xref: /openbmc/linux/sound/soc/fsl/fsl_dma.c (revision 089a49b6)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29 
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 
35 #include <asm/io.h>
36 
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
39 
40 /*
41  * The formats that the DMA controller supports, which is anything
42  * that is 8, 16, or 32 bits.
43  */
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
45 			    SNDRV_PCM_FMTBIT_U8 	| \
46 			    SNDRV_PCM_FMTBIT_S16_LE     | \
47 			    SNDRV_PCM_FMTBIT_S16_BE     | \
48 			    SNDRV_PCM_FMTBIT_U16_LE     | \
49 			    SNDRV_PCM_FMTBIT_U16_BE     | \
50 			    SNDRV_PCM_FMTBIT_S24_LE     | \
51 			    SNDRV_PCM_FMTBIT_S24_BE     | \
52 			    SNDRV_PCM_FMTBIT_U24_LE     | \
53 			    SNDRV_PCM_FMTBIT_U24_BE     | \
54 			    SNDRV_PCM_FMTBIT_S32_LE     | \
55 			    SNDRV_PCM_FMTBIT_S32_BE     | \
56 			    SNDRV_PCM_FMTBIT_U32_LE     | \
57 			    SNDRV_PCM_FMTBIT_U32_BE)
58 
59 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
60 			  SNDRV_PCM_RATE_CONTINUOUS)
61 
62 struct dma_object {
63 	struct snd_soc_platform_driver dai;
64 	dma_addr_t ssi_stx_phys;
65 	dma_addr_t ssi_srx_phys;
66 	unsigned int ssi_fifo_depth;
67 	struct ccsr_dma_channel __iomem *channel;
68 	unsigned int irq;
69 	bool assigned;
70 	char path[1];
71 };
72 
73 /*
74  * The number of DMA links to use.  Two is the bare minimum, but if you
75  * have really small links you might need more.
76  */
77 #define NUM_DMA_LINKS   2
78 
79 /** fsl_dma_private: p-substream DMA data
80  *
81  * Each substream has a 1-to-1 association with a DMA channel.
82  *
83  * The link[] array is first because it needs to be aligned on a 32-byte
84  * boundary, so putting it first will ensure alignment without padding the
85  * structure.
86  *
87  * @link[]: array of link descriptors
88  * @dma_channel: pointer to the DMA channel's registers
89  * @irq: IRQ for this DMA channel
90  * @substream: pointer to the substream object, needed by the ISR
91  * @ssi_sxx_phys: bus address of the STX or SRX register to use
92  * @ld_buf_phys: physical address of the LD buffer
93  * @current_link: index into link[] of the link currently being processed
94  * @dma_buf_phys: physical address of the DMA buffer
95  * @dma_buf_next: physical address of the next period to process
96  * @dma_buf_end: physical address of the byte after the end of the DMA
97  * @buffer period_size: the size of a single period
98  * @num_periods: the number of periods in the DMA buffer
99  */
100 struct fsl_dma_private {
101 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
102 	struct ccsr_dma_channel __iomem *dma_channel;
103 	unsigned int irq;
104 	struct snd_pcm_substream *substream;
105 	dma_addr_t ssi_sxx_phys;
106 	unsigned int ssi_fifo_depth;
107 	dma_addr_t ld_buf_phys;
108 	unsigned int current_link;
109 	dma_addr_t dma_buf_phys;
110 	dma_addr_t dma_buf_next;
111 	dma_addr_t dma_buf_end;
112 	size_t period_size;
113 	unsigned int num_periods;
114 };
115 
116 /**
117  * fsl_dma_hardare: define characteristics of the PCM hardware.
118  *
119  * The PCM hardware is the Freescale DMA controller.  This structure defines
120  * the capabilities of that hardware.
121  *
122  * Since the sampling rate and data format are not controlled by the DMA
123  * controller, we specify no limits for those values.  The only exception is
124  * period_bytes_min, which is set to a reasonably low value to prevent the
125  * DMA controller from generating too many interrupts per second.
