1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux XFRM hook function implementations. 6 * 7 * Authors: Serge Hallyn <sergeh@us.ibm.com> 8 * Trent Jaeger <jaegert@us.ibm.com> 9 * 10 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com> 11 * 12 * Granular IPSec Associations for use in MLS environments. 13 * 14 * Copyright (C) 2005 International Business Machines Corporation 15 * Copyright (C) 2006 Trusted Computer Solutions, Inc. 16 */ 17 18 /* 19 * USAGE: 20 * NOTES: 21 * 1. Make sure to enable the following options in your kernel config: 22 * CONFIG_SECURITY=y 23 * CONFIG_SECURITY_NETWORK=y 24 * CONFIG_SECURITY_NETWORK_XFRM=y 25 * CONFIG_SECURITY_SELINUX=m/y 26 * ISSUES: 27 * 1. Caching packets, so they are not dropped during negotiation 28 * 2. Emulating a reasonable SO_PEERSEC across machines 29 * 3. Testing addition of sk_policy's with security context via setsockopt 30 */ 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/security.h> 34 #include <linux/types.h> 35 #include <linux/slab.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/skbuff.h> 39 #include <linux/xfrm.h> 40 #include <net/xfrm.h> 41 #include <net/checksum.h> 42 #include <net/udp.h> 43 #include <linux/atomic.h> 44 45 #include "avc.h" 46 #include "objsec.h" 47 #include "xfrm.h" 48 49 /* Labeled XFRM instance counter */ 50 atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0); 51 52 /* 53 * Returns true if the context is an LSM/SELinux context. 54 */ 55 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx) 56 { 57 return (ctx && 58 (ctx->ctx_doi == XFRM_SC_DOI_LSM) && 59 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX)); 60 } 61 62 /* 63 * Returns true if the xfrm contains a security blob for SELinux. 64 */ 65 static inline int selinux_authorizable_xfrm(struct xfrm_state *x) 66 { 67 return selinux_authorizable_ctx(x->security); 68 } 69 70 /* 71 * Allocates a xfrm_sec_state and populates it using the supplied security 72 * xfrm_user_sec_ctx context. 73 */ 74 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp, 75 struct xfrm_user_sec_ctx *uctx, 76 gfp_t gfp) 77 { 78 int rc; 79 const struct task_security_struct *tsec = selinux_cred(current_cred()); 80 struct xfrm_sec_ctx *ctx = NULL; 81 u32 str_len; 82 83 if (ctxp == NULL || uctx == NULL || 84 uctx->ctx_doi != XFRM_SC_DOI_LSM || 85 uctx->ctx_alg != XFRM_SC_ALG_SELINUX) 86 return -EINVAL; 87 88 str_len = uctx->ctx_len; 89 if (str_len >= PAGE_SIZE) 90 return -ENOMEM; 91 92 ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp); 93 if (!ctx) 94 return -ENOMEM; 95 96 ctx->ctx_doi = XFRM_SC_DOI_LSM; 97 ctx->ctx_alg = XFRM_SC_ALG_SELINUX; 98 ctx->ctx_len = str_len; 99 memcpy(ctx->ctx_str, &uctx[1], str_len); 100 ctx->ctx_str[str_len] = '\0'; 101 rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len, 102 &ctx->ctx_sid, gfp); 103 if (rc) 104 goto err; 105 106 rc = avc_has_perm(&selinux_state, 107 tsec->sid, ctx->ctx_sid, 108 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL); 109 if (rc) 110 goto err; 111 112 *ctxp = ctx; 113 atomic_inc(&selinux_xfrm_refcount); 114 return 0; 115 116 err: 117 kfree(ctx); 118 return rc; 119 } 120 121 /* 122 * Free the xfrm_sec_ctx structure. 123 */ 124 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx) 125 { 126 if (!ctx) 127 return; 128 129 atomic_dec(&selinux_xfrm_refcount); 130 kfree(ctx); 131 } 132 133 /* 134 * Authorize the deletion of a labeled SA or policy rule. 135 */ 136 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx) 137 { 138 const struct task_security_struct *tsec = selinux_cred(current_cred()); 139 140 if (!ctx) 141 return 0; 142 143 return avc_has_perm(&selinux_state, 144 tsec->sid, ctx->ctx_sid, 145 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, 146 NULL); 147 } 148 149 /* 150 * LSM hook implementation that authorizes that a flow can use a xfrm policy 151 * rule. 152 */ 153 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 154 { 155 int rc; 156 157 /* All flows should be treated as polmatch'ing an otherwise applicable 158 * "non-labeled" policy. This would prevent inadvertent "leaks". */ 159 if (!ctx) 160 return 0; 161 162 /* Context sid is either set to label or ANY_ASSOC */ 163 if (!selinux_authorizable_ctx(ctx)) 164 return -EINVAL; 165 166 rc = avc_has_perm(&selinux_state, 167 fl_secid, ctx->ctx_sid, 168 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL); 169 return (rc == -EACCES ? -ESRCH : rc); 170 } 171 172 /* 173 * LSM hook implementation that authorizes that a state matches 174 * the given policy, flow combo. 