)
748 			free_irq(dma_private->irq, dma_private);
749 
750 		if (dma_private->ld_buf_phys) {
751 			dma_unmap_single(substream->pcm->dev,
752 				dma_private->ld_buf_phys,
753 				sizeof(dma_private->link), DMA_TO_DEVICE);
754 		}
755 
756 		/* Deallocate the fsl_dma_private structure */
757 		dma_free_coherent(substream->pcm->dev,
758 			sizeof(struct fsl_dma_private),
759 			dma_private, dma_private->ld_buf_phys);
760 		substream->runtime->private_data = NULL;
761 	}
762 
763 	dma_global_data.assigned[dir] = 0;
764 
765 	return 0;
766 }
767 
768 /*
769  * Remove this PCM driver.
770  */
771 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
772 {
773 	struct snd_pcm_substream *substream;
774 	unsigned int i;
775 
776 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
777 		substream = pcm->streams[i].substream;
778 		if (substream) {
779 			snd_dma_free_pages(&substream->dma_buffer);
780 			substream->dma_buffer.area = NULL;
781 			substream->dma_buffer.addr = 0;
782 		}
783 	}
784 }
785 
786 static struct snd_pcm_ops fsl_dma_ops = {
787 	.open   	= fsl_dma_open,
788 	.close  	= fsl_dma_close,
789 	.ioctl  	= snd_pcm_lib_ioctl,
790 	.hw_params      = fsl_dma_hw_params,
791 	.hw_free	= fsl_dma_hw_free,
792 	.prepare	= fsl_dma_prepare,
793 	.pointer	= fsl_dma_pointer,
794 };
795 
796 struct snd_soc_platform fsl_soc_platform = {
797 	.name   	= "fsl-dma",
798 	.pcm_ops	= &fsl_dma_ops,
799 	.pcm_new	= fsl_dma_new,
800 	.pcm_free       = fsl_dma_free_dma_buffers,
801 };
802 EXPORT_SYMBOL_GPL(fsl_soc_platform);
803 
804 /**
805  * fsl_dma_configure: store the DMA parameters from the fabric driver.
806  *
807  * This function is called by the ASoC fabric driver to give us the DMA and
808  * SSI channel information.
809  *
810  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
811  * data when a substream is created, so for now we need to store this data
812  * into a global variable.  This means that we can only support one DMA
813  * controller, and hence only one SSI.
814  */
815 int fsl_dma_configure(struct fsl_dma_info *dma_info)
816 {
817 	static int initialized;
818 
819 	/* We only support one DMA controller for now */
820 	if (initialized)
821 		return 0;
822 
823 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
824 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
825 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
826 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
827 	dma_global_data.irq[0] = dma_info->dma_irq[0];
828 	dma_global_data.irq[1] = dma_info->dma_irq[1];
829 	dma_global_data.assigned[0] = 0;
830 	dma_global_data.assigned[1] = 0;
831 
832 	initialized = 1;
833 	return 1;
834 }
835 EXPORT_SYMBOL_GPL(fsl_dma_configure);
836 
837 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
838 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
839 MODULE_LICENSE("GPL");
840