126  *
127  * Since each link descriptor has a 32-bit byte count field, we set
128  * period_bytes_max to the largest 32-bit number.  We also have no maximum
129  * number of periods.
130  *
131  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
132  * limitation in the SSI driver requires the sample rates for playback and
133  * capture to be the same.
134  */
135 static const struct snd_pcm_hardware fsl_dma_hardware = {
136 
137 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
138 				  SNDRV_PCM_INFO_MMAP |
139 				  SNDRV_PCM_INFO_MMAP_VALID |
140 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
141 				  SNDRV_PCM_INFO_PAUSE,
142 	.formats		= FSLDMA_PCM_FORMATS,
143 	.rates  		= FSLDMA_PCM_RATES,
144 	.rate_min       	= 5512,
145 	.rate_max       	= 192000,
146 	.period_bytes_min       = 512,  	/* A reasonable limit */
147 	.period_bytes_max       = (u32) -1,
148 	.periods_min    	= NUM_DMA_LINKS,
149 	.periods_max    	= (unsigned int) -1,
150 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
151 };
152 
153 /**
154  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
155  *
156  * This function should be called by the ISR whenever the DMA controller
157  * halts data transfer.
158  */
159 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
160 {
161 	unsigned long flags;
162 
163 	snd_pcm_stream_lock_irqsave(substream, flags);
164 
165 	if (snd_pcm_running(substream))
166 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167 
168 	snd_pcm_stream_unlock_irqrestore(substream, flags);
169 }
170 
171 /**
172  * fsl_dma_update_pointers - update LD pointers to point to the next period
173  *
174  * As each period is completed, this function changes the the link
175  * descriptor pointers for that period to point to the next period.
176  */
177 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
178 {
179 	struct fsl_dma_link_descriptor *link =
180 		&dma_private->link[dma_private->current_link];
181 
182 	/* Update our link descriptors to point to the next period. On a 36-bit
183 	 * system, we also need to update the ESAD bits.  We also set (keep) the
184 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
185 	 */
186 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
187 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
188 #ifdef CONFIG_PHYS_64BIT
189 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
190 			upper_32_bits(dma_private->dma_buf_next));
191 #endif
192 	} else {
193 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
194 #ifdef CONFIG_PHYS_64BIT
195 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
196 			upper_32_bits(dma_private->dma_buf_next));
197 #endif
198 	}
199 
200 	/* Update our variables for next time */
201 	dma_private->dma_buf_next += dma_private->period_size;
202 
203 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
204 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
205 
206 	if (++dma_private->current_link >= NUM_DMA_LINKS)
207 		dma_private->current_link = 0;
208 }
209 
210 /**
211  * fsl_dma_isr: interrupt handler for the DMA controller
212  *
213  * @irq: IRQ of the DMA channel
214  * @dev_id: pointer to the dma_private structure for this DMA channel
215  */
216 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
217 {
218 	struct fsl_dma_private *dma_private = dev_id;
219 	struct snd_pcm_substream *substream = dma_private->substream;
220 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
221 	struct device *dev = rtd->platform->dev;
222 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
223 	irqreturn_t ret = IRQ_NONE;
224 	u32 sr, sr2 = 0;
225 
226 	/* We got an interrupt, so read the status register to see what we
227 	   were interrupted for.
228 	 */
229 	sr = in_be32(&dma_channel->sr);
230 
231 	if (sr & CCSR_DMA_SR_TE) {
232 		dev_err(dev, "dma transmit error\n");
233 		fsl_dma_abort_stream(substream);
234 		sr2 |= CCSR_DMA_SR_TE;
235 		ret = IRQ_HANDLED;
236 	}
237 
238 	if (sr & CCSR_DMA_SR_CH)
239 		ret = IRQ_HANDLED;
240 
241 	if (sr & CCSR_DMA_SR_PE) {
242 		dev_err(dev, "dma programming error\n");
243 		fsl_dma_abort_stream(substream);
244 		sr2 |= CCSR_DMA_SR_PE;
245 		ret = IRQ_HANDLED;
246 	}
247 
248 	if (sr & CCSR_DMA_SR_EOLNI) {
249 		sr2 |= CCSR_DMA_SR_EOLNI;
250 		ret = IRQ_HANDLED;
251 	}
252 
253 	if (sr & CCSR_DMA_SR_CB)
254 		ret = IRQ_HANDLED;
255 
256 	if (sr & CCSR_DMA_SR_EOSI) {
257 		/* Tell ALSA we completed a period. */
258 		snd_pcm_period_elapsed(substream);
259 
260 		/*
261 		 * Update our link descriptors to point to the next period. We
262 		 * only need to do this if the number of periods is not equal to
263 		 * the number of links.