175 */ 176 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x, 177 struct xfrm_policy *xp, 178 const struct flowi_common *flic) 179 { 180 u32 state_sid; 181 u32 flic_sid; 182 183 if (!xp->security) 184 if (x->security) 185 /* unlabeled policy and labeled SA can't match */ 186 return 0; 187 else 188 /* unlabeled policy and unlabeled SA match all flows */ 189 return 1; 190 else 191 if (!x->security) 192 /* unlabeled SA and labeled policy can't match */ 193 return 0; 194 else 195 if (!selinux_authorizable_xfrm(x)) 196 /* Not a SELinux-labeled SA */ 197 return 0; 198 199 state_sid = x->security->ctx_sid; 200 flic_sid = flic->flowic_secid; 201 202 if (flic_sid != state_sid) 203 return 0; 204 205 /* We don't need a separate SA Vs. policy polmatch check since the SA 206 * is now of the same label as the flow and a flow Vs. policy polmatch 207 * check had already happened in selinux_xfrm_policy_lookup() above. */ 208 return (avc_has_perm(&selinux_state, flic_sid, state_sid, 209 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, 210 NULL) ? 0 : 1); 211 } 212 213 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb) 214 { 215 struct dst_entry *dst = skb_dst(skb); 216 struct xfrm_state *x; 217 218 if (dst == NULL) 219 return SECSID_NULL; 220 x = dst->xfrm; 221 if (x == NULL || !selinux_authorizable_xfrm(x)) 222 return SECSID_NULL; 223 224 return x->security->ctx_sid; 225 } 226 227 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb, 228 u32 *sid, int ckall) 229 { 230 u32 sid_session = SECSID_NULL; 231 struct sec_path *sp = skb_sec_path(skb); 232 233 if (sp) { 234 int i; 235 236 for (i = sp->len - 1; i >= 0; i--) { 237 struct xfrm_state *x = sp->xvec[i]; 238 if (selinux_authorizable_xfrm(x)) { 239 struct xfrm_sec_ctx *ctx = x->security; 240 241 if (sid_session == SECSID_NULL) { 242 sid_session = ctx->ctx_sid; 243 if (!ckall) 244 goto out; 245 } else if (sid_session != ctx->ctx_sid) { 246 *sid = SECSID_NULL; 247 return -EINVAL; 248 } 249 } 250 } 251 } 252 253 out: 254 *sid = sid_session; 255 return 0; 256 } 257 258 /* 259 * LSM hook implementation that checks and/or returns the xfrm sid for the 260 * incoming packet. 261 */ 262 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall) 263 { 264 if (skb == NULL) { 265 *sid = SECSID_NULL; 266 return 0; 267 } 268 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall); 269 } 270 271 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid) 272 { 273 int rc; 274 275 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0); 276 if (rc == 0 && *sid == SECSID_NULL) 277 *sid = selinux_xfrm_skb_sid_egress(skb); 278 279 return rc; 280 } 281 282 /* 283 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy. 284 */ 285 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 286 struct xfrm_user_sec_ctx *uctx, 287 gfp_t gfp) 288 { 289 return selinux_xfrm_alloc_user(ctxp, uctx, gfp); 290 } 291 292 /* 293 * LSM hook implementation that copies security data structure from old to new 294 * for policy cloning. 295 */ 296 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 297 struct xfrm_sec_ctx **new_ctxp) 298 { 299 struct xfrm_sec_ctx *new_ctx; 300 301 if (!old_ctx) 302 return 0; 303 304 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len, 305 GFP_ATOMIC); 306 if (!new_ctx) 307 return -ENOMEM; 308 atomic_inc(&selinux_xfrm_refcount); 309 *new_ctxp = new_ctx; 310 311 return 0; 312 } 313 314 /* 315 * LSM hook implementation that frees xfrm_sec_ctx security information. 316 */ 317 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 318 { 319 selinux_xfrm_free(ctx); 320 } 321 322 /* 323 * LSM hook implementation that authorizes deletion of labeled policies. 