264 		 */
265 		if (dma_private->num_periods != NUM_DMA_LINKS)
266 			fsl_dma_update_pointers(dma_private);
267 
268 		sr2 |= CCSR_DMA_SR_EOSI;
269 		ret = IRQ_HANDLED;
270 	}
271 
272 	if (sr & CCSR_DMA_SR_EOLSI) {
273 		sr2 |= CCSR_DMA_SR_EOLSI;
274 		ret = IRQ_HANDLED;
275 	}
276 
277 	/* Clear the bits that we set */
278 	if (sr2)
279 		out_be32(&dma_channel->sr, sr2);
280 
281 	return ret;
282 }
283 
284 /**
285  * fsl_dma_new: initialize this PCM driver.
286  *
287  * This function is called when the codec driver calls snd_soc_new_pcms(),
288  * once for each .dai_link in the machine driver's snd_soc_card
289  * structure.
290  *
291  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
292  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
293  * is specified. Therefore, any DMA buffers we allocate will always be in low
294  * memory, but we support for 36-bit physical addresses anyway.
295  *
296  * Regardless of where the memory is actually allocated, since the device can
297  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
298  */
299 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
300 {
301 	struct snd_card *card = rtd->card->snd_card;
302 	struct snd_pcm *pcm = rtd->pcm;
303 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
304 	int ret;
305 
306 	if (!card->dev->dma_mask)
307 		card->dev->dma_mask = &fsl_dma_dmamask;
308 
309 	if (!card->dev->coherent_dma_mask)
310 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
311 
312 	/* Some codecs have separate DAIs for playback and capture, so we
313 	 * should allocate a DMA buffer only for the streams that are valid.
314 	 */
315 
316 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
317 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
318 			fsl_dma_hardware.buffer_bytes_max,
319 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
320 		if (ret) {
321 			dev_err(card->dev, "can't alloc playback dma buffer\n");
322 			return ret;
323 		}
324 	}
325 
326 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
327 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
328 			fsl_dma_hardware.buffer_bytes_max,
329 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
330 		if (ret) {
331 			dev_err(card->dev, "can't alloc capture dma buffer\n");
332 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
333 			return ret;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 /**
341  * fsl_dma_open: open a new substream.
342  *
343  * Each substream has its own DMA buffer.
344  *
345  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
346  * descriptors that ping-pong from one period to the next.  For example, if
347  * there are six periods and two link descriptors, this is how they look
348  * before playback starts:
349  *
350  *      	   The last link descriptor
351  *   ____________  points back to the first
352  *  |   	 |
353  *  V   	 |
354  *  ___    ___   |
355  * |   |->|   |->|
356  * |___|  |___|
357  *   |      |
358  *   |      |
359  *   V      V
360  *  _________________________________________
361  * |      |      |      |      |      |      |  The DMA buffer is
362  * |      |      |      |      |      |      |    divided into 6 parts
363  * |______|______|______|______|______|______|
364  *
365  * and here's how they look after the first period is finished playing:
366  *
367  *   ____________
368  *  |   	 |
369  *  V   	 |
370  *  ___    ___   |
371  * |   |->|   |->|
372  * |___|  |___|
373  *   |      |
374  *   |______________
375  *          |       |
376  *          V       V
377  *  _________________________________________
378  * |      |      |      |      |      |      |
379  * |      |      |      |      |      |      |
380  * |______|______|______|______|______|______|
381  *
382  * The first link descriptor now points to the third period.  The DMA
383  * controller is currently playing the second period.  When it finishes, it
384  * will jump back to the first descriptor and play the third period.
385  *
386  * There are four reasons we do this:
387  *
388  * 1. The only way to get the DMA controller to automatically restart the
389  *    transfer when it gets to the end of the buffer is to use chaining
390  *    mode.  Basic direct mode doesn't offer that feature.
391  * 2. We need to receive an interrupt at the end of every period.  The DMA
392  *    controller can generate an interrupt at the end of every link transfer
393  *    (aka segment).  Making each period into a DMA segment will give us the
394  *    interrupts we need.
395  * 3. By creating only two link descriptors, regardless of the number of
396  *    periods, we do not need to reallocate the link descriptors if the
397  *    number of periods changes.
398  * 4. All of the audio data is still stored in a single, contiguous DMA
399  *    buffer, which is what ALSA expects.  We're just dividing it into
400  *    contiguous parts, and creating a link descriptor for each one.
401  */
402 static int fsl_dma_open(struct snd_pcm_substream *substream)
403 {
404 	struct snd_pcm_runtime *runtime = substream->runtime;
405 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
406 	struct device *dev = rtd->platform->dev;
407 	struct dma_object *dma =
408 		container_of(rtd->platform->driver, struct dma_object, dai);
409 	struct fsl_dma_private *dma_private;
410 	struct ccsr_dma_channel __iomem *dma_channel;
411 	dma_addr_t ld_buf_phys;
412 	u64 temp_link;  	/* Pointer to next link descriptor */
413 	u32 mr;
414 	unsigned int channel;
415 	int ret = 0;
416 	unsigned int i;
417 
418 	/*
419 	 * Reject any DMA buffer whose size is not a multiple of the period
420 	 * size.  We need to make sure that the DMA buffer can be evenly divided
421 	 * into periods.
422 	 */
423 	ret = snd_pcm_hw_constraint_integer(runtime,
424 		SNDRV_PCM_HW_PARAM_PERIODS);
425 	if (ret < 0) {
426 		dev_err(dev, "invalid buffer size\n");
427 		return ret;
428 	}
429 
430 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
431 
432 	if (dma->assigned) {
433 		dev_err(dev, "dma channel already assigned\n");
434 		return -EBUSY;
435 	}
436 
437 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
438 					 &ld_buf_phys, GFP_KERNEL);
439 	if (!dma_private) {
440 		dev_err(dev, "can't allocate dma private data\n");
441 		return -ENOMEM;
442 	}
443 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
444 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
445 	else
446 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
447 
448 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
449 	dma_private->dma_channel = dma->channel;
450 	dma_private->irq = dma->irq;
451 	dma_private->substream = substream;
452 	dma_private->ld_buf_phys = ld_buf_phys;
453 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
454 
455 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
456 			  dma_private);
457 	if (ret) {
458 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
459 			dma_private->irq, ret);
460 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
461 			dma_private, dma_private->ld_buf_phys);
462 		return ret;
463 	}
464 
465 	dma->assigned = 1;
466 
467 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
468 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
469 	runtime->private_data = dma_private;
470 
471 	/* Program the fixed DMA controller parameters */
472 
473 	dma_channel = dma_private->dma_channel;
474 
475 	temp_link = dma_private->ld_buf_phys +
476 		sizeof(struct fsl_dma_link_descriptor);
477 
478 	for (i = 0; i < NUM_DMA_LINKS; i++) {
479 		dma_private->link[i].next = cpu_to_be64(temp_link);
480 
481 		temp_link += sizeof(struct fsl_dma_link_descriptor);
482 	}
483 	/* The last link descriptor points to the first */
484 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
485 
486 	/* Tell the DMA controller where the first link descriptor is */
487 	out_be32(&dma_channel->clndar,
488 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
489 	out_be32(&dma_channel->eclndar,
490 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
491 
492 	/* The manual says the BCR must be clear before enabling EMP */
493 	out_be32(&dma_channel->bcr, 0);
494 
495 	/*
496 	 * Program the mode register for interrupts, external master control,
497 	 * and source/destination hold.  Also clear the Channel Abort bit.