324 */ 325 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 326 { 327 return selinux_xfrm_delete(ctx); 328 } 329 330 /* 331 * LSM hook implementation that allocates a xfrm_sec_state, populates it using 332 * the supplied security context, and assigns it to the xfrm_state. 333 */ 334 int selinux_xfrm_state_alloc(struct xfrm_state *x, 335 struct xfrm_user_sec_ctx *uctx) 336 { 337 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL); 338 } 339 340 /* 341 * LSM hook implementation that allocates a xfrm_sec_state and populates based 342 * on a secid. 343 */ 344 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x, 345 struct xfrm_sec_ctx *polsec, u32 secid) 346 { 347 int rc; 348 struct xfrm_sec_ctx *ctx; 349 char *ctx_str = NULL; 350 int str_len; 351 352 if (!polsec) 353 return 0; 354 355 if (secid == 0) 356 return -EINVAL; 357 358 rc = security_sid_to_context(&selinux_state, secid, &ctx_str, 359 &str_len); 360 if (rc) 361 return rc; 362 363 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC); 364 if (!ctx) { 365 rc = -ENOMEM; 366 goto out; 367 } 368 369 ctx->ctx_doi = XFRM_SC_DOI_LSM; 370 ctx->ctx_alg = XFRM_SC_ALG_SELINUX; 371 ctx->ctx_sid = secid; 372 ctx->ctx_len = str_len; 373 memcpy(ctx->ctx_str, ctx_str, str_len); 374 375 x->security = ctx; 376 atomic_inc(&selinux_xfrm_refcount); 377 out: 378 kfree(ctx_str); 379 return rc; 380 } 381 382 /* 383 * LSM hook implementation that frees xfrm_state security information. 384 */ 385 void selinux_xfrm_state_free(struct xfrm_state *x) 386 { 387 selinux_xfrm_free(x->security); 388 } 389 390 /* 391 * LSM hook implementation that authorizes deletion of labeled SAs. 392 */ 393 int selinux_xfrm_state_delete(struct xfrm_state *x) 394 { 395 return selinux_xfrm_delete(x->security); 396 } 397 398 /* 399 * LSM hook that controls access to unlabelled packets. If 400 * a xfrm_state is authorizable (defined by macro) then it was 401 * already authorized by the IPSec process. If not, then 402 * we need to check for unlabelled access since this may not have 403 * gone thru the IPSec process. 404 */ 405 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb, 406 struct common_audit_data *ad) 407 { 408 int i; 409 struct sec_path *sp = skb_sec_path(skb); 410 u32 peer_sid = SECINITSID_UNLABELED; 411 412 if (sp) { 413 for (i = 0; i < sp->len; i++) { 414 struct xfrm_state *x = sp->xvec[i]; 415 416 if (x && selinux_authorizable_xfrm(x)) { 417 struct xfrm_sec_ctx *ctx = x->security; 418 peer_sid = ctx->ctx_sid; 419 break; 420 } 421 } 422 } 423 424 /* This check even when there's no association involved is intended, 425 * according to Trent Jaeger, to make sure a process can't engage in 426 * non-IPsec communication unless explicitly allowed by policy. */ 427 return avc_has_perm(&selinux_state, 428 sk_sid, peer_sid, 429 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad); 430 } 431 432 /* 433 * POSTROUTE_LAST hook's XFRM processing: 434 * If we have no security association, then we need to determine 435 * whether the socket is allowed to send to an unlabelled destination. 436 * If we do have a authorizable security association, then it has already been 437 * checked in the selinux_xfrm_state_pol_flow_match hook above. 438 */ 439 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb, 440 struct common_audit_data *ad, u8 proto) 441 { 442 struct dst_entry *dst; 443 444 switch (proto) { 445 case IPPROTO_AH: 446 case IPPROTO_ESP: 447 case IPPROTO_COMP: 448 /* We should have already seen this packet once before it 449 * underwent xfrm(s). No need to subject it to the unlabeled 450 * check. */ 451 return 0; 452 default: 453 break; 454 } 455 456 dst = skb_dst(skb); 457 if (dst) { 458 struct dst_entry *iter; 459 460 for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) { 461 struct xfrm_state *x = iter->xfrm; 462 463 if (x && selinux_authorizable_xfrm(x)) 464 return 0; 465 } 466 } 467 468 /* This check even when there's no association involved is intended, 469 * according to Trent Jaeger, to make sure a process can't engage in 470 * non-IPsec communication unless explicitly allowed by policy. */ 471 return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED, 472 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad); 473 } 474