498 	 */
499 	mr = in_be32(&dma_channel->mr) &
500 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
501 
502 	/*
503 	 * We want External Master Start and External Master Pause enabled,
504 	 * because the SSI is controlling the DMA controller.  We want the DMA
505 	 * controller to be set up in advance, and then we signal only the SSI
506 	 * to start transferring.
507 	 *
508 	 * We want End-Of-Segment Interrupts enabled, because this will generate
509 	 * an interrupt at the end of each segment (each link descriptor
510 	 * represents one segment).  Each DMA segment is the same thing as an
511 	 * ALSA period, so this is how we get an interrupt at the end of every
512 	 * period.
513 	 *
514 	 * We want Error Interrupt enabled, so that we can get an error if
515 	 * the DMA controller is mis-programmed somehow.
516 	 */
517 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
518 		CCSR_DMA_MR_EMS_EN;
519 
520 	/* For playback, we want the destination address to be held.  For
521 	   capture, set the source address to be held. */
522 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
523 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
524 
525 	out_be32(&dma_channel->mr, mr);
526 
527 	return 0;
528 }
529 
530 /**
531  * fsl_dma_hw_params: continue initializing the DMA links
532  *
533  * This function obtains hardware parameters about the opened stream and
534  * programs the DMA controller accordingly.
535  *
536  * One drawback of big-endian is that when copying integers of different
537  * sizes to a fixed-sized register, the address to which the integer must be
538  * copied is dependent on the size of the integer.
539  *
540  * For example, if P is the address of a 32-bit register, and X is a 32-bit
541  * integer, then X should be copied to address P.  However, if X is a 16-bit
542  * integer, then it should be copied to P+2.  If X is an 8-bit register,
543  * then it should be copied to P+3.
544  *
545  * So for playback of 8-bit samples, the DMA controller must transfer single
546  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
547  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
548  *
549  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
550  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
551  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
552  * 24-bit data must be padded to 32 bits.
553  */
554 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
555 	struct snd_pcm_hw_params *hw_params)
556 {
557 	struct snd_pcm_runtime *runtime = substream->runtime;
558 	struct fsl_dma_private *dma_private = runtime->private_data;
559 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
560 	struct device *dev = rtd->platform->dev;
561 
562 	/* Number of bits per sample */
563 	unsigned int sample_bits =
564 		snd_pcm_format_physical_width(params_format(hw_params));
565 
566 	/* Number of bytes per frame */
567 	unsigned int sample_bytes = sample_bits / 8;
568 
569 	/* Bus address of SSI STX register */
570 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
571 
572 	/* Size of the DMA buffer, in bytes */
573 	size_t buffer_size = params_buffer_bytes(hw_params);
574 
575 	/* Number of bytes per period */
576 	size_t period_size = params_period_bytes(hw_params);
577 
578 	/* Pointer to next period */
579 	dma_addr_t temp_addr = substream->dma_buffer.addr;
580 
581 	/* Pointer to DMA controller */
582 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
583 
584 	u32 mr; /* DMA Mode Register */
585 
586 	unsigned int i;
587 
588 	/* Initialize our DMA tracking variables */
589 	dma_private->period_size = period_size;
590 	dma_private->num_periods = params_periods(hw_params);
591 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
592 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
593 		(NUM_DMA_LINKS * period_size);
594 
595 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
596 		/* This happens if the number of periods == NUM_DMA_LINKS */
597 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
598 
599 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
600 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
601 
602 	/* Due to a quirk of the SSI's STX register, the target address
603 	 * for the DMA operations depends on the sample size.  So we calculate
604 	 * that offset here.  While we're at it, also tell the DMA controller
605 	 * how much data to transfer per sample.
606 	 */
607 	switch (sample_bits) {
608 	case 8:
609 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
610 		ssi_sxx_phys += 3;
611 		break;
612 	case 16:
613 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
614 		ssi_sxx_phys += 2;
615 		break;
616 	case 32:
617 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
618 		break;
619 	default:
620 		/* We should never get here */
621 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
622 		return -EINVAL;
623 	}
624 
625 	/*
626 	 * BWC determines how many bytes are sent/received before the DMA
627 	 * controller checks the SSI to see if it needs to stop. BWC should
628 	 * always be a multiple of the frame size, so that we always transmit
629 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
630 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
631 	 * (MR[BWC] can only represent even powers of two).
632 	 *
633 	 * To simplify the process, we set BWC to the largest value that is
634 	 * less than or equal to the FIFO watermark.  For playback, this ensures
635 	 * that we transfer the maximum amount without overrunning the FIFO.
636 	 * For capture, this ensures that we transfer the maximum amount without
637 	 * underrunning the FIFO.
638 	 *
639 	 * f = SSI FIFO depth
640 	 * w = SSI watermark value (which equals f - 2)
641 	 * b = DMA bandwidth count (in bytes)
642 	 * s = sample size (in bytes, which equals frame_size * 2)
643 	 *
644 	 * For playback, we never transmit more than the transmit FIFO
645 	 * watermark, otherwise we might write more data than the FIFO can hold.
646 	 * The watermark is equal to the FIFO depth minus two.
647 	 *
648 	 * For capture, two equations must hold:
649 	 *	w > f - (b / s)
650 	 *	w >= b / s
651 	 *
652 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
653 	 * b = s * w, which is equal to
654 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
655 	 */
656 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
657 
658 	out_be32(&dma_channel->mr, mr);
659 
660 	for (i = 0; i < NUM_DMA_LINKS; i++) {
661 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
662 
663 		link->count = cpu_to_be32(period_size);
664 
665 		/* The snoop bit tells the DMA controller whether it should tell
666 		 * the ECM to snoop during a read or write to an address. For
667 		 * audio, we use DMA to transfer data between memory and an I/O
668 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
669 		 * needed if there is a cache, so we need to snoop memory
670 		 * addresses only.  For playback, that means we snoop the source
671 		 * but not the destination.  For capture, we snoop the
672 		 * destination but not the source.
673 		 *
674 		 * Note that failing to snoop properly is unlikely to cause
675 		 * cache incoherency if the period size is larger than the
676 		 * size of L1 cache.  This is because filling in one period will
677 		 * flush out the data for the previous period.  So if you
678 		 * increased period_bytes_min to a large enough size, you might
679 		 * get more performance by not snooping, and you'll still be
680 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
681 		 */
682 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
683 			link->source_addr = cpu_to_be32(temp_addr);
684 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
685 				upper_32_bits(temp_addr));
686 
687 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
688 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
689 				upper_32_bits(ssi_sxx_phys));
690 		} else {
691 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
692 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
693 				upper_32_bits(ssi_sxx_phys));
694 
695 			link->dest_addr = cpu_to_be32(temp_addr);
696 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
697 				upper_32_bits(temp_addr));
698 		}
699 
700 		temp_addr += period_size;
701 	}
702 
703 	return 0;
704 }
705 
706 /**
707  * fsl_dma_pointer: determine the current position of the DMA transfer
708  *
709  * This function is called by ALSA when ALSA wants to know where in the
710  * stream buffer the hardware currently is.
711  *
712  * For playback, the SAR register contains the physical address of the most
713  * recent DMA transfer.  For capture, the value is in the DAR register.
714  *
715  * The base address of the buffer is stored in the source_addr field of the
716  * first link descriptor.
717  */
718 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
719 {
720 	struct snd_pcm_runtime *runtime = substream->runtime;
721 	struct fsl_dma_private *dma_private = runtime->private_data;
722 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
723 	struct device *dev = rtd->platform->dev;
724 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
725 	dma_addr_t position;
726 	snd_pcm_uframes_t frames;
727 
728 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
729 	 * only have 32-bit DMA addresses.  This function is typically called
730 	 * in interrupt context, so we need to optimize it.
731 	 */
732 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
733 		position = in_be32(&dma_channel->sar);
734 #ifdef CONFIG_PHYS_64BIT
735 		position |= (u64)(in_be32(&dma_channel->satr) &
736 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
737 #endif
738 	} else {
739 		position = in_be32(&dma_channel->dar);
740 #ifdef CONFIG_PHYS_64BIT
741 		position |= (u64)(in_be32(&dma_channel->datr) &
742 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
743 #endif
744 	}
745 
746 	/*
747 	 * When capture is started, the SSI immediately starts to fill its FIFO.
748 	 * This means that the DMA controller is not started until the FIFO is
749 	 * full.  However, ALSA calls this function before that happens, when
750 	 * MR.DAR is still zero.  In this case, just return zero to indicate
751 	 * that nothing has been received yet.
752 	 */
753 	if (!position)
754 		return 0;
755 
756 	if ((position < dma_private->dma_buf_phys) ||
757 	    (position > dma_private->dma_buf_end)) {
758 		dev_err(dev, "dma pointer is out of range, halting stream\n");
759 		return SNDRV_PCM_POS_XRUN;
760 	}
761 
762 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
763 
764 	/*
765 	 * If the current address is just past the end of the buffer, wrap it
766 	 * around.
767 	 */
768 	if (frames == runtime->buffer_size)
769 		frames = 0;
770 
771 	return frames;
772 }
773 
774 /**
775  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
776  *
777  * Release the resources allocated in fsl_dma_hw_params() and de-program the
778  * registers.
779  *
780  * This function can be called multiple times.
781  */
782 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
783 {
784 	struct snd_pcm_runtime *runtime = substream->runtime;
785 	struct fsl_dma_private *dma_private = runtime->private_data;
786 
787 	if (dma_private) {
788 		struct ccsr_dma_channel __iomem *dma_channel;
789 
790 		dma_channel = dma_private->dma_channel;
791 
792 		/* Stop the DMA */
793 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
794 		out_be32(&dma_channel->mr, 0);
795 
796 		/* Reset all the other registers */
797 		out_be32(&dma_channel->sr, -1);
798 		out_be32(&dma_channel->clndar, 0);
799 		out_be32(&dma_channel->eclndar, 0);
800 		out_be32(&dma_channel->satr, 0);
801 		out_be32(&dma_channel->sar, 0);
802 		out_be32(&dma_channel->datr, 0);
803 		out_be32(&dma_channel->dar, 0);
804 		out_be32(&dma_channel->bcr, 0);
805 		out_be32(&dma_channel->nlndar, 0);
806 		out_be32(&dma_channel->enlndar, 0);
807 	}
808 
809 	return 0;
810 }
811 
812 /**
813  * fsl_dma_close: close the stream.
814  */
815 static int fsl_dma_close(struct snd_pcm_substream *substream)
816 {
817 	struct snd_pcm_runtime *runtime = substream->runtime;
818 	struct fsl_dma_private *dma_private = runtime->private_data;
819 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
820 	struct device *dev = rtd->platform->dev;
821 	struct dma_object *dma =
822 		container_of(rtd->platform->driver, struct dma_object, dai);
823 
824 	if (dma_private) {
825 		if (dma_private->irq)
826 			free_irq(dma_private->irq, dma_private);
827 
828 		/* Deallocate the fsl_dma_private structure */
829 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
830 				  dma_private, dma_private->ld_buf_phys);
831 		substream->runtime->private_data = NULL;
832 	}
833 
834 	dma->assigned = 0;
835 
836 	return 0;
837 }
838 
839 /*
840  * Remove this PCM driver.
841  */
842 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
843 {
844 	struct snd_pcm_substream *substream;
845 	unsigned int i;
846 
847 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
848 		substream = pcm->streams[i].substream;
849 		if (substream) {
850 			snd_dma_free_pages(&substream->dma_buffer);
851 			substream->dma_buffer.area = NULL;
852 			substream->dma_buffer.addr = 0;
853 		}
854 	}
855 }
856 
857 /**
858  * find_ssi_node -- returns the SSI node that points to his DMA channel node
859  *
860  * Although this DMA driver attempts to operate independently of the other
861  * devices, it still needs to determine some information about the SSI device
862  * that it's working with.  Unfortunately, the device tree does not contain
863  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
864  * other way.  So we need to scan the device tree for SSI nodes until we find
865  * the one that points to the given DMA channel node.  It's ugly, but at least
866  * it's contained in this one function.
867  */
868 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
869 {
870 	struct device_node *ssi_np, *np;
871 
872 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
873 		/* Check each DMA phandle to see if it points to us.  We
874 		 * assume that device_node pointers are a valid comparison.
875 		 */
876 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
877 		of_node_put(np);
878 		if (np == dma_channel_np)
879 			return ssi_np;
880 
881 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
882 		of_node_put(np);
883 		if (np == dma_channel_np)
884 			return ssi_np;
885 	}
886 
887 	return NULL;
888 }
889 
890 static struct snd_pcm_ops fsl_dma_ops = {
891 	.open   	= fsl_dma_open,
892 	.close  	= fsl_dma_close,
893 	.ioctl  	= snd_pcm_lib_ioctl,
894 	.hw_params      = fsl_dma_hw_params,
895 	.hw_free	= fsl_dma_hw_free,
896 	.pointer	= fsl_dma_pointer,
897 };
898 
899 static int fsl_soc_dma_probe(struct platform_device *pdev)
900  {
901 	struct dma_object *dma;
902 	struct device_node *np = pdev->dev.of_node;
903 	struct device_node *ssi_np;
904 	struct resource res;
905 	const uint32_t *iprop;
906 	int ret;
907 
908 	/* Find the SSI node that points to us. */
909 	ssi_np = find_ssi_node(np);
910 	if (!ssi_np) {
911 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
912 		return -ENODEV;
913 	}
914 
915 	ret = of_address_to_resource(ssi_np, 0, &res);
916 	if (ret) {
917 		dev_err(&pdev->dev, "could not determine resources for %s\n",
918 			ssi_np->full_name);
919 		of_node_put(ssi_np);
920 		return ret;
921 	}
922 
923 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
924 	if (!dma) {
925 		dev_err(&pdev->dev, "could not allocate dma object\n");
926 		of_node_put(ssi_np);
927 		return -ENOMEM;
928 	}
929 
930 	strcpy(dma->path, np->full_name);
931 	dma->dai.ops = &fsl_dma_ops;
932 	dma->dai.pcm_new = fsl_dma_new;
933 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
934 
935 	/* Store the SSI-specific information that we need */
936 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
937 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
938 
939 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
940 	if (iprop)
941 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
942 	else
943                 /* Older 8610 DTs didn't have the fifo-depth property */
944 		dma->ssi_fifo_depth = 8;
945 
946 	of_node_put(ssi_np);
947 
948 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
949 	if (ret) {
950 		dev_err(&pdev->dev, "could not register platform\n");
951 		kfree(dma);
952 		return ret;
953 	}
954 
955 	dma->channel = of_iomap(np, 0);
956 	dma->irq = irq_of_parse_and_map(np, 0);
957 
958 	dev_set_drvdata(&pdev->dev, dma);
959 
960 	return 0;
961 }
962 
963 static int fsl_soc_dma_remove(struct platform_device *pdev)
964 {
965 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
966 
967 	snd_soc_unregister_platform(&pdev->dev);
968 	iounmap(dma->channel);
969 	irq_dispose_mapping(dma->irq);
970 	kfree(dma);
971 
972 	return 0;
973 }
974 
975 static const struct of_device_id fsl_soc_dma_ids[] = {
976 	{ .compatible = "fsl,ssi-dma-channel", },
977 	{}
978 };
979 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
980 
981 static struct platform_driver fsl_soc_dma_driver = {
982 	.driver = {
983 		.name = "fsl-pcm-audio",
984 		.owner = THIS_MODULE,
985 		.of_match_table = fsl_soc_dma_ids,
986 	},
987 	.probe = fsl_soc_dma_probe,
988 	.remove = fsl_soc_dma_remove,
989 };
990 
991 module_platform_driver(fsl_soc_dma_driver);
992 
993 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
994 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
995 MODULE_LICENSE("GPL v2